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Objective: Amino acid (AA) metabolism plays a vital role in liver regeneration.
However, its measuring utility for post-hepatectomy liver regeneration under
different conditions remains unclear. We aimed to combine machine learning
(ML) models with AA metabolomics to assess liver regeneration in health and
non-alcoholic steatohepatitis (NASH).

Methods: The liver index (liver weight/body weight) was calculated following 70%
hepatectomy in healthy andNASHmice. The serum levels of 39 amino acids were
measured using ultra-high performance liquid chromatography–tandem mass
spectrometry analysis. We used orthogonal partial least squares discriminant
analysis to determine differential AAs and disturbed metabolic pathways during
liver regeneration. The SHapley Additive exPlanations algorithm was performed
to identify potential AA signatures, and five ML models including least absolute
shrinkage and selection operator, random forest, K-nearest neighbor (KNN),
support vector regression, and extreme gradient boosting were utilized to
assess the liver index.

Results: Eleven and twenty-two differential AAs were identified in the healthy and
NASH groups, respectively. Among these metabolites, arginine and proline
metabolism were commonly disturbed metabolic pathways related to liver
regeneration in both groups. Five AA signatures were identified, including
hydroxylysine, L-serine, 3-methylhistidine, L-tyrosine, and homocitrulline in
healthy group, and L-arginine, 2-aminobutyric acid, sarcosine, beta-alanine,
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and L-cysteine in NASH group. The KNN model demonstrated the best evaluation
performance with mean absolute error, root mean square error, and coefficient of
determination values of 0.0037, 0.0047, 0.79 and 0.0028, 0.0034, 0.71 for the
healthy and NASH groups, respectively.

Conclusion: The KNN model based on five AA signatures performed best, which
suggests that it may be a valuable tool for assessing post-hepatectomy liver
regeneration in health and NASH.

KEYWORDS

hepatectomy, metabolomics, machine learning, liver regeneration, non-alcoholic
steatohepatitis (NASH)

1 Introduction

Liver regeneration is a biological process that occurs under
moderate stimulation, such as surgery and injury. Parenchymal
and mesenchymal cells, as well as several molecules including
metabolites and cytokines, participate in this process (Lorente
et al., 2020). The process of liver regeneration consists of three
stages: the priming phase (0–6 h), proliferation phase (12–72 h), and
termination phase (96–168 h) (Sergeeva et al., 2020). Due to high
regeneration capacity, a healthy liver can achieve functional
compensation within several weeks after 80% of the liver is
resected (Yang et al., 2020). Owing to the above characteristics,
partial hepatectomy has been successfully used as the surgical
modality for benign and malignant liver diseases, including
hepatic hemangioma, hepatolithiasis, and liver cancer (Ahmed
et al., 2016; Michalopoulos, 2017; Abu Rmilah et al., 2019).
However, the capacity of liver regeneration in patients with
chronic liver disease is typically worse than that of the healthy
population (de Meijer et al., 2010). The assessment of liver
regeneration following hepatectomy is affected by the severity of
chronic liver disease, which poses a considerable challenge for
disease treatment and prognosis (Ascha et al., 2010; Guglielmi
et al., 2012; Geh et al., 2021).

Non-alcoholic steatohepatitis (NASH) is one of the most
common chronic liver diseases globally, and it is estimated that
there will be 350 million patients worldwide by 2030 (Konerman
et al., 2018). NASH, which is characterized pathologically by steatosis,
inflammation, and hepatocyte injury with/without fibrosis, may
ultimately progress to cirrhosis or even hepatocellular carcinoma
(Liu et al., 2016). As liver regeneration is significantly affected, the
post-hepatectomy liver function, overall incidence of complications,
and mortality rate are increased considerably in NASH patients (de
Meijer et al., 2010; Reddy et al., 2012). Therefore, the evaluation of
post-hepatectomy liver regeneration in NASH is a clinical issue that
urgently requires a solution.

Currently, computed tomography and magnetic resonance
imaging are widely used in clinical practice for measuring post-
hepatectomy residual liver volume to evaluate liver regeneration
(Zamboni et al., 2008; Luciani et al., 2012; Soyer et al., 2012).
However, the imaging investigations not only result in erroneous
or overestimated actual liver volume, but also bring about difficulties
in transporting and caring for patients undergoing hepatectomy
(D’Onofrio et al., 2014). Therefore, it is crucial to develop an
accurate and convenient assessment method for post-
hepatectomy liver regeneration.

