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Introduction: The cytosolic Ser/Thr kinase TBK1 is of utmost importance in
facilitating signals that facilitate tumor migration and growth. TBK1-related
signaling plays important role in tumor progression, and there is need to work
on new methods and workflows to identify new molecules for potential
treatments for TBK1-affecting oncologies such as breast cancer.

Methods: Here, we propose the machine learning assisted computational drug
discovery approach to identify TBK1 inhibitors. Through our computational ML-
integrated approach, we identified four novel inhibitors that could be used as new
hit molecules for TBK1 inhibition.

Results and Discussion: All these four molecules displayed solvent based free
energy values of −48.78, −47.56, −46.78 and −45.47 Kcal/mol and glide docking
score of −10.4, −9.84, −10.03, −10.06 Kcal/mol respectively. The molecules
displayed highly stable RMSD plots, hydrogen bond patterns and MMPBSA
score close to or higher than BX795 molecule. In future, all these compounds
can be further refined or validated by in vitro as well as in vivo activity. Also, we
have found two novel groups that have the potential to be utilized in a fragment-
based design strategy for the discovery and development of novel inhibitors
targeting TBK1. Our method for identifying small molecule inhibitors can be used
to make fundamental advances in drug design methods for the TBK1 protein
which will further help to reduce breast cancer incidence.
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1 Introduction

TANK-binding kinase 1 (TBK1) stands as a significant player in the intricate network
of cellular signaling pathways, exerting its influence through phosphorylation events
primarily on serine and threonine residues (Runde et al., 2022). Its functional repertoire
spans a wide spectrum of physiological processes, ranging from innate immune responses
to cellular homeostasis and beyond. Through intricate interactions with various cellular
components, TBK1 orchestrates the delicate balance required for proper immune
function and cellular integrity. At the forefront of TBK1’s roles lies its involvement
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in innate immunity. Through its coordination of critical
transcription factors such as interferon regulatory factors (IRFs)
and nuclear factor kappa B (NF-κB), TBK1 plays a pivotal role in
regulating immune responses against invading pathogens (Tang
et al., 2021). Upon detection of viral infections, TBK1-mediated
signaling cascades culminate in the synthesis of type I interferons
(IFNs) and other cytokines with potent antiviral properties
(Siddiqui et al., 2020; Zhang et al., 2021). This orchestrated
response not only aids in combating viral infections but also
assumes a central role in the broader antiviral defense
mechanism of the host organism. Furthermore, TBK1’s
influence extends beyond the realm of immune responses,
encompassing essential cellular processes such as autophagy
and mitochondrial quality control (Pied et al., 2022). Its
association with autophagy underscores its role in the
degradation and recycling of impaired cellular constituents,
thereby contributing to cellular homeostasis and survival (Xiao
et al., 2017). The dysregulation of TBK1 has emerged as a
significant contributing factor in various pathological
conditions, including autoimmune disorders, neurological
diseases, and cancer (Siddiqui et al., 2022). In the context of
cancer, TBK1’s multifaceted roles present a complex landscape
wherein it can exhibit both oncogenic and tumor-suppressive
properties. Studies have implicated TBK1 in facilitating cell
survival, proliferation, and resistance to apoptosis, mechanisms
that are inherently associated with cancer progression (Durand
et al., 2018). TBK1 has garnered significant attention from
researchers due to its involvement in various biological
processes such as inflammation, cellular signaling, and
immunological responses (Hu et al., 2020). Notably, TBK1’s
involvement in survival pathways has been implicated in lung
cancer and specific subtypes of breast cancer, underscoring its
relevance in the context of tumorigenesis and tumor progression.
Moreover, the interplay between TBK1 and the inflammatory
process within the tumor microenvironment further highlights
its significance in cancer biology (Xu et al., 2018). Multiple studies
indicate that TBK1 has a role in cancer by facilitating cell survival,
proliferation, and resistance to apoptosis, which is the
programmed cell death process (Revach et al., 2020; Alam
et al., 2021; Runde et al., 2022). TBK1 has been implicated in
the facilitation of survival pathways in lung cancer, as well as the
promotion of growth in specific subtypes of breast cancer (Hasan
et al., 2017). Chronic inflammation has long been recognized as a
hallmark of cancer, fostering a microenvironment conducive to
tumorigenesis and disease progression. TBK1’s participation in the
inflammatory response not only underscores its multifaceted roles
but also presents potential avenues for therapeutic intervention in
cancer (Cruz and Brekken, 2018; Yan et al., 2023). TBK1 has
garnered significant attention as a prospective therapeutic target
due to its role in signaling pathways associated with cancer.
TBK1 influence the cellular milieu and potentially impacting
cancer progression. The convergence of TBK1’s roles in
immune responses, inflammation, and cancer underscores its
potential as a promising therapeutic target for cancer treatment.
Despite the recognition of TBK1’s significance, therapeutic
interventions targeting TBK1 remain a challenge. Existing
inhibitors such as BX795 and CYT387, while potent, