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The study aimed to investigate the clinical significance of the interaction between
hypoxia and the immune system in esophageal squamous cell carcinoma (ESCC)
microenvironment. A comprehensive evaluation of 13 hypoxia phenotype-
related genes (HPRs) was conducted using data from TCGA-ESCC and two
GEO cohorts. Three distinct HPRclusters were identified, and the HPRscore
was established as an independent prognostic factor (p = 0.001), with higher
scores indicating poorer prognosis. The HPRscore was validated in various
immunotherapy cohorts, demonstrating its efficacy in evaluating
immunotherapy and chemotherapy outcomes. Additionally, phenome-wide
association study (PheWAS) analysis showed that PKP1 had no significant
correlation with other traits at the gene level. PKP1 was identified as a
potential prognostic marker for ESCC, with upregulated expression observed
in ESCC patients. In vitro experiments showed that the knockdown of PKP1
inhibited ESCC cell proliferation and migration. These findings suggest that the
novel HPRscore and PKP1 may serve as prognostic tools and therapeutic targets
for ESCC patients.
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1 Introduction

Esophageal cancer (EC) is a prevalent malignancy and ranks
seventh in terms of global incidence and sixth in cancer-related
mortality (Sung et al., 2021). Among the histological subtypes,
esophageal squamous cell carcinoma (ESCC) accounts for more than
85% of cases (Huang and Yu, 2018; Wang et al., 2018). Despite recent
therapeutic advancements and improved 5-year survival rates, the
prognosis for ESCC patients remains unfavorable, primarily due to
delayed clinical presentation and missed treatment opportunities
(Rustgi and El-Serag, 2014). This highlights the urgent need for a
deeper understanding of the disease and the development of effective
therapeutic strategies.

Hypoxia is a common occurrence in various types of solid tumors
and has significant implications for both anti-cancer treatment and the
malignant progression of cancer. It is increasingly recognized that
hypoxia plays a crucial role in contributing to poor prognosis (Jing
et al., 2019). The rapid proliferation of cancer cells leads to a high oxygen
demand, disrupting the balance between oxygen supply and
consumption and resulting in the formation of an anoxic
microenvironment within the tumor (Lee et al., 2020). The tissue of
ESCC comprises various constituents, such as vasculature, immune
cells, fibroblasts, and the extracellular matrix (Becht et al., 2016). The
dysregulation of angiogenesis and accelerated cell proliferation in the
tumor microenvironment frequently leads to diminished oxygen
supply, thereby inducing hypoxia. Hypoxia has been shown to be

FIGURE 1
The flow diagram of the whole study. A total of 282 hypoxia phenotype-related genes (HPRs) were obtained from the KEGG and MSigDB databases.
Univariate Cox combined Kaplan-Meier survival analysis was performed using data from the TCGA-ESCC and two GEO cohorts, identifying
13 independent predictors with a significance level of p < 0.05. Unsupervised clustering was used to identify molecular typing, which revealed three
biologically unique subtypes based on the expression patterns of 13 prognostic genes. Based on this analysis, the HPR score was constructed and
determined to be an independent prognostic factor (p = 0.001). The effectiveness of the HPRscore in immunotherapy and chemotherapy outcomes was
evaluated by validating it in various immunotherapy cohorts. The potential drug targets of the HPRs and their associated side effects were explored
through phenomenon association study (PheWAS) analysis. Finally, the expression and function of PKP1 were verified in vitro.
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associated with angiogenesis and poor prognosis in ESCC (Li et al.,
2014; Yuan et al., 2023). Furthermore, immune cells play a pivotal role
in regulating tumor growth through governing the invasion and
metastasis of tumor cells (Lei et al., 2020). Recent studies have also
revealed the influence of hypoxia on the tumor immune
microenvironment (Palazon et al., 2014). However, the underlying
regulatory mechanisms involving hypoxia, immunity, and ESCC
remain unclear. Therefore, further studies are needed to investigate
the relationship between hypoxia and immunity in ESCC.

In recent years, the application of high-throughput sequencing and
public data analysis has become increasingly crucial in the discovery of
biomarkers, prognosis prediction, relapse monitoring, and patient
stratification (Liu et al., 2023). Several studies have employed
multiple biomarkers to establish diagnostic or prognostic models in
clinical settings (Xi et al., 2022; He et al., 2023). However, the role of
hypoxia phenotype-related genes (HPRs) in the prognosis and response
to immunotherapy in ESCC has been largely neglected.

In this study, we utilized HPRs to stratify ESCC samples based
on mRNA expression levels from TCGA and GEO cohorts.

Subsequently, we developed and validated a novel HPRs model
and HPRscore in diverse autonomic immunotherapy cohorts, with
HPRscore serving as an independent prognostic factor.
Additionally, we assessed the expression and predictive impact of
PKP1 in clinical ESCC tissues. Overall, this study identifies the HPRs
model and HPRscore, while also highlighting a potential therapeutic
target for ESCC patients.

2 Results

Figure 1 shows the flow diagram of the whole study.

