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Background: Kidney renal clear cell carcinoma (KIRC) is a common and clinically
significant subtype of kidney cancer. A potential therapeutic target in KIRC is
disulfidptosis, a novel mode of cell death induced by disulfide stress. The aim of
this study was to develop a prognostic model to explore the clinical significance
of different disulfidptosis gene typings from KIRC.

Methods: A comprehensive analysis of the chromosomal localization, expression
patterns, mutational landscape, copy number variations, and prognostic
significance of 10 disulfide death genes was conducted. Patients were
categorized into distinct subtypes using the Non-negative Matrix Factorization
(NMF) typingmethod based on disulfidptosis gene expression patterns. Weighted
Gene Co-expression Network Analysis (WGCNA) was used on the KIRC dataset to
identify differentially expressed genes between subtype clusters. A risk signature
was created using LASSO-Cox regression and validated by survival analysis. An
interaction between risk score and immune cell infiltration, tumor
microenvironment characteristics and pathway enrichment analysis were
investigated.

Results: Initial findings highlight the differential expression of specific DRGs in
KIRC, with genomic instability and somatic mutation analysis revealing key
insights into their role in cancer progression. NMF clustering differentiates
KIRC patients into subgroups with distinct survival outcomes and immune
profiles, and hierarchical clustering identifies gene modules associated with
key biological and clinical parameters, leading to the development of a risk
stratification model (LRP8, RNASE2, CLIP4, HAS2, SLC22A11, and KCTD12)
validated by survival analysis and predictive of immune infiltration and drug
sensitivity. Pathway enrichment analysis further delineates the differential
molecular pathways between high-risk and low-risk patients, offering
potential targets for personalized treatment. Lastly, differential expression
analysis of model genes between normal and KIRC cells provides insights into
the molecular mechanisms underlying KIRC, highlighting potential biomarkers
and therapeutic targets.
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Conclusion: This study contributes to the understanding of KIRC and provides a
potential prognosticmodel using disulfidptosis gene for personalizedmanagement
in KIRC patients. The risk signature shows clinical applicability and sheds light on the
biological mechanisms associated with disulfide-induced cell death.
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Introduction

Renal cell carcinoma (RCC) is the second-most common cause
of death associated with malignant neoplasms of the urinary tract (Li
et al., 2017). A series of possible features have been recognised, such
as environmental factors (e.g., smoking, obesity, high blood
pressure, long-term use of painkillers) and genetic factors, which
are related to the renal cell carcinoma (Hsieh et al., 2017). KIRC is
one type of RCC and constitutes 80% of all renal malignancies
(Klümper et al., 2020; Chu et al., 2023). Although, the therapeutic
efficacy of KIRC has improved dramatically due to rapid advances in
medical treatment and research. However, the majority of patients
with metastatic disease have a poor prognosis and limited
therapeutic advances due to few or no early symptoms of KIRC
(Zhuang et al., 2019). In this way, early detection of KIRC
contributes to a better prognosis (Li et al., 2019). Understanding
KIRC is of paramount importance for both clinical practice and
research aimed at improving therapeutic outcomes for patients with
this disease, and the identification of clear and reliable novel
prognostic molecular biomarkers can accurately predict the
prognosis of KIRC patients.

Disulfidptosis, a recently proposed mode of cell death, is a
novel phenomenon with important implications for
understanding and treating cancer. When cells are starved of
glucose and solute carrier family 7 member 11 (SLC7A11) is
expressed at high levels, it induces disulfidptosis and initiates
the cell death process. The reduction-oxidation (REDOX)
reaction and the formation of disulfide bonds are the
mechanisms that trigger cell death (Wang et al., 2023). In a
groundbreaking study by Liu et al., it was demonstrated that
disulfidptosis is induced by disulfide stress and rapid cell death
in SLC7A11 high-expression cells, specifically under conditions of
glucose starvation (Liu et al., 2023). Abnormal accumulation of
cystine in the cytoplasm leads to disulfide stress, forcing the
reduction of cystine to the more soluble cysteine, which
produces relatively strong cytotoxicity (Liu X. et al., 2021). The
reducing of cystine to cysteine requires the consumption of
reducing equivalents of nicotinamide adenine dinucleotide
phosphate (NADPH), so SLC7A11-expressing cells with a high
rate of cystine uptake demand a high level of NADPH to
continuously reducing cystine to cysteine to support
intracellular homeostasis. NADPH production is impaired by
the intracellular accumulation of cystine and other disulfide
molecules and rapid cell death in response to glucose
starvation, known as disulfidemia (disulfidptosis) (Liu et al.,
2020; Yan et al., 2023). Cancer development and progression
are closely linked to the formation and cleavage of disulfide
bonds. Sulfur (S)-based chemical bonds have been used to