Metabolomics, a general method in systems biology that
measures metabolites to discover specific metabolomes, plays a
crucial role in biomarker screening for medical diagnosis and
assessment (Di Minno et al., 2022). Machine learning (ML) is a
core technique that uses artificial intelligence in which big data
calculation is utilized to generate empirical models. ML has
substantially improved the prediction of disease etiology,
outcome, and prognosis, and it has gradually become an essential
component of modern medical decision-making (Deo, 2015;
Handelman et al., 2018). Studies combining ML and
metabolomics have resulted in more precise diagnose of cancer,
cerebro-cardiovascular disease, diabetes, and COVID-19 (Bifarin
et al., 2021; Jung et al., 2021; Bratulic et al., 2022; Galal et al., 2022; Ji
et al., 2022). Sun et al. (2021) employed non-targeted metabolomics
in combination with ML and identified four amino acids (AAs)
including ornithine, phenylalanine, lysine, and 2-hydroxybutyric
that can assess the liver index of healthy mice during liver
regeneration. AAs are the precursors of many important
biomolecules, and their metabolism is closely associated with
liver regeneration (Wu, 2009). However, it is still unclear
whether the combination of amino acid (AA) metabolomics with
ML can assess liver regeneration in different liver conditions,
such as NASH.

In this study, we combined AA metabolomics with ML to
identify the relationship between post-hepatectomy serum AA
levels and liver index for different liver conditions. Our study
would provide new insights for assessing liver regeneration
following hepatectomy.

2 Materials and methods

2.1 Experimental animals and materials

Seventy-two 6–8-week-old male C57BL/6J mice weighing
18–20 g were used in this study (Hunan SJA Laboratory Animal
Co., Ltd., Changsha, China). They were housed in rooms at a
constant temperature of 22°C ± 2°C, relative humidity of 50% ±
10%, and light cycle of 12 h/d (8:00 to 20:00). The mice were given
ad libitum access to water and food.

Acquity ultra-performance liquid chromatography system, Xevo
TQ-S Micro mass spectrometer, Masslynx 4.1 and Acquity UPLC
HSS T3 Column (2.1 × 100 mm, 1.8 μm) (Waters, Milford, MA,
United States), methanol (Sinopharm, Shanghai, China), formic acid
(CNW Technologies GmbH, Dusseldorf, Germany), acetonitrile
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(Fisher Scientific,Waltham,MA, United States), and ultrapure water
(Merck, Darmstadt, Germany) were utilized as purchased. The
internal standard (IS) for the stable isotope label was purchased
from Cambridge Isotope Laboratories (Andover, MA,
United States). All commercially available chemicals used in this
study were analytical-grade reagents.

2.2 Experimental methods

2.2.1 Construction of 70% hepatectomy mice
model under different liver conditions

Seventy-two mice were randomized into healthy (n = 36) and
NASH group (n = 36). The healthy group was given a standard diet for
12 weeks. The NASH group was given the Gubra-Amylin-NASH diet
(D09100310, 40% fat, 22% fructose, and 2% cholesterol) for 12 weeks
(Boland et al., 2019; Fujisawa et al., 2021). Then, the left andmiddle lobes
of the liver were resected according to our previous studies (Lei et al.,
2022; Dai et al., 2023;Wang et al., 2023). Themicewere anesthetized and
sacrificed at 0 h (sham group), 6, 24, 48, 72, and 168 h following the 70%
hepatectomy (sixmice at each time point). The right lobe and bloodwere
harvested, and the liver index (liver weight/body weight) was calculated.
The tissue specimens were embedded in paraffin, sectioned, and stained
with hematoxylin and eosin (H&E). Immunohistochemistry using an
anti-PCNA antibody (Santa Cruz Biotechnology, sc-56, 1:200 dilution)
was performed to assess hepatocyte proliferation. The blood was allowed
to stand for 30 min at room temperature before centrifugation at
3,000 rpm and maintained at 4°C for 5 min. The serum was collected
and stored at −80°C. The animal experiments, which conformed to
internationally recognized institutional animal care and use guidelines,
were approved by the Institutional Animal Care and Use Committee of
the University of South China.