2.1 Expression and prognosis of HPRs
in ESCC

This study aimed to investigate the regulatory mechanism of
HPRs in ESCC through the analysis of three independent cohorts:

FIGURE 2
Expression and prognosis of hypoxia phenotype-related genes (HPRs) in ESCC. (A) Principal component analysis (PCA) showed the distribution of
genes expressions in three ESCC cohorts before (left part) and after (right part) the batch effect correction. (B) Interaction betweenHPRs in ESCC. The line
connecting HPRs indicated their interaction, and the thickness of the line indicated the correlation strength between HPXs. Purple and green represent
negative and positive correlation, respectively. (C) Spearman correlation and prognostic values of hypoxia-related genes in ESCC. The circle size
represents the range of significance values of each HPRs on the prognosis. The p-values were calculated by log-rank test. Green dots represent favorable
factors for prognosis, and purple dots represent risk factors for prognosis. The lines linking HPRs represent their correlation. The thickness of the lines
represents the strength of correlation between HPRs. Negative and positive correlations were marked with blue and red, respectively.
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TCGA-ESCA (81 ESCC samples), GSE53624 (119 ESCC samples),
and GSE53622 (60 ESCC samples). The combined dataset consisted
of 14,047 genes and 260 ESCC samples. To effectively eliminate the
batch effect across the three gene sets, PCA was conducted
(Figure 2A). To identify the regulatory mechanisms underlying
hypoxia phenotype-related genes in ESCC, HPRs were obtained
from the KEGG HIF-1 signaling pathway (109 genes) and the

Hallmark hypoxia database (200 genes). The dataset, consisting
of 282 genes, underwent merging and de-duplication
(Supplementary Table S1). To demonstrate the prognostic value
of HPRs in ESCC patients, univariate Cox regression and Kaplan-
Meier analysis were employed with a screening threshold of p < 0.05
(Supplementary Table S2). Thirteen independent predictors,
including PGM2, MKNK2, EIF4E2, MKNK1, EDN1, PKP1,

FIGURE 3
Hypoxia patterns mediated by 13 HPRs in ESCC. (A) The consensus matrixes for all ESCC samples displayed the clustering stability with
1,000 iterations. All samples were clustered into an appropriate number of subtypes (k = 3). (B) Kaplan–Meier curves showed the overall survival
difference among the three HPRclusters (p = 0.025). (C) Gene expression levels of HPRs in three HPRclusters. (D) Differences in clinicopathologic
features and expression levels of HPRs among the three HPRclusters. *p < 0.05, **p < 0.01, ***p < 0.001.
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LALBA, PDK3, NDST2, PNRC1, TGM2, NOS3, and AMPD3, were
identified. The hypoxia network depicted the integrated landscape of
HPRs interactions, regulator associations, and their prognostic value
in patients with ESCC (Figure 2B). Additionally, an examination was
conducted to determine the correlation between the expression
levels of HPRs and patient prognosis. The results revealed that
the overall survival rate of thirteen genes was statistically significant
between the high expression group and the low expression
group (Figure 2C).

2.2 HPRclusters mediated by thirteen HPRs
in ESCC

To investigate the expression characteristics of HPRs in
patients with ESCC, 260 ESCC samples were analyzed using the
unsupervised clustering algorithm “ConsensusClusterPlus” in the
R package (Supplementary Figure S1). The clustering analysis
revealed the presence of three distinct clusters: HPRcluster A
(n = 90), HPRcluster B (n = 103), and HPRcluster C (n = 67)
(Figure 3A; Supplementary Table S3). To determine the prognostic
significance of these clusters, Kaplan-Meier analysis was
performed. The analysis demonstrated that HPRcluster B
exhibited a significant prognostic advantage (p = 0.025,
Figure 3B), indicating that patients belonging to this cluster had
a better overall prognosis compared to the other clusters. We also
investigated the alterations in HPRs expression among the clusters.
Figures 3C, D depicted the expression patterns, revealing that
HPRs were significantly upregulated in HPRcluster B and
HPRcluster C, followed by HPRcluster A. Furthermore, Fisher’s
exact test was employed to examine the distribution of
clinicopathologic phenotypes, including age, gender, and
pathologic stage, among the clusters (Figure 3D). The results

showed that HPRcluster A and HPRcluster B had a higher
proportion of female patients. Additionally, patients in
advanced stages (Stage III or IV) were predominantly associated
with HPRcluster A. In summary, this study provides important
insights into the expression characteristics of HPRs in ESCC. The
identification of three distinct clusters and the observation of
significant upregulation of HPRs in certain clusters, along with
the prognostic advantage conferred by HPRcluster B, suggest the
potential of HPRs as prognostic markers in ESCC.

To investigate the biological functionalities associated with the
three clusters and their impact on prognostic outcomes, a GSVA
(Gene Set Variation Analysis) enrichment analysis was conducted
using the “GSVA” R package (Hänzelmann et al., 2013). Gene sets
derived from the HALLMARK and KEGG pathways obtained from
the MSigDB database were utilized. The GSVA enrichment analysis
validated the hypothesis that the three clusters possess unique
biological functionalities. In HPRcluster A, compared to
HPRcluster B and HPRcluster C, significantly higher Hallmark
activity was observed in ALLOGRAFT REJECTION,
MESENCHYMAL TRANSITION, OXYGEN SPECIES PATHWAY,
MTORC1 SIGNALING, ESTROGEN RESPONSE LATE and
P53 PATHWAY (Figure 4A; Supplementary Table S4). This
indicates that these biological pathways and processes are more
active in HPRcluster A. Furthermore, the analysis revealed that
tumors in HPRcluster A exhibited a more active METABOLISM
PATHWAY compared to HPRcluster B, and a greater activity of
BIOSYNTHESIS PATHWAY than HPRcluster C (Figure 4B;
Supplementary Table S5). These findings provided evidence that
the three clusters have distinct biological functionalities, as
indicated by the enrichment analysis of various pathways. The
observed differences in pathway activities among the clusters may
contribute to the disparate prognostic outcomes observed in patients
subjected to identical treatment protocols.