develop tumour-specific, redox-responsive DDSs, which include
the thioether bond, the disulfide bond and the thioketal bond (Sun
et al., 2019). Notably, this unique pattern of cell death was
identified in a kidney cancer cell line, suggesting its relevance
and possible potential as a treatment target in the context of KIRC
(Zhang et al., 2022; Kang et al., 2023). In spite of these ground-
breaking findings, the full impact of disulfide on the pathogenesis,
progression, and treatment of KIRC remains to a large extent
unexplored.

The study was designed to determine the clinical significance
and predictive potential of the risk profile based on the expression
pattern of the disulfide disulfidptosis genes in patients with KIRC.
To gain insight into potential mechanisms of disulfide-induced
KIRC cell death, the study also aimed to investigate the
association of risk scores with immune cell infiltration, tumor
microenvironment characteristics, drug sensitivity, and pathway
enrichment analyses.

Methods

TCGA data acquisition and clinical details

RNA-seq transcriptome data and relevant clinical details,
including sex, age, subtype, IDH status, and survival information
for KIRC, were taken from the Cancer Genome Atlas (TCGA)-KIRC
database, available at https://portal.gdc.cancer.gov/. In addition,
somatic mutation counts and copy number variation (CNV) data
were also obtained from the TCGA repository.

Comprehensive analysis of disulfidptosis-
related genes (DRGs)

This study first comprehensively examines the chromosomal
localization, differential expression patterns, mutational landscape,
copy number variations, and prognostic significance of 10 disulfide
death genes in KIRC cells. And the 10 disulfidptosis-associated
genes (GYS1, NDUFS1, OXSM, LRPPRC, NDUFA11, NUBPL,
NCKAP1, RPN1, SLC3A2, and SLC7A11) was obtained from
previous literature (Liu et al., 2023). To accomplish this, the
genomic positions of the 10 disulfide death genes on
chromosomes were precisely mapped. The chromosome and
gene positions were obtained from the NCBI database (https://
www.ncbi.nlm.nih.gov/). And the changes in gene expression levels
were compared between KIRC cells and healthy controls.
Moreover, the mutational profiles and copy number variations
of these genes specifically within KIRC cells were investigated.
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Lastly, the potential prognostic value of the ten genes in KIRC was
explored. These data are all from the TCGA-KIRC project and were
visualized using ggplot2 R package (version 3.4.4).

NMF typing of clear cell carcinoma patients
based on ten disulfide death genes

KIRC patients were classified into distinct subtypes using the
NMF typing method, which uses a panel of 10 disulfide death genes.
The NMF clustering approach, implemented by the NMF R package
(version 0.26), was used for this purpose. The study applied specific
criteria to determine the optimal configuration, including the
evaluation of the consistency map, the comprehensive coefficient
and the silhouette coefficient. In particular, the analysis included ten
runs with the number of clusters (k) set to 2. The resulting patient
subtypes were defined according to the distribution of 10 disulfide
death genes. Kaplan-Meier analysis was then performed to generate
survival curves (Xu et al., 2022) by the survival R package (version
3.5–7). The log-rank test was applied to compare disease-specific
survival differences between the two risk groups and to assess their
significance by the stats R package (Nomura et al., 2020). The
differences in immune cell infiltration, tumour microenvironment
and stemness index between the two clusters were evaluated by the
estimate R package (version 1.0.13).

Differential expression and WGCNA analysis
of DEGs between clusters

Differential expression analysis of genes (DEGs) between cluster
C1 and cluster C2 was performed using the limma R package
(version 3.50.3). This study utilized WGCNA to buid a gene co-
expression network and divide genes into five modules, and studied
the gene significance and the relationship between the module and
phenotype by using the WGCNA R package (version1.72–5) (Gao
et al., 2022).