2.2.2 Sample extraction
We collected 50 μL serum samples, and 500 μL ofmethanol: water

(50: 50 v/v) was added. The solution was vortexed for 5 min before
centrifugation at 12,000 rpm and maintained at 4°C for 10 min. Then,
250 μL of supernatant was collected, and 20 μL of the IS solution was
added. The solution was centrifuged at 12,000 rpm and maintained at
4°C for 5 min. Afterward, 2 μL of the supernatant was collected for
metabolomics analysis of AA. Quality control samples (QC) are a
mixture of the test samples, with 5 μL taken from each sample for the
mixture, followed by repeated testing.

2.2.3 UPLC–MS/MS analysis
The chromatography conditions were as follows. Mobile phase

A: 0.1% formic acid aqueous solution; mobile phase B: acetonitrile.
The flow rate was 0.5 mL/min. The gradient conditions for the
mobile phase were as follows. Mobile phase A:B: 0 min 98:2 (v/v),
4 min 78:22 (v/v), 4.1 min 5:95 (v/v), 4.4 min 0:100 (v/v), 4.6 min 98:
2 (v/v), and 6 min 98:2 (v/v). The sample was placed in a 4°C
autosampler. The column temperature was 45°C. The flow rate was
250 μL/min, and the sample volume was 2 μL. Mass spectrometry
was performed as follows. A triple quadrupole linear ion trap mass
spectrometer was used. The spectrometer was equipped with an ESI
ion source and used in positive ionmode. The ESI source parameters
were as follows. The source temperature was 350°C, and the voltage
was 3000 V. We optimized the declustering potential and collision

energy scanning detection of the ion pairs. Supplementary Table S1
shows the detailed conditions for these measurements.

2.2.4 Metabolomics analysis
Masslynx (V4.1, Waters, United States) software was used for peak

extraction of the raw multiple reaction monitoring data to obtain the
ratios of various AA peak areas to the IS peak area. The content was
calculated based on the standard curve. All quantitative metabolomics
data were log10-transformed and unit variance scaling. SIMCA-P
software (V14.1, Umetrics, Sweden) was used for orthogonal partial
least squares discriminant analysis (OPLS-DA) to screen formetabolites
with variables of importance in the project (VIP) > 1. Metabolites with
VIP >1 and p < 0.05 were considered differential metabolites. In
SIMCA-P, global metabolic differences were observed in the healthy,
NASH, and QC groups using principal component analysis (PCA),
whereas metabolic differences in the healthy and NASH groups at
different time points were analyzed using OPLS-DA. Afterward, the
MetaboAnalyst (www.metaboanalyst.ca) website was used for pathway
enrichment analysis of the differential metabolites.

2.2.5 Five ML models to assess the liver index
Five machine learning models, including least absolute

shrinkage and selection operator model (LASSO), random forest
model (RF), K-nearest neighbor model (KNN), support vector
regression model (SVR), and extreme gradient boosting model
(XGB), were used to assess the liver index. The hyperparameters
of each model were adjusted through the grid search algorithm and
5-fold cross-validation. The contribution of AAs to the model was
interpreted using SHapley Additive exPlanations (SHAP) algorithm
(Lundberg and Lee, 2017). The mean absolute error (MAE), root
mean square error (RMSE), and coefficient of determination (R2)
were used to evaluate model performance. The ML models were
built using the “sklearn 1.0.2” package, and SHAP algorithm was
performed using the “shap 0.41.4” package in Python
(version 3.9.13).

2.2.6 Statistical analysis
AAs with more than 20% missing data were excluded, and

missing <20% were imputed using KNN Impute (Troyanskaya et al.,
2001). One-way ANOVA or Kruskal-Wallis H test was used,
followed by pairwise comparisons between different time points,
then adjusted by the Benjamini-Hochberg method to control the
False Discovery Rate. The Wilcoxon test was used for statistical
analysis of the MAE, RMSE, and R2 of the ML models. The
correlation between AA concentration and liver index was
presented by Pearson’s correlation coefficient. Liver index of
healthy and NASH groups at the same time points were tested
using independent samples t-test. R Project (version 4.1.2) was used
for data analysis. p < 0.05 was considered statistically significant.