FIGURE 4
GSVA analysis. The (A) HALLMARK PATHWAY, (B) KEGG PATHWAY were downloaded separately from the Msigdb database and the pathways were
scored using the R package GSVA.
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In preparation for the implementation of HPRscores and the
depiction of heat maps showcasing patterns of DEGs between the
HPRclusters, several analyses were performed. First, pairwise
comparisons of the three HPRclusters were conducted, and volcano
plots were generated to visualize the DEGs. The criteria for DEG
selection were set at |logFC| > 1.5 and p < 0.05 (Figure 5A). To identify
co-expressed genes, Venn diagrams were employed, revealing a total of
77 co-expressed genes (Figure 5B; Supplementary Table S6).
Subsequently, the R package “ClusterProfiler” was utilized to
perform GO and KEGG enrichment analyses (Figures 5C, D). The
identified genes showed significant enrichment in biological processes
associated with hypoxia and immunity. This finding supported the
notion that hypoxia plays a pivotal role in modulating the immune
response of TME. These analyses contributed to the understanding of
the gene expression patterns between HPRclusters and provide insights
into the biological processes influenced by hypoxia and their impact on
immune responses within the TME.

2.3 Different TME pattern among the three
HPRclusters

After calculating the Stromal Score, Immune Score, and
ESTIMATE Score for each cluster using the ESTIMATE
algorithm, it was observed that HPRcluster A exhibited the
highest scores in all three categories (Figure 6A). This
suggested that HPRcluster A has a greater proportion of
stromal cells and immune cells compared to the other
clusters. The finding of higher scores in HPRcluster A is
consistent with the results obtained from CIBERSORTx
analysis, which showed a higher degree of infiltration by
CD4 T cells, B cells, NK cells, and regulatory T cells in
HPRcluster A (Figure 6B). This indicated that HPRcluster A
was associated with a more pronounced immune cell infiltration,
potentially reflecting a more active immune response within the
tumor microenvironment.

FIGURE 5
GO and KEGG analysis. (A) Differential analysis of the three subtypes. (B) GO analysis was conducted and visualized. (C) KEGG analysis was
conducted and visualized.
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2.4 Generation of HPRs signatures

To explore the potential biological attributes of HPRs, a univariate
Cox regression analysis was performed on the 77 DEGs listed in
Supplementary Table S7. The analysis identified 22 DEGs that were
significantly associated with survival (p < 0.05) and were selected for
further investigation (Figure 7A). Subsequently, an unsupervised
clustering analysis was conducted on these 22 DEGs to classify the
260 ESCC patients into two distinct geneClusters: geneCluster A (n =

153) and geneCluster B (n = 107) (Figure 7B; Supplementary Table S8).
The results revealed that patients in geneCluster B had a survival
disadvantage compared to those in geneCluster A (Figure 7C, p <
0.049). Furthermore, notable differences in the expression ofDEGswere
observed between the two geneClusters. Most of the DEGs were
upregulated in geneCluster A, with the exception of RAMP1 and
TGM2, which showed differential expression patterns (Figure 7D).
Lastly, a heat map was generated to highlight the clinical characteristics
of the HPRclusters and geneClusters, revealing opposing characteristics

FIGURE 6
Different TME pattern among the three HPRclusters. (A) Differences between Stromal Score, Immune Score and ESTIMATE Score in different
typologies. (B) Differences in immune cell infiltration between different subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ns p > 0.05.
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between geneCluster A and geneCluster B (Figure 7E). This
visualization underscores the distinct biological attributes and
potential prognostic implications associated with the two geneClusters.

2.5 Construction of the HPRscore and
functional annotation

In order to assess the hypoxia pattern of individual patients with
ESCC, a scoring system called HPRscore was developed based on the
expression of the 22 DEGs. Utilizing the R package ‘GSVA’, the
260 ESCC patients were categorized into high or low HPRscore
groups using an optimal cut-off value. The prognostic value of the
HPRscore was assessed through the log-rank test, which revealed
that patients with a lowHPRscore exhibited a poor survival outcome
(p = 0.001, Figure 8A). An alluvial diagram was employed to
visualize the changes in individual patient attributes (Figure 8B).
Furthermore, the Kruskal–Wallis test was conducted and showed a
significant difference in HPRscore between HPRclusters and
geneClusters. HPRcluster A (Figure 8C) and geneCluster B

(Figure 8C) exhibited a diminished HPRscore, and both
HPRcluster A (Figure 3B) and geneCluster B (Figure 7C)
demonstrated an unfavorable prognosis. Additionally, a positive
correlation was observed between the HPRscore and the majority of
infiltrating immune cells (Figure 8D). This suggested that higher
HPRscores were associated with increased immune cell infiltration
within TME. Subsequently, an analysis was conducted to determine
the relationship between HPRscore and the operation of
50 hallmark pathways using GSVA. The results indicated that
the HPRscore exhibited a significant correlation with
inflammatory responses, hypoxia, and immune pathway signaling
(Figure 9A). Further analysis of the immune activity and chemokine
profiles in the high- and low-HPRscore groups revealed that the
high HPRscore group was considerably enriched in chemokine-
related genes, including chemokines and receptors, interleukins and
receptors, interferons and receptors, and other cytokines
(Figure 9B). In summary, the HPRscore had potential as a
prognostic indicator for ESCC and could have significant
implications for the advancement of innovative therapeutic
interventions that target hypoxia and immune pathways.

FIGURE 7
The geneCluster and its prognostic value. (A) Twenty-two of seventy-seven hub DEGs among the three HPRclusters demonstrated noticeable
prognostic power in Cox regression. (B) Sub-clusters were performed with differential genes. (C) Survival analysis in ESCC. (D) Differential expression of
hypoxia related genes between geneCluster. (E) Heatmap showing the relationship between clinical features, genes expression and sub-clusters. *p <
0.05, **p < 0.01, ***p < 0.001, ns p > 0.05.
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2.6 Validation of the HPRscore and the role
in predicting immunotherapeutic benefits