Development and validation of a risk
signature for survival prediction in KIRC

Based on univariate Cox analysis, we identified survival-
associated genes from the most important module and
established a risk signature consisting of six genes (LRP8,
RNASE2, CLIP4, HAS2, SLC22A11, and KCTD12) using LASSO-
Cox regression with the glmnet R package (version 4.1–8) and
survival R package (version 3.5–7). After constructing the risk score,
we employed Cox regression models, including univariate and
multivariate Cox proportional hazards regression models, to
investigate the effect of various factors, including the risk score,
on survival time (Xue et al., 2022). The TCGA samples were divided
into a training set and a test set to validate our model, and with
reference to the median score, we classified the KIRC patients into a
low-risk group and a high-risk group. The Kaplan-Meier survival
curve was then used to compare the overall survival (OS) and
progression-free survival (PFS) of the two groups of patients
(Ohashi et al., 2020). The concordance index, which represents

the proportion of concordant pairs between predicted and observed
outcomes across all patients, was used to evaluate the predictive
ability of the model. The time-dependent ROC curve (timeROC) R
package (version 0.4) was employed to calculate time-dependent
receiver operating characteristic (ROC) curves for sensitivity and
specificity based on the signature (Park et al., 2022). Using the rms R
package (version 6.7-1), we constructed calibration plots, calibration
curve plots, and nomograms for 1-year, 3-year, and 5-year survival
based on the risk score and other significant clinical features. These
evaluations were conducted to assess the clinical applicability of the
risk model.

Estimation of immune and stromal cell
abundance in the tumor microenvironment

The Microenvironment Cell Populations-counter (MCP counter)
was used to estimate the absolute abundance of eight immune cell types
in the tumour microenvironment, including T cells, CD8 T cells,
cytotoxic lymphocytes, B lineage, NK cells, monocytic lineage,
myeloid dendritic cells, and neutrophils, and two stromal cell types
(endothelial cells and fibroblasts) (Horr and Buechler, 2021).
CIBERSORT-ABS was employed to calculate the abundance of
immune-related cells (Feng et al., 2022). The relationship between
risk levels of immune cell infiltration and clusters was investigated using
the limma R package. Furthermore, the linkET package was used to
estimate the association between risk scores, immune checkpoint-
related genes, immune cell infiltration, and immune function using
Spearman’s correlation analysis (Wang et al., 2022). Additionally, this
study compared the tumor mutation burden and mutation status of
genes between high-risk and low-risk groups. The impact of tumor
mutation burden on prognosis was explored through Kaplan-Meier
(KM) analysis (Zhao et al., 2021).

Investigation of immunophenoscores and
drug sensitivity

The Immunophenoscores (IPS) of KIRC patients were collected
from the Cancer Immunome Atlas (TCIA, https://tcia.at/home)
database, and the correlation of IPS with risk features was
investigated using the Wilcoxon rank-sum test (Liu Y. et al.,
2021). The oncoPredict R software package (version 0.2) was
employed to predict drug susceptibility scores for KIRC. The
correlation between risk scores and drug susceptibility scores was
then assessed using the limma R package and plotted using the
ggplot2 R package to explore the clinical value of this risk model in
the management of KIRC.

Gene function and pathway analysis of
disulfide-induced cell death

To elucidate the gene functions and biological pathways
associated with disulfide-induced cell death, differential
expression analysis of annotated genes was conducted using the
R packages limma and clusterProfiler (version 4.2.2). Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
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pathway enrichment analyses were performed on the identified
differentially expressed genes. Subsequently, gene set enrichment
analysis (GSEA) was conducted using the GSEA software (http://
www.broadinstitute.org/gsea/index.jsp) on the gene sets from
MSigDB (c2. cp.kegg.v7.4. symbols.gmt) version 4.0 (Jia et al.,
2023). Furthermore, to investigate the biological functional
differences among the groups, Gene Set Variation Analysis
(GSVA) enrichment analysis was performed using the GSVA R
package (Tang et al., 2023).