3 Results

3.1 Liver pathological characteristics and
regeneration

The study design is illustrated in Figure 1. We successfully
constructed 70% partial hepatectomy (PH) models in healthy and
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NASH mice. Two pathologists confirmed the pathological
characteristics of NASH in a blinded manner by macroscopic
and microscopic findings, including light pink, soft surface and
blunt edge as well as cytoplasmic round lipid droplets, balloon-
like degeneration, and inflammatory cell infiltration (Figures 2A,
B, E, F. PCNA immunohistochemistry of liver tissues showed that
the PCNA positivity rates at 6 h and 72 h after hepatectomy in the
NASH group was significantly lower than that in the healthy
group (Figures 2C, D, G, H). We used the liver index to evaluate
liver regeneration in the PH model for both groups. At 6, 24,
48 and 72 h time points, there seems to be no significant
difference in the liver index between the two groups. However,
the liver index in the NASH group is significantly lower than that
in the healthy group at 168 h (p < 0.05) (Figure 2I,
Supplementary Table S2).

3.2 Metabolomics data analysis

A total of 39 AAs were quantified via tandemmass spectrometry
(MS/MS) in this experiment (see Supplementary Data Sheet). Due to
a significant number of missing values, bAib was excluded from the
analysis. The concentration changes of the remaining 38 AAs in the
healthy and NASH groups are presented in Supplementary Figure
S1. The QC samples were clustered well in the PCA score plots
(Figure 3A), indicating stable instrument detection and good
reproducibility throughout the experiment. And there is a small
overlap in the sample regions between the healthy and NASH
groups, indicating significant metabolic differences between the
two groups. We performed OPLS-DA to obtain an overview of
AA metabolic data after PH in healthy and NASH groups (Figures
3B–C). The scatter plots of the healthy and NASH groups were

FIGURE 1
Study design and data analysis workflow.

FIGURE 2
Pathology presentation of the liver. (A,E) Gross presentation. (B,F) HE staining. Postoperative PCNA expression at (C,G) 6 h and (D,H) 72 h. (I)
Comparison of the liver index after PH between the healthy (red line) and NASH groups (blue line). *The difference in the liver index between the two
groups was statistically significant (p < 0.05). Abbreviations: NASH, non-alcoholic steatohepatitis; HE, hematoxylin-eosin; PH, partial hepatectomy.
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similar. The data at 6, 24, 48, and 72 h time points were clearly
separated from those of 0 h (sham), whereas the data at 168 h were
close to those at 0 h. This showed that PH induced AA metabolism
changes at the priming phase and proliferation phase of liver
regeneration. Furthermore, the supervised OPLS-DA model
revealed clear separation of samples between the healthy and
NASH groups at each time point, indicating significant metabolic
differences between the two groups (Figures 3D–I).

In healthy group, 11 differential AAs with VIP >1 and p <
0.05 were obtained from the screening, including Met, Asn, Hyl,
Hcit, Tyr, Pro, 3MHis, Ala, Hyp, Ser, and Val. In NASH group,
22 differential AAs with VIP >1 and p < 0.05 were obtained from
the screening, such as Asa, Sar, Hyl, bAla, Arg, Hyp, Val, His,
Abu, Leu, 1MHis, Tyr, Ile, Asn, GABA, Asp, Cys, Tau, Gly, Gln,
EtN, and Thr (see Supplementary Tables S3A, B). The above-
mentioned differential AAs were used to build machine
learning models.

3.3 Pathway enrichment analysis

To identify the metabolic pathways that were significantly
disturbed during liver regeneration, we used an online tool,
MetaboAnalyst (http://www.metaboanalyst.ca), for analysis of the
AAs that had a VIP >1. The VIP AAs of the two groups were
mapped onto KEGG metabolic pathways for pathway enrichment
analysis. In this study, the pathways with threshold >0.1 and p < 0.
05 were considered the central metabolic pathways and presented as
a bubble plot (Figures 4A, B). Arg and Pro metabolism and the
biosynthesis of Phe, Tyr, and Trp were the most affected metabolic
pathways in healthy group. Arg biosynthesis; Ala, Asp, and
glutamate metabolism; Gly, Ser, and Thr metabolism; His
metabolism; bAla metabolism; Tau and hypotaurine metabolism;
and Arg and Pro metabolism were the most affected pathways in
NASH group. Supplementary Tables S4A, B shows the overview of
the enrichment analysis of the pathway-related metabolite sets.