The utilization of monoclonal antibodies that block inhibitory
molecules on T-cells, such as PD-L1 and PD-1, has shown promise in
cancer treatment, providing significant survival benefits (Curran et al.,
2010). Building upon the findings that HPRscore is associated with
inflammatory responses, immune pathway signaling, and chemokine-
related genes, which may potentially predict the effectiveness of
immunotherapy, a study was conducted to validate the accuracy of
HPRscore in predicting immunotherapy efficacy using independent
immunotherapy cohorts from published literature. The study included
patients diagnosed with advanced non-squamous NSCLC who
received a combination of erlotinib and bevacizumab. Additionally,

individuals with melanoma who underwent anti-PD-1 therapy
(GSE78220, Figure 10B, p = 0.012), advanced NSCLC who received
anti-PD-1/PD-L1 antibody (GSE135222, Figure 10C, p = 0.031),
melanoma who underwent nivolumab therapy (ICB. Riaz 2017,
GSE91061, Figure 10D, p = 0.032), advanced urothelial cancer who
received anti-PD-L1 therapy (IMvigor210CoreBiologies, Figure 10E,
p = 0.0097), and advanced renal cell carcinoma who were treated with
Avelumab (anti-PD-L1) plus axitinib versus sunitinib (The phase III
JAVELIN Renal 101 trial, NCT02684006, Figure 10F, p = 0.012) were
included in the study. The results of the study indicated that patients
with low HPRscore experienced significant clinical advantages and
extended survival. Moreover, the immune response and favorable
therapeutic outcomes observed in patients belonging to the distinct
HPRscore cohort who received immune checkpoint blockade

FIGURE 8
Prognostic analysis. (A) The overall survival of HPRscores. (B) Sankey diagram showing the relationship between staging, scoring and prognostic
status. (C) Differences in geneCluster scores for HPRclusters and differences cluster scores for Twenty-two hub genes. (D) Correlation of immune cell
infiltration. Size and color of the circle represent the Pearson correlation coefficients. *p < 0.05, **p < 0.01, ***p < 0.001, ns p > 0.05.
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treatment were consistent with the findings. These results provided
compelling support for the utilization of HPRscore as a prognostic
indicator of immunotherapy effectiveness and patient prognosis.

2.7 Comparison of anticancer drug
sensitivity between patients with
different HPRscore

Based on the restricted efficacy of immunotherapy in managing
ESCC, a tactic was implemented to identify non-immunotherapy
medications and assess the vulnerability of low- and high-HPRscore
subgroups. This assessment was carried out using the publicly accessible
pharmacogenomics database, Genomics of Drug Sensitivity in Cancer
(https://www.cancerrxgene.org), with the utilization of the R package
‘pRRophetic’. The investigation revealed notable findings. Patients with
high HPRscore demonstrated lower IC50 values (a measure of drug
potency) for the following medications: Bicalutamide, A.443,654,
AICAR, AZD6244, Bexarotene, and BIBW2992 (Figures 11A–F). On
the other hand, individuals with low HPRscore exhibited significantly
reduced IC50 values for non-immunotherapy agents, includingAxitinib,

ABT.888, AG.014699, AMG.706, AP.24534, and AS601245 (Figures
11G–L). These findings suggested a correlation between HPRscore and
drug susceptibility. In other words, the HPRscore may serve as an
indicator of how susceptible patients with ESCC are to specific
medications, both immunotherapy and non-immunotherapy agents.

2.8 PheWAS

We conducted PheWAS analysis on two sets of HPR genes at the
gene level, as depicted in Figures 2C, 6A, using a dataset of
17,361 binary phenotypes and 1,419 quantitative phenotypes
obtained from the AstraZeneca PheWAS portal database. PheWAS
results provide insights into associations between genetically
determined protein expression and specific diseases or traits.
Except for TGM2, AMPD3, PSORS1C1, POF1B, NOS3, and
PSORS1C1, no other genes exhibited significant associations with
traits at the gene level, based on the predefined significance threshold
(P < 1E−8) (Supplementary Table S9). This suggests the possibility of
potential side effects and horizontal pleiotropy affecting these genes,
which may impact drug targeting strategies for these gene targets.

FIGURE 9
Relationship between HPRscore and immune pathways and immune-related chemokines. (A) The correlation between HPRscore and the activity of
50 hallmark pathways. (B) The immune activity and chemokine profiles in the high- and low- HPRscore groups.
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Notably, the simultaneous occurrence of the TGM2 and PKP1 genes
in both sets piqued our interest for further exploration. PheWAS
results indicated that TGM2 was primarily associated with
Cardiometabolic traits, suggesting that drugs targeting the TGM2
gene in ESCCmay have an impact on these traits (Figures 12A, B). On
the other hand, PKP1 did not show significant associations with other
traits at the gene level (Figures 12C, D). Consequently, PKP1 was
selected and validated for further investigation.

2.9 The expression and prognostic value of
PKP1 were evaluated in ESCC samples

PKP1, as a HPR gene, has been documented to exhibit aberrant
expression in various cancers (Wang et al., 2020; Boyero et al., 2022).
Nevertheless, its involvement in ESCC remains inadequately
investigated. PKP1 expression was significantly downregulated in

esophageal squamous cell lines under hypoxia, suggesting that our
analysis was reliable (Supplementary Figure S2). The mechanism
may be related to the hypoxia inducible factor (HIF) signaling
pathway or under hypoxia conditions, some mirnas bind to
PKP1 mRNA, inhibit its translation or degradation, and lead to
downregulation of its expression.