Cell culture

786-O cells are derived from tissue of primary clear cell
carcinoma, while CCC-HEK-1 cells are derived from normal
human embryonic kidney tissue. 786-O cells were grown in
complete medium (RPMI-1640 containing 10% fetal bovine
serum (FBS) and 100 U mL−1 penicillin-streptomycin) in
humidified air with CO2 at 37°C for 24 h. CCC-HEK-1 cells were
grown in complete medium (DMEM containing 10% fetal bovine
serum (FBS) and 100 UmL−1 penicillin-streptomycin) in humidified
air with CO2 at 37°C for 24 h.

Patients’ samples collection

The normal kidney and KIRC samples from patients were
obtained from the Shuguang Hospital Affiliated to Shanghai
University of Traditional Chinese Medicine, China. The normal
kidney tissue samples were obtained from healthy controls (sample
size = 3), and KIRC tissue samples were obtained from patients
diagnosed with KIRC (sample size = 5). The Ethics Committee of the
Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine approved the protocol for collecting human
samples (approval number 2023-1311-78-01).

Quantitative real-time PCR

Total mRNA was extracted from cells and clinic samples
using RNA Isolation Kit according to the manufacturer’s
instructions. Then cDNA was synthesised using the First
Strand cDNA Synthesis Kit according to the manufacturer’s
instructions, which was treated as template DNA for the qRT-
PCR assay. The qRT-PCR of six module genes (LRP8, RNASE2,
CLIP4, HAS2, SLC22A11, and KCTD12) was performed using
SYBR Green qPCR Mix on a real-time detector. Each experiment
was repeated three times to calculate the mean and standard
deviation (SD). The details of reagents and primers for the genes
are in Supplementary Table S1.

Data statistical analysis

All data in this study are expressed as mean standard deviation
(SD). All bioinformatics analysis is performed using R software
(v.4.2.2). p values were calculated using SPSS Statistics 25 (*p < 0.05,
**p < 0.01, and ***p < 0.001).

Results

Identification and expression analysis
of DRGs

In this investigation, we meticulously analyzed a cohort of
10 DRGs to elucidate their role in KIRC. Chromosomal
mapping, as depicted in Figure 1A, delineates the precise
genomic locations of these genes. Notably, expression profiling
reveals a distinct downregulation of NDUFA11 in tumor tissues,
in contrast to the upregulation observed for RPN1; the expression of
the other genes remained statistically unaltered between normal and
tumor samples (Figure 1B). Our study further extends into the realm
of genomic instability, where Figure 1C highlights the prevalence of
CNV-related mutations across these DRGs. In this context, OXSM is
notably predisposed to frequent CNV deletions, whereas the
remaining genes exhibit a spectrum of CNV deletions and
amplifications. Additionally, Figure 1D provides an insightful
overview of the somatic mutation landscape in these genes within
KIRC, illustrating a uniformly low mutation rate. Complementing
these findings, Figure 1E uses network visualisation techniques to
intricately map the connections between DRGs and their prognostic
significance in KIRC, providing a comprehensive and multifaceted
view of their biological relevance.

NMF clustering and tumor
microenvironment analysis

We employed the NMF algorithm to stratify KIRC patients into
two distinct subgroups, designated as C1 and C2. Our analysis
elucidated a robust consistency matrix for these patient clusters
(Figure 2A). Additionally, we profiled the differential expression
patterns of DRGs within these subgroups, as visualized in a
comprehensive heat map (Figure 2B). Crucially, Kaplan-Meier
survival analysis (Figure 2C) underscored a statistically significant
disparity in patient survival rates between clusters C1 and C2 (p =
0.009), indicating potential prognostic implications. In terms of
tumor microenvironment (TME) characterization, the C1 cluster
demonstrated a marked enrichment of specific immune cell
infiltrates, including CD8 T cells, monocytes, and neutrophils
(Supplementary Figure S1A), suggesting a unique immunological
landscape. Further, TME and stemness indices were analyzed in the
C1 and C2 cohorts (Supplementary Figure S1B). To better
understand the impact of clusters on immune cell infiltration in
KIRC, we examined the differences in the tumor microenvironment
between the C1 and C2 subtypes (Supplementary Figure S1C). These
findings provide critical insights into the heterogeneity of the tumor
microenvironment and its potential impact on the clinical trajectory
of KIRC patients, as detailed in Supplementary Material S2.