FIGURE 3
Multivariate statistical analysis of AA concentrations. (A) PCA score plots of healthy, NASH andQC groups. (B)OPLS-DA score plot at each time point
in the health group. (C) OPLS-DA score plot at each time point in the NASH group. OPLS-DA score plot differentiating healthy from NASH in (D) 0 h, (E)
6 h, (F) 24 h, (G) 48 h, (H) 72 h, (I) 168 h. Each point represents an AA metabolic profile of a biological sample. The axes are the principal components of
the models, and R2X represents the rate of explanation of the model in the principal component direction for the original data. Abbreviations: AA,
amino acid; PCA, principal component analysis; NASH, non-alcoholic steatohepatitis; QC, control samples; OPLS-DA, orthogonal partial least squares
discriminant analysis.
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3.4 Comparison and optimization of
ML models

3.4.1 Selection of AA signatures and comparison of
machine learning models

We used five MLmodels, including LASSO, RF, KNN, XGB, and
SVR, to construct assessment models for the liver index in healthy
and NASH groups. The importance of AAs in each model was

determined by the SHAP algorithm (see Supplementary Data Sheet).
To minimize the number of metabolites for accurate measurement,
five top-ranked AAs were used to build the optimization model. The
hyperparameters of the optimization model are shown in
Supplementary Tables S5A, B. We performed 5-fold cross-
validation ten times on the datasets and calculated the MAE,
RMSE, and R2 to evaluate model performance (see Figures 5A–F
and Supplementary Tables S6A, B).

FIGURE 4
Disturbed AA metabolic pathways during liver regeneration in healthy and NASH groups. (A) Arg and Pro metabolism; Phe, Tyr, and Trp biosynthesis
were disturbed metabolic pathways following PH in the healthy group, (B) Arg biosynthesis; Ala, Asp and glutamate metabolism; Gly, Ser, and Thr
metabolism; Hismetabolism; bAlametabolism; Tau and hypotaurinemetabolism; Arg and Prometabolismwere disturbedmetabolic pathways after PH in
the NASH group. Abbreviations: AA, amino acid; PH, partial hepatectomy; NASH, non-alcoholic steatohepatitis.

FIGURE 5
AverageMAE (A), RMSE (B), and R2 (C) on ten repeated 5-fold cross-validation of fivemachine learningmodels for assessment of the liver index in the
healthy group. Average MAE (D), RMSE (E), and R2 (F) on ten repeated 5-fold cross-validation of five machine learning models for assessment of the liver
index in the NASH group. Abbreviations: MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination; NASH, non-alcoholic
steatohepatitis.
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In healthy group, the Wilcoxon test showed that there were no
differences inMAE, RMSE, andR2 among the RF, KNN, XGB, and SVR
models, while the KNNmodel had the lowest mean RMSE and highest
mean R2. In NASH group, the Wilcoxon test demonstrated that the
KNN model still performed well despite no significant differences in
MAE, RMSE, and R2 among the five models (see Supplementary Tables
S7A–D). Furthermore, the correlation between the differential AAs and
the liver index indicated that AA signatures included in the KNNmodel
were strongly correlated with the liver index (Supplementary Figures
S2A, B and Supplementary Tables S8A, B). Therefore, KNNmodel was
selected as the final assessment model.

3.4.2 Correlation of AA signatures with liver index
and performance of KNN models

Figures 6A, B shows the importance of AAs in the KNN model.
The AA signatures included in the KNN model for healthy group
were Hyl, Ser, 3MHis, Tyr, and Hcit. Notably, Ser, 3MHis, and Tyr
were significantly negatively correlated with the liver index, whereas

Hyl was significantly positively correlated with the liver index
(Figures 6C–G). Moreover, the AA signatures included in the
KNN model for NASH group were Arg, Abu, Sar, bAla, and Cys.
Likewise, Abu, Sar, Cys, and bAla were significantly negatively
correlated with the liver index, while Arg was significantly
positively correlated with the liver index (Figures 6H–L). The
changes in the concentration of these AA signatures are
exhibited in Figure 7.

Cross-validation showed that in healthy group, theKNNmodel had
a MAE of 0.0037 ± 0.0010, a RMSE of 0.0047 ± 0.0013, and a R2 of
0.79 ± 0.17, and in NASH group, it had a MAE of 0.0028 ± 0.0006, a
RMSE of 0.0034 ± 0.0009, and a R2 of 0.71 ± 0.18.