To further ascertain the potential clinical significance of PKP1
in ESCC, we conducted qRT-PCR and IHC analyses to investigate
the expression levels of PKP1 in ESCC tissues and adjacent tissues.
The results showed a significant upregulation of PKP1 expression
in ESCC tissues compared to adjacent tissues (Figures 13A, B).
Based on the IHC scores, patients were divided into two groups:
high PKP1 expression and low PKP1 expression. The analysis
revealed a significant association between elevated PKP1
expression and various clinicopathological characteristics
of ESCC, including tumor size (p = 0.0267), invasion depth
(p = 0.0016), lymph node metastasis (p = 0.0251), and clinical

FIGURE 10
The relationship between HPRscore and predicting the benefit of immunotherapy. The relationship between (A) late stage non-squamous NSCLC
treated with the combination of erlotinib plus bevacizumab (GSE61676), (B)melanoma treated with anti-PD-1 therapy (GSE78220), (C) advanced NSCLC
treated with anti-PD-1/PD-L1 antibody (GSE135222), (D) melanoma treated with nivolumab therapy (ICB.Riaz 2017, GSE91061), (E) advanced urothelial
cancer treated with anti-PD-L1 therapy (IMvigor210CoreBiologies), (F) advanced renal cell carcinoma treated with Avelumab (anti-PD-L1) plus
axitinib versus sunitinib (The phase III JAVELIN Renal 101 trial, NCT02684006).
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stage (p = 0.0102) (Table 1). Additionally, Kaplan-Meier survival
analysis indicated that patients with higher PKP1 expression had a
notable decrease in overall survival (p = 0.0159) (Figure 13C),
suggesting that PKP1 may serve as a prognostic marker in ESCC.

Compared with normal cells, the expression of PKP1 was
significantly upregulated in ESCC cell lines (KYSE140 and TE-1
cell lines) (Figure 13D). To understand the functional role of
PKP1, its expression was modulated using siRNA-mediated

FIGURE 11
Analysis of drug sensitivity associated with HPRscore. Predicting IC50 values for multiple anti-cancer drugs. (A–F) High HPRscore exhibited lower
IC50 values of Bicalutamide, A.443,654, AICAR, AZD6244, Bexarotene and BIBW2992. (G–L) Low HPRscore had significantly reduced IC50 values for
non-immunotherapy agents, including Axitinib, ABT.888, AG.014699, AMG.706, AP.24534, and AS601245.
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knockdown (Figure 13E). The knockdown of PKP1 expression
resulted in a significant inhibition of cell proliferation and
migration, as demonstrated by CCK-8, EdU, and Transwell
experiments (Figures 13F–I). These findings suggest that PKP1
plays a role in promoting cell proliferation and migration in
ESCC cells.

3 Discussion

ESCC is known to be challenging to treat effectively, and current
treatment options have limited success (Codipilly et al., 2018).
Immunotherapy, although promising, has shown limited response
rates in ESCC patients (Luo et al., 2021; Sun et al., 2021; Doki et al.,
2022; Wang et al., 2022). Therefore, there is a need for innovative
treatment strategies to improve outcomes.

In recent times, there has been an increased focus on the
contribution of TME to the pathogenesis, advancement, and
sustenance of diseases. The TME comprises a diverse range of
constituents, such as immune cells, stromal cells, chemokines,
and cytokines, which can synergize to establish a persistent
inflammatory, immunosuppressive, and pro-carcinogenic
milieu, thereby evading immune surveillance and bolstering
tumor cell viability (Wu and Dai, 2017). Additionally, hypoxia

within the tumor microenvironment can modulate gene
expression, foster cell survival, and augment resistance to
apoptosis induction (Jing et al., 2019). Furthermore, it is
postulated that tumor cells enclosed within a hypoxic TME
exhibit heightened aggressiveness and resistance to
pharmaceutical interventions (Qian and Rankin, 2019). Ye
et al. have categorized tumor specimens into high and low
hypoxia score groups, identified molecular modifications
associated with anticancer drug responses, and illustrated the
influence of hypoxia in fostering tumor heterogeneity and
viability (Ye et al., 2019). Bhandari et al. have conducted a
quantitative analysis of hypoxia across multiple cancer types,
revealing a positive correlation between heightened hypoxia and
mutational burden (Bhandari et al., 2020).

The study focused on investigating the role of HPRs in ESCC
regarding their biological function, prognostic value, correlation
with TME, immunotherapy response, and chemotherapy
resistance. Through analyzing genetic expression and
prognosis in ESCC patient cohorts, we identified three distinct
hypoxia clusters characterized by different gene expression
patterns. Among these clusters, HPRcluster A exhibited the
highest scores for stromal and immune cell infiltration,
suggesting a more favorable immune response. The hypoxic
microenvironment in tumor cells promotes glucose uptake,

FIGURE 12
PheWAS results for each gene. (A, B) Binary traits and continuous traits PheWAS association with TGM2. (C, D) Binary traits and continuous traits
PheWAS association with PKP1.
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which can impact the functionality of crucial immunologically
active cells. The high-risk subset showed increased infiltration of
macrophages and T cells, known to inhibit the effectiveness of
immune checkpoint inhibitor treatment (Samanta and Semenza,
2018). It has been observed that tumor cells have a superior
ability to utilize glucose as an energy source compared to T cells,
leading to competition for this vital resource (Chang et al., 2015).
Consequently, T cells experience hindered nutritional
metabolism. Hypoxia intensifies glucose metabolism pathways
and enhances glucose absorption by tumor cells, creating an
unfavorable nutritional state for T cells, impairing their
immune functions and ability to eliminate tumor cells.
Additionally, the heightened glycolytic activity of tumor cells
in a hypoxic environment generates an acidic microenvironment
that further affects T cell functionality (Leone and Powell, 2020).
HPRcluster A was identified as an immunoinflammatory
phenotype, characterized by the infiltration of adaptive
immune cells and immune activation, which correlated with
an unfavorable prognosis. Consistent with the clustering
results of HPRs, two genomic subtypes associated with

immune activation were identified, supporting the crucial role
of hypoxia in immune regulation within the TME.