Hierarchical clustering of genes and
module analysis

Our study adopts a hierarchical clustering approach to partition
genes into distinct modules, and the resulting cluster dendrogram is
illustrated in Figure 3A. To elucidate the relationship between these
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modules and key biological parameters, Figure 3B provides a
graphical representation of the associations between the five
identified modules and Stromal Score, Immune Score, as well as
ESTIMATE Score. It can be found that MEblue and MEbrown
modules are negatively correlated with Stromal Score, Immune
Score, and ESTIMATE Score, while the other three modules are
positively correlated with Stromal Score, Immune Score, as well as
ESTIMATE Score. Among them, MEbrown has the closest
relationship with Stromal Score. Furthermore, Figure 3C presents
a comprehensive assessment of the linkages between individual
modules and various phenotypic traits, shedding light on their
potential functional relevance. It was found that the relationship
between MEbrown module and phenotypic traits is the most
significant, followed by the MEblue module as the second most
significant. To gain further insights into the prognostic significance
of the identified gene modules, univariate Cox analysis was
conducted for genes within each module, and the results are
visually represented in Figure 4A Subsequently, a risk scoring
system was constructed through the application of LASSO-Cox
regression, wherein six pivotal genes were selected from the most
crucial module, as elucidated in Figures 3D, E. In order to provide a
more in-depth understanding of the predictive capabilities of the
model genes, Figure 4B showcases the outcomes of univariate Cox
analysis, while Figure 4C elucidates the corresponding hazard ratio

(HR) values and their associated p-values, thus offering valuable
insights into the potential prognostic significance of these genes.
Additionally, Figure 3F depicts the KM survival analysis results for
individual genes, further illuminating their impact on patient
outcomes. These analytical findings collectively contribute to a
comprehensive assessment of the molecular landscape under
investigation, offering critical insights into the potential clinical
relevance of the identified gene modules and their constituent genes.

Risk stratification and validation of the
risk model

Patients were categorized into low-risk and high-risk groups
based on median risk scores. This stratification was pivotal in
assessing the prognostic impact of the risk score. Figure 5A
elucidates the outcomes of our univariate Cox regression analysis.
It reveals a hazard ratio (HR) of 1.077 for the risk score [95%
Confidence Interval (CI): 1.048–1.107, p < 0.001], signifying its
significant prognostic value in the context of KIRC. Further,
multivariate Cox regression analysis, detailed in Figure 5B,
demonstrates an HR of 1.086 (95% CI: 1.050–1.122, p < 0.001)
for the risk score. This analysis, accounting for various covariates,
reinforces the risk score’s robustness as an independent prognostic

FIGURE 1
Identification and Expression Analysis of DRGs. (A) Chromosomal mapping. (B) Expression profiling. (C) CNV-related mutations. (D) Somatic
mutation landscape. (E) Network Visual Analytics. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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indicator. To validate the prognostic model, TCGA samples were
segregated into training and testing sets. Kaplan-Meier analysis,
presented in Figure 5C, indicates a direct correlation between
elevated risk scores and decreased overall survival (OS) and
progression-free survival (PFS) in both sets, highlighting the
predictive accuracy of our risk stratification approach. The
calibration plot (Figure 5D) further underscores the clinical
applicability of the risk score. It displays a remarkable
concordance between predicted and observed survival outcomes,
as evidenced by the calibration curves for 1-year, 3-year, and 5-year
survival (Figure 5E). These curves exhibit a striking consistency
between estimated and actual OS rates. ROC curves (Figure 5F) and
decision curves (Figure 5G) further corroborate the risk score’s
reliability. The ROC values (ROC train 0.845, test 0.738, all 0.788)
demonstrate the model’s robust predictive capability. Lastly, the
overall concordance index (c-index), depicted in Figure 5H, along
with the c-index for the training (Figure 5I) and validation
(Figure 5J) sets, confirms the model’s high predictive accuracy.
These indices have reached satisfactory levels, reinforcing the

model’s efficacy in forecasting clinical outcomes in KIRC
patients. This comprehensive analysis solidifies the risk score as a
vital tool in the prognostication of KIRC.