4 Discussion

Based on a 70% hepatectomy model in mice under healthy and
NASH conditions, we combined AA metabolomics and ML to

FIGURE 6
SHAP analysis and Pearson’s correlation coefficients between the liver index and AAs. Importance ranking of the top 11 AAs of the ML model for (A)
health group and (B)NASH group. Correlation of liver index with (C) Ser, (D) Tyr, (E) 3MHis, (F)Hyl, and (G)Hcit in healthy group. Correlation of liver index
with (H) Arg, (I) Sar, (J) Cys, (K) bAla, and (L) Abu in NASH group. Abbreviations: SHAP, SHapley Additive exPlanations algorithm; AAs, amino acids; ML,
machine learning; NASH, non-alcoholic steatohepatitis; R, Pearson’s correlation coefficient.
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explore the biological correlation between AA metabolism and
liver regeneration. Using differential AAs as the assessment
signature, we constructed five ML models, including LASSO,
RF, KNN, SVR, and XGB. Remarkably, the KNN model
performed best in the healthy group (MAE = 0.0037, RMSE =
0.0047, R2 = 0.79, and the NASH group (MAE = 0.0028, RMSE =
0.0034, R2 = 0.71). This study has successfully measured the liver
index during liver regeneration in different liver conditions, which
offers new insights for the assessment of liver regeneration after
hepatectomy.

Some recent metabolomics studies have shown that AA
metabolism is closely associated with post-hepatectomy liver
regeneration. Zhao et al. (2020) constructed a rat PH model
and employed gas chromatography–mass spectrometry to
analyze postoperative serum samples and found that AA
metabolism pathways showed the most significant changes in
liver regeneration. Carril et al. (2020) used liquid
chromatography–mass spectrometry to analyze post-
hepatectomy liver tissue samples from NASH mice and found
that AA metabolism changed significantly during the termination
phase of liver regeneration. Additionally, among several
metabolites, Sun et al. (2021) identified AAs as the most
optimal evaluated markers for the liver index. To summarize,
both previous research and our study demonstrated that AA
metabolism is closely related to liver regeneration after
hepatectomy, and AAs represent a valuable biomarker for
assessing liver regeneration.

In this study, we found that Arg and Pro metabolism were
commonly disturbed metabolic pathways during liver regeneration
in healthy and NASH groups. Arg is the precursor of Pro and
hydroxyproline and can be converted to polyamine through
ornithine. Polyamine is associated with cell growth and can
stimulate biosynthesis (Canellakis et al., 1985). Yang et al.
(2020) constructed a rat PH model, carried out combined

proteome and metabolome analysis, and found that Arg
biosynthesis correlates with the priming phase of liver
regeneration. Additionally, Bottiglieri et al. (2022) performed
metabolome analysis using serum and urine samples from
recipients after living donor liver transplantation, and they
found that the ratio of dimethylarginine to Arg is related to
hepatic function recovery during liver regeneration. Therefore,
we hypothesized that the Arg and Pro metabolic pathways may be
conserved metabolic pathways in post-hepatectomy liver
regeneration under different liver conditions.

AA signatures assessing liver regeneration in the healthy
group were identified. Ser, 3MHis, Tyr, Hyl, and Hcit content
varied significantly during liver regeneration and greatly
contributed to model performance. Serine is a precursor for
synthesizing many AAs, nucleotides, phospholipids, and
choline. In this study, Ser content changed markedly at 6 h
following PH. Similarly, Xu and Chang (2008) found that Ser
content changed significantly at 48 h after PH in rats. Thus, it is
evident that Ser content changes primarily in the early stage of
liver regeneration. In addition, 3MHis is an AA that participates
in the assembly of skeletal muscle contraction proteins. Kajiura
et al. (2019) conducted a post-hepatectomy metabolome analysis
using serum and urine samples from hepatocellular carcinoma
patients and found that 3MHis significantly increased 3 days
after surgery. Moreover, there is an increase in Tyr biosynthesis
and metabolism during liver regeneration (Gasman et al., 1997;
Xu and Chang, 2008). Likewise, the metabolic level of Hyl and
Hcit showed significant changes during liver regeneration and
play an important role in liver index assessment. Based on a 70%
hepatectomy model in healthy mice, Sun et al. (2021) combined
metabolomics with ML and found that AA signatures including
ornithine, phenylalanine, lysine, and 2-hydroxybutyric are
capable of measuring liver regeneration, which differs from
the results of our study. The discrepancy may be attributed to