To address individual heterogeneity, we developed a novel
scoring system, HPRscore, to evaluate and quantify the hypoxia
response pattern in patients with ESCC. Our findings revealed that
patients with a low HPRscore experience unfavorable survival
outcomes. Interestingly, the low HPRscore group showed
enrichment in pathways associated with immune activation,
indicating an immune-inflamed phenotype. In contrast, the high
HPRscore group was enriched in pathways related to stromal
components, suggesting an immune-excluded and immune-desert
phenotype. These results were further validated in the
IMvigor210 cohort, with the immune-desert and excluded
phenotypes exhibiting higher HPRscores, while the immune-
inflamed phenotype displaying significantly lower HPRscores.

Furthermore, we have demonstrated the prognostic significance
of the HPRscore in relation to checkpoint blockade therapy across
multiple patient cohorts. Our analysis included six distinct cohorts,
encompassing patients with advanced non-squamous NSCLC
treated with erlotinib and bevacizumab (Baty et al., 2017),

FIGURE 13
Evaluation of PKP1 expression levels and prognostic value in esophageal samples. (A, B) The mRNA and protein expression of PKP1was significantly
upregulated in ESCC compared with tissues adjacent tissues. (C) Kaplan–Meier survival analysis of over survival according IHC scores of PKP1 in 40 ESCC
patients. (D) The mRNA level expression of PKP1 in ESCC cell lines. (E) Validation of siRNA knockdown efficiency in TE-1 cells. (F–I) Transfection of siRNA
into TE-1 cells and CCK-8 (F), EdU (G, H), and Transwell (I) assay detected the cell proliferation and migration. *p < 0.05, **p < 0.01.
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melanoma patients receiving anti-PD-1 therapy (Hugo et al., 2016),
patients with advanced NSCLC treated with anti-PD-1/PD-
L1 antibody (Kim et al., 2020), melanoma patients receiving
nivolumab therapy (Riaz et al., 2017), patients with advanced
urothelial cancer treated with anti-PD-L1 therapy (Mariathasan
et al., 2018), and patients with advanced renal cell carcinoma
receiving Avelumab (anti-PD-L1) in combination with axitinib or
sunitinib (Motzer et al., 2020). The results consistently
demonstrated that patients with a low HPRscore experience
greater clinical benefits from checkpoint blockade therapy
compared to non-responders.

4 Conclusion

In summary, this study contributes to our understanding of the
role of hypoxia-related genes (HPRs) and the TME in ESCC. The
HPRscore has potential clinical utility as a prognostic tool and
treatment guide, particularly in the context of immunotherapy.
These findings may pave the way for personalized approaches in
ESCC management and the development of novel therapeutic
interventions. Further research is warranted to validate and
expand upon these findings for the benefit of ESCC patients.
And PKP1 may be a potential therapeutic target for ESCC.

TABLE 1 Correlation between PKP1 expression and clinicopathological features in ESCC patients (n = 40).

Clinicopathological parameters Numbers IHC scores of PKP1 p-valuea

Low scores High scores

Gender

Male 22 (55%) 9 13 0.2036

Female 18 (45%) 11 7

Age (year)

<60 25 (62.5%) 14 11 0.3272

≥60 15 (37.5%) 6 9

Tumor size

<5 cm 19 (47.5%) 13 6 0.0267*

≥5 cm 21 (52.5%) 7 14

Location

Upper 5 (12.5%) 3 2 0.8854

Middel 23 (57.5%) 11 12

Low 12 (30%) 6 6

Invasion depth

pT 1 15 (37.5%) 13 2 0.0016*

pT 2 11 (27.5%) 3 8

pT 3 14 (35%) 4 10

Lymph node metastasis

Positive 23 (57.5%) 15 8 0.0251*

Negative 17 (42.5%) 5 12

Differentiation

Poor 7 (17.5%) 2 5 0.0816

Moderate 28 (70%) 12 14

Well 7 (17.5%) 6 1

Clinical stage*

I 9 (22.5%) 7 2 0.0102*

II 16 (40%) 10 6

III 15 (37.5%) 3 12

*p < 0.05.
aChi-square test.
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5 Materials and methods

5.1 Data collection and preprocessing

The present study analyzed RNA expression in ESCC by
utilizing data from two databases, namely, The Cancer Genome
Atlas (TCGA; https://portal.gdc.cancer.gov/) and the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/).
RNA expression data were derived from the TCGA cohort as
well as two GEO cohorts (GSE53624 and GSE53622), which were
subjected to background adjustment and quantile normalization of
the raw “CEL” files. The “combat” algorithm was utilized to address
potential batch effects, and it involved the use of the limma and sva R
packages (Leek et al., 2012; Ritchie et al., 2015). The differential
expression of mRNAs was determined based on a false discovery rate
(FDR) of less than 0.05 and an absolute log2 fold change (|log2FC|) of
at least 1, with the use of R 4.1.1 software and the limma package.

Hypoxia phenotype-related genes (HPRs) were identified from
two distinct data-bases, the KEGG database (https://www.kegg.jp/
pathway/hsa04066) and theMolecular Signatures Database (MSigDB;
http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_
HYPOXIA). More specifically, we curated a list of 109 HPRs
associated with the HIF-1 signaling pathway using the KEGG
database. Additionally, we included the Hallmark hypoxia gene
sets (n = 200) from the MSigDB database (Liberzon et al., 2015).
For the complete inventory of these genes, please refer to Table S1.

5.2 Unsupervised clustering based on HPRs

Unsupervised cluster analysis was conducted to distinguish
exclusive hypoxia modification patterns and stratify patients for
further examination based on the ex-pression levels of thirteen
HPRs. The R software package “ConsensusClusterPlus” was utilized
for the analysis with 1,000 iterations to guarantee the stability of the
clustering results. The optimal number of clusters was determined using
the consensus clustering algorithm (Wilkerson and Hayes, 2010).