Tumor microenvironment and immune
infiltration analysis

We analyzed the TME and genetic profiles of patients with KIRC
stratified into high-risk and low-risk groups based on their
prognostic risk scores. Supplementary Figure S2A-C highlight
that the high-risk group is characterized by a higher TME score,
suggesting a more favorable prognosis for immunotherapy
responsiveness. This observation underscores the potential for
personalized therapeutic strategies based on risk stratification. In
terms of the stemness index, the low-risk group exhibits an EREG-
mRNAsi value closer to 1, indicative of a higher resemblance of
tumor cells to stem cells. This finding may have significant
implications for understanding the biology of lower-risk KIRC

FIGURE 2
NMF Clustering and survival analysis. (A) The NMF algorithm clusters patients into two subgroups. (B) The expression patterns associated with DRGs
in the C1 and C2 clusters. (C) Difference in survival between patients in clusters C1 and C2. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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tumors. Supplementary Figure S2D further elucidates a strong
association between the high-risk group and six types of immune
infiltrating cells. This correlation may provide insights into the
immunological underpinnings of high-risk KIRC. Tumor
mutation burden (TMB) analysis shown no significant difference
between high-risk and low-risk groups. However, Supplementary
Figures S3B, C offer an in-depth view of the tumor gene mutation
profiles for these groups, while Supplementary Figure S3D provides
a comprehensive summary of the mutations, including variant
classification and the top 10 mutated genes. Kaplan-Meier
analysis (Supplementary Figure S3E) demonstrates that patients
in the high H-TMB group exhibit a lower survival rate compared
to those in the low H-TMB group (p < 0.001). Similarly,
Supplementary Figure S3F shows that within the high-risk
category, patients with high TMB have a lower survival rate than
those in the low-risk group with low TMB (p < 0.01). Additionally,
the differential expression of immune checkpoint-related genes is
shown in Supplementary Figure S3J, with notable upregulation of
TNF and HAVCR2 in the high-risk group. Supplementary Figure
S3K presents a heatmap of the expression of these genes, while
Supplementary Figure S3L highlights the differential expression of
immune infiltration-related genes between the risk groups.

To further assess the value of the risk score for predicting
immune checkpoint blockade (ICB) efficacy, The analysis
includes PD1 and CTLA4 in the IPS analysis. However, no
significant differences are observed in the average IPS values
for PD1 and CTLA4 between low-risk and high-risk score
groups, irrespective of their predicted response status. Finally,

the high-risk group exhibits higher levels of immune
dysregulation and immune exclusion reactions, providing
critical insights into the immune landscape of high-risk KIRC
(Supplementary Figure S4).

Drug sensitivity analysis based on risk scores

Spearman correlation techniques were employed to examine the
association between risk scores and drug sensitivity within the
context of KIRC. This analysis was conducted using data from
the Genomics of Drug Sensitivity in Cancer (GDSC) database. Our
findings, as illustrated in Figure 6, reveal that out of a panel of drugs
evaluated, 40 exhibited significant correlations with the calculated
risk scores. Intriguingly, the risk score demonstrated negative
correlations with 20 drugs, including ULK1_ 4989, Topotecan,
and Camptothecin. This negative correlation implies that higher
risk scores in KIRC patients are associated with increased sensitivity
to these drugs. Conversely, the risk score showed positive
correlations with the sensitivities to 20 other drugs, such as OF-
1, Sinularin, and Osimertinib. This positive correlation suggests that
patients with higher risk scores are less sensitive to these therapeutic
agents. Among these correlative drugs, ULK1_ 4989, and OF-1
emerged as having the most pronounced impact on drug sensitivity.
This finding is particularly noteworthy as it suggests that these drugs
could potentially serve as key therapeutic options, with their efficacy
modulated by the patient’s risk score. This information could be
pivotal in guiding personalized treatment strategies for patients with

FIGURE 3
Hierarchical clustering methods for dividing genes into modules. (A) The cluster dendrogram. (B) Module-trait relationships. (C) Gene significance
across modules. (D,E) Lasso model for screening model genes. (F) The KM survival analysis results for individual genes. (*p < 0.05, **p < 0.01, and
***p < 0.001).
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KIRC, tailoring drug choices based on individual risk profiles to
optimize therapeutic outcomes.