FIGURE 7
The box plots illustrate the trends in concentration changes of AA signatures. (A) Ser, (B) Tyr, (C) 3MHis, (D) Hyl, and (E) Hcit in the healthy group. (F)
Arg, (G) Sar, (H)Cys, (I) bAla, and (J) Abu in the NASH group. The graphs show the p-value (One-way ANOVA or Kruskal-Wallis H test followed by pairwise
comparisons) of each time point compared with sham. Abbreviations: AA, amino acid; NASH, non-alcoholic steatohepatitis.
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variations in study design, including time point selection, AA
profile tested, and mass spectrometry detection method.
However, it is noteworthy that Ser and Tyr content showed a
significant negative correlation with liver index in our study,
which is consistent with Sun’s study. In addition, although
beyond the AA profile detected in their study, 3MHis, Hyl,
and Hcit showed assessing capability. Therefore, our study
will provide a new experimental basis for further exploration
of assessment for liver regeneration.

To the best of our knowledge, this is the first assessment model
for liver regeneration in the context of NASH. We identified five
AAs signatures including Arg, Sar, bAla, Abu, and Cys. Firstly,
Arg is a nitric oxide (NO) precursor and participates in the
synthesis and metabolism of various nutrients. Previous studies
showed that both Arg and NO increased significantly during liver
regeneration (Minin et al., 2005; Xu and Chang, 2008). NO is an
essential regulator of hepatocyte proliferation in liver
regeneration, which not only promotes liver regeneration
through vasodilatation and increased hepatic artery blood flow,
but also enhances the anti-apoptotic ability of regenerating liver
by preventing TNF-α-mediated activation of proapoptotic
caspase-3 (Pahlavan et al., 2006; Xu and Chang, 2008; Mei and
Thevananther, 2011). Secondly, Sar is an N-alkylglycine,
intermediate and byproduct in the synthesis and degradation of
Gly (Mei and Thevananther, 2011). Ito et al. (2008) discovered
that Gly improves regeneration from severe ischemia/reperfusion
injury in the liver after PH and is beneficial for the prognosis of
hepatectomy patients. Thirdly, bAla is a neurotransmitter or
hormone regulator that can regulate in vivo metabolism.
Sun et al. (2021) found that bAla is associated with liver
regeneration, which demonstrated a common metabolic
pathway as in our study. Lastly, Abu, a byproduct of Cys
biosynthesis from cystathionine, can modulate glutathione
(GSH) homeostasis (Irino et al., 2016; Sun et al., 2021). GSH
plays a pivotal role as a major antioxidant, and its depletion makes
the liver vulnerable to oxidative stress and predisposes it to the
progression of chronic liver disease such as NASH (Jung et al.,
2012; Jung, 2015). Several studies reported significant changes in
GSH and Cys after PH, further supporting our findings (Huang
et al., 1998; Jung et al., 2013). Using multivariate analysis of OPLS-
DA, correlation analysis and SHAP algorithm, we identified the
above AA signatures which showed a significant correlation with
liver index and contributed most to the measurement. Thus, our
findings will provide new insights for assessing liver regeneration
on the background of NASH.

However, there were some limitations in this study. First,
biomarker reproducibility is challenging for disease diagnosis
and assessment in studies. Second, it is insufficient to use AA
metabolomics to characterize the liver regeneration process,
while proteomics, genomics, and multiomics studies are also
required. Finally, although our model showed good
performance in mice, there are variations between animals
and humans. In the future, large-scale, multiomics studies in a
spectrum of chronic liver diseases should be conducted to
enhance the evaluation accuracy of post-hepatectomy liver
regeneration.

5 Conclusion

By studying the process of liver regeneration and AA
metabolism in healthy and NASH mice following PH, we found
that Arg and Pro metabolism were commonly disturbed metabolic
pathways in both groups during liver regeneration. In healthy mice,
Hyl, Ser, 3MHis, Tyr, and Hcit were identified as signature AAs
related to liver regeneration. Arg, Abu, Sar, bAla, and Cys were
determined as signature AAs associated with liver regeneration in
NASH mice. The KNN model, which was developed to assess the
liver index of two groups at different time points, showed
satisfactory assessment performance. These findings would
provide new insights for assessing liver regeneration after
hepatectomy.
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