5.3 Generation of the HPRs signature

To assess the hypoxia modification pattern in ESCC patients, we
developed a novel scoring system called HPRscore. This scoring
system utilizes a hypoxia gene signature. Initially, we identified
differentially expressed genes (DEGs) from individual HPRclusters
and standardized them across all ESCC samples. We then performed
unsupervised cluster analysis on the overlapping genes to categorize
patients into distinct groups for further analysis. The consensus
clustering algorithm helped determine the number and stability of
gene clusters. Using univariate Cox regression analysis, we identified a
prognostic gene within the signature. Principal component analysis
(PCA) was then conducted to establish the HPR signature, with the
signature scores derived from the main components 1 and 2.

5.4 Estimating of immune infiltration

Single-sample gene-set enrichment analysis (ssGSEA) was utilized
to determine the activity levels of specific biological pathways or cell

types in individual samples based on their gene expression profiles
(Hänzelmann et al., 2013). We applied ssGSEA to assess and quantify
immune infiltration in each sample using previously researched
immune cell marker gene expression information by Charoen-tong
(Charoentong et al., 2017). The enrichment score obtained via ssGSEA
represented the relative abundance of infiltration for each immune cell.
Additionally, we used the “ESTIMATE” package to calculate
ImmuneScore, StromalScore, and ESTIMATEScore. ImmuneScore
provided an estimate of immune cell infiltration within the tumor
microenvironment, while Stro-malScore indicated the abundance of
stromal cells. ESTIMATEScore combined both ImmuneScore and
StromalScore, which provided an overall estimate of tumor purity.

5.5 Gene set variation analysis

The R package “GSVA” was used to perform enrichment
analysis and investigate differences in biological processes among
the HPR subtypes (Hänzelmann et al., 2013). Gene set variation
analysis (GSVA), a non-parametric and unsupervised method, was
employed to assess pathway and biological process activities across
different expression datasets. For the GSVA analysis, gene sets
including Gene Ontology (GO) and KEGG were obtained from
the MSigDB database. To visually represent hypoxia-related
pathways, heatmaps were generated, highlighting pathways with a
significance level of p < 0.05.

5.6 The HPRscore generation process

The aim of study was to establish a customized scoring system for
assessing hypoxia levels in individual patients with ESCC. We
developed this scoring system through a series of steps, which began
with normalizing DEGs from different hypoxia clusters across all
samples and identifying overlapping genes. We identified
77 common differential genes through differential analysis and Venn
diagrams among the three HPRclusters. Next, we performed univariate
Cox regression analysis for each gene and 22 genes with significant
prognostic value for further analysis. The hypoxia score (HPRscore) was
calculated using the “GSVA” R package (Hänzelmann et al., 2013).
Using the expression data for HPRclusters, we computed HPRscore
through PCA using the formula:

HPRscore � ∑ PC1i + PC2i( ),

where ‘i’ represents the expression of HPRs. This customized
scoring system has great potential for individualized hypoxia
evaluation and prognostic prediction improvement in
ESCC patients.

5.7 Phenome-wide association study
(PheWAS) analysis

To assess potential drug targets and their associated side effects,
PheWAS was conducted using the AstraZeneca PheWAS Portal
(https://azphewas.com/) (Wang et al., 2021; Dhindsa et al., 2023).
AstraZeneca PheWAS Portal is a repository of gene-phenotype
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associations for phenotypes derived from electronic health records,
questionnaire data, and continuous traits computed on exomes released
by UK Biobank. All genomic coordinates in this Portal are based on
GRCh38. Continuous phenotypes are rank-based inverse normal
transformed before analysis. To mitigate false positives, we applied
multiple corrections and set a significance threshold of 1E-8, following
the default setting in the AstraZeneca PheWAS Portal.

5.8 Patient tissue samples

A total of forty pairs of ESCC and adjacent normal tissues were
procured from pa-tients who underwent surgery at the First Affiliated
Hospital of SoochowUniversity and received a pathological diagnosis.
This study was carried out with the explicit in-formed consent of all
patients and received approval from the Ethics Committee of the First
Affiliated Hospital of Soochow University.

5.9 Cell culture

ESCC cell lines (TE-1, TE-13, KYSE150, KYSE140) and normal
human esophageal epithelial cell line (HET-1A) were obtained from the
Shanghai Institutes for Biological Sciences (Shanghai, China). These cell
lines were cultured in 1,640 medium (supplemented with 10% fetal
bovine serum (FBS) (KeyGene, Nanjing, China) and 1% penicillin-
streptomycin) at 37°C in a humidified 5% CO2 atmosphere.

5.10 RNA extraction and quantitative real-
time PCR (qRT-PCR)

Total RNA was extracted using the TRIzol reagent (Invitrogen,
Carlsbad, CA) following the manufacturer’s instructions. The extracted
RNA was then reverse transcribed into complementary DNA by
synthesis kit (Takara, Cat: RR036A, KeyGEN). The qRT-PCR
experiment was performed in triplicate and the data were
normalized to β-actin using the 2−ΔΔCT method. The primer
sequences used for the qRT-PCR analysis were as follows: ACTIN
forward, 5′-GTCATTCCAAATATGAGATGCGT-3′; ACTIN reverse,
5′-GCATTACATAATTTACACGAAAGCA-3′; PKP1 forward, 5′-
TCAGCAACAAGAGCGACAAG-3′; PKP1 reverse, 5′-TCAGGT
AGGTGCGGATGG-3′.

5.11 siRNA construction and cell transfection

The siRNAs that targeted PKP1 were obtained from RiboBio
(Guangzhou, China). The transfection of these siRNAs into cells was
performed using Imax (Invitrogen, Carlsbad, CA, United States) in
accordance with the guidelines provided by the manufacturer. The
siRNA sequences as follows: si1-PKP1 sense sequence, 5′-GGCUGA
CAAUUACAACUAUtt-3′; si1-PKP1 antisense sequence, 5′-AUA
GUUGUAAUUGUCAGCCaa-3′; si2-PKP1 sense sequence, 5′-
GCUUUGCCGUCGGACCAAAtt-3′; si2-PKP1 antisense
sequence, 5′-UUUGGUCCGACGGCAAAGCca-3′; si-NC sense
sequence, 5′-UAACGACGCGACGACGUAAtt-3′; si-NC
antisense sequence, 5′-UUACGUCGUCGCGUCGUUAtt-3′.