Pathway enrichment analysis and differential
pathway expression

We employed GSEA to delineate the differential pathway
activation between high-risk and low-risk patient groups.
Figure 7A elucidates the GSEA results for the high-risk group,
revealing significant enrichment in several critical biological
pathways. Notably, this group demonstrated pronounced

enrichment in pathways associated with immune response and
autoimmune disorders, such as AUTOIMMUNE THYROID
DISEASE, CYTOKINE-CYTOKINE RECEPTOR
INTERACTION, PRIMARY IMMUNODEFICIENCY,
SYSTEMIC LUPUS ERYTHEMATOSUS, and TYPE I
DIABETES MELLITUS. These findings suggest a complex
interplay between KIRC progression and immune dysregulation
in high-risk patients. Conversely, the low-risk group, as depicted in
Figure 7B, showed distinct pathway enrichment patterns. Key
pathways such as NEUROACTIVE LIGAND-RECEPTOR
INTERACTION, PEROXISOME, PPAR SIGNALING
PATHWAY, RENIN-ANGIOTENSIN SYSTEM, and VALINE,

FIGURE 4
Predictive power of modeled genes. (A) Univariate Cox analysis of genes within each model. (B) Univariate Cox analysis of model genes. (C) The
corresponding hazard ratio values and their associated p-values. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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LEUCINE, and ISOLEUCINE DEGRADATION were notably
enriched. This enrichment indicates a divergent molecular profile
in low-risk KIRC patients, potentially reflecting differences in
metabolic processes and hormonal interactions. Further, our
GSVA presented in Figures 7C, D, highlighted additional
disparities between the groups. Noteworthy differences were
observed in pathways such as PROXIMAL TUBULE
BICARBONATE RECLAMATION and PHOTOPERIODISM.
These results underscore the heterogeneity in biological processes
and pathways between high-risk and low-risk KIRC patients,
offering insights that could be pivotal in tailoring patient-specific
therapeutic strategies and understanding the disease’s
pathophysiology.

Differential expression of model genes
between normal and KIRC cells

A comprehensive analysis was conducted to examine the
differential expression of specific model genes in tumor cells and
clinical samples of KIRC. The results showed that CLIP4, HAS2,

RNASE2, and KCTD12 genes were statistically significant in both
tumor cells and clinical samples in Figure 8. Among them,
RNASE2 was significantly upregulated (p < 0.01, Figure 8A), and
the expression results of related mRNA showed a similar trend (p <
0.01, Figure 8B), which suggests a potential role for these genes in the
tumorigenic processes or the adaptation of the tumor environment
in KIRC. The enhanced expression of these genes might be reflective
of alterations in cellular processes such as metabolism, signaling, or
immune response within the tumor microenvironment. Conversely,
a set of genes, namely CLIP4, HAS2, and KCTD12 (p < 0.01), were
found to be notably downregulated in tumor cells. Besides, the
relevant mRNA expression in clinical samples also revealed a
significant downregulation (p < 0.05). The decreased expression
of these genes could indicate their involvement in tumor suppressive
pathways or mechanisms that are disrupted in the pathogenesis of
KIRC. Crucially, the differential expression patterns of these model
genes were found to be consistent with the results obtained from the
gene differential expression analysis based on data from TCGA
database. This consistency underscores the robustness of our model
to a certain extent, reinforcing the reliability of our findings. The
observed expression trends of these genes in tumor versus normal

FIGURE 5
Risk Stratification and Validation of the Risk Model. (A) Univariate Cox regression analysis. (B)Multivariate Cox regression analysis. (C) Kaplan-Meier
analysis. (D) The calibration plot. (E) Survival curves. (F) ROC curves. (G) Decision curves. (H) C-index. (I,J) Training and validation sets. (*p < 0.05, **p <
0.01, and ***p < 0.001).

Frontiers in Pharmacology frontiersin.org09

Feng et al. 10.3389/fphar.2024.1343819

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1343819


cells provide valuable insights into the molecular landscape of KIRC.
These findings could be instrumental in identifying potential
biomarkers for diagnosis or targets for therapeutic intervention,
enhancing our understanding of the disease’s molecular
underpinnings.

Discussion

KIRC is the most frequent histological subtype of renal cell
carcinoma and is characterised by a relatively low prognosis and
large metastatic potential. Understanding the underlying cellular

FIGURE 6
The association between risk scores and drug sensitivity within the context of KIRC.
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and molecular mechanisms to guide biomarker discovery and
intervention clinically is now a major challenge (Long et al.,
2022). In recent years, as prognostic studies of KIRC have
continued, the number of published articles has increased. Up to
now, there have been only a few studies on disulfidptosis, which is a
recently discovered new mode of cell death. Novel forms of cell
death triggered by disulfide stress have important implications for
cancer therapy. In contrast to common types of cell death, key genes
involved in the regulation of disulfides include SLC7A11, SLC3A2,
RPN1, and NCKAP1, as well as the Rac-WRC-Arp2/3 signaling
pathway (Zheng et al., 2023). The investigation of the role of
disulfidptosis in the prognosis of KIRC and the discovery of
biomarkers is a therapeutic strategy worthy of investigation.

In this study, we performed a comprehensive analysis of
disulfidptosis-related genes, tumor microenvironment, gene
modules, risk stratification, immune infiltration, drug
sensitivity, pathway enrichment, and differential gene
expression in RCC based on the relevant literature research
methods of Xu K et al. (Xu et al., 2023). Our findings reveal
distinct chromosomal mappings and expression profiles of DRGs,
notably the downregulation of NDUFA11 and upregulation of
RPN1 in tumor tissues. The study further delves into the

complexities of TME, highlighting differences in immune cell
infiltrates and stemness indices between patient subgroups
classified using the NMF algorithm based on the expression
levels of disulfidptosis-related genes. Through hierarchical
clustering and module analysis, we identified key genes and
pathways associated with various biological scores and patient
survival, underscoring their potential as prognostic markers. The
development of a risk stratification model based on these findings
provides a robust prognostic tool, as validated by Kaplan-Meier
analysis, ROC curves, and Cox regression analysis using TCGA
samples. Additionally, our exploration of drug sensitivities,
utilizing Spearman correlation techniques, offers valuable
insights for personalized treatment strategies by linking risk
scores with drug responses. The study also employs GSEA to
elucidate differential pathway activations between high-risk and
low-risk patient groups, revealing a complex interplay between
KIRC progression and immune dysregulation.

However, the study is not without limitations. The
generalizability of the findings, especially regarding gene
expression and drug sensitivity, may be constrained. The
intricate nature of TME in KIRC warrants a more detailed
analysis, and the conclusions drawn, particularly in subgroup

FIGURE 7
The differential pathway activation between high-risk and low-risk patient groups.(A) GSEA results for the high-risk group. (B) GSEA results for the
low-risk group. (C,D) GSVA analysis.
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analyses, could be limited by the cohort size. Furthermore, the
correlation between risk scores and drug sensitivity does not
necessarily imply causation and requires deeper investigation.
Translating these findings into clinical practice faces challenges,

including the need for validation in larger, more diverse cohorts
and the integration of other clinical factors.

Despite these limitations, our study provides a detailed overview
of the genomic and molecular landscape of KIRC, identifies

FIGURE 8
The expression level of LRP8, RNASE2, CLIP4, HAS2, SLC22A11, KCTD12 genes in cells and clinical samples. (A) Relative expression of 6 genes in
normal human kidney cell lines (CCC-HEK-1) and KIRC kidney cancer cell lines (786-O cells) (B) Relative expression of 6 genes in clinical samples (*p <
0.05, **p < 0.01, and ***p < 0.001).

Frontiers in Pharmacology frontiersin.org12

Feng et al. 10.3389/fphar.2024.1343819

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1343819


potential biomarkers for prognosis and therapeutic targets, and
underscores the significance of TME and immune infiltration in
KIRC. What’s more, this study provides valuable insights for
prognostic and therapeutic guidance by revealing the role of
genes involved in the process of disulfuration in the prognosis
and immunity of KIRC. However, our study is limited, and
further experiments are needed to validate our findings and
elucidate the underlying mechanisms. These findings lay the
groundwork for developing personalized medicine approaches for
KIRC treatment and enhance our understanding of its genetic
underpinnings and complexity.
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