5.12 CCK-8 and EdU assay

After transfection and incubation for 24 h, the cells were
inoculated into 96-well plates at a density of 2000 cells per
100 μL. To ensure reproducibility, the same sample was placed in
5 repeated wells. The cells were then incubated at 37°C for 6 h to
allow them to attach to the well walls. Next, 10 μL of CCK-8 was
added to each well, and the baseline absorbance at 450 nm was
recorded. Subsequently, the absorbance at 450 nm was measured
every 24 h for a total of 4 days.

EdU cell proliferation staining was conducted utilizing an EdU
kit (Cat.C10310-3, Ruibo, China), following the guidelines provided
by the manufacturer. To be specific, 1.0×105 cells per 100 μL were
inoculated in a 96-well plate. To prepare the appropriate amount of
50 μM EdU medium, the EdU solution (reagent A) was diluted in a
ratio of 1,000:1 with cell complete medium. Next, 100 μL of the
50 μM EdU medium was added to each well, and the cells were
incubated for 2 h. After incubation, the medium was discarded, and
the cells were washed twice with PBS for 5 min each time.
Subsequently, 50 μL of cell fixative was added to each well and
incubated at room temperature for 30 min. Following the
incubation, the fixative was discarded, and 50 μL of 2 mg/mL
glycine was added to each well. The plate was then incubated in
a decolorized shaker for 5 min. The glycine solution was
subsequently discarded, and the cells were washed twice with
PBS for 5 min each time. Next, 100 μL of PBS containing 0.5%
Triton X-100 was added to each well and incubated in a shaker for
10 min. The cells were then rinsed with PBS for 5 min. Each well was
stained with 100 μL of 1 Apollo solution and 100 μL of 1 Hoechst
33,342 solution, respectively. Finally, after washing with 100 μL of
PBS three times, the images were observed under a fluorescence
microscope, and the proliferation rate was calculated.

5.13 Transwell assays

The Transwell experiment was conducted using a 24-well plate
with a Transwell insert featuring an 8 μmpore size. The upper cavity of
the Transwell insert was supplemented with 300 μL of serum-free
medium containing 2.5×104 cells, while the lower cavity was
supplemented with 700 μL of medium containing 10% fetal bovine
serum. The plate was then incubated in an incubator for 24 h. After
incubation, the Transwell chamber was removed, and the culture
solution was discarded. To remove any remaining matrix glue and
cells from the chamber, a PBS-soaked cotton swab or cotton was used
to gently wipe the surface. The cells were then fixed with 4% methanol
for 30 min andwashedwith PBS for 5 min. Subsequently, the cells were
stained with crystal violet for 10 min, followed by three washes with
PBS. After drying, the cells were photographed under a microscope in
three to five fields, and the average was quantified using ImageJ.

5.14 Immunohistochemistry (IHC)

The tissue slices were incubated in a 65 incubator for 1 h and then
soaked in xylene for three 10-min intervals. Subsequently, they were
placed in anhydrous ethanol, followed by 95%, 90%, and 80% ethanol,
each for 5 min. The slices were then washed twice with PBS for 5 min
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each time. To inactivate endogenous peroxidase activity, the slices were
incubated with 3%H2O2 deionized water for 10 min. After another two
washes with PBS for 5 min each time, the slices were boiled in 0.01M
citric acid buffer (pH = 6.0) at 95 for 15–20 min. The slices were then
rapidly cooled in cold water to room temperature for 15 min, followed
by two additional washes with PBS for 5 min each time. To prevent
non-specific binding, the slices were incubated with a normal goat
serum sealer at room temperature for 20 min, and any excess liquid was
discarded. Next, 50 μL of the primary antibodywas added, and the slices
were incubated overnight at 4°C. After washing twice with PBS for
5 min each time, the slices were incubated with a horseradish
peroxidase-labeled secondary antibody for 1 h at room temperature.
Following another two washes with PBS for 5 min each time, the slices
were incubated with Streptavidin-Peroxidase at room temperature for
1 h. The slices were washed twice with PBS for 5 min each time before
developing the DAB color for 5–10 min. The staining intensity was
assessed under amicroscope, considering cells with brown cytoplasm as
positive cells. To stop the reaction, the slices were rinsed with cold water
for 15 min. For further staining, the slices were briefly re-dyed with
hematoxylin for 2 min, differentiated using hydrochloric acid and
alcohol, and rinsed with cold water for 15 min. The slices were then
conventionally dehydrated, made transparent, and sealed with a neutral
gum drop next to the tissue, followed by covering with a cover glass.
Finally, the slices were observed and photographed under amicroscope.

5.15 Statistical analyses

Statistical analyses were performed using R statistical language
(version 4.1.1). The Wilcoxon test and Kruskal–Wallis test were
utilized for comparison between two and more than two groups,
respectively. To draw the prognostic survival curve, the Kaplan–Meier
plotter was employed, and the statistical significance was evaluated
through the log-rank test. Spearman’s test was utilized for correlation
analysis and calculation of correlation coefficient. The statistical
significance level was set at p < 0.05 for all analyses.
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FIGURE S1
Consensus matrixes of all ESCC samples for each k (k = 2–9), displaying the
clustering stability using 1000 iterations of hierarchical clustering.

FIGURE S2
RT-qPCR results for the expression of PKP1 in ESCC cell lines cultured under
normal and hypoxic conditions. *P<0.05, ns P >0.05.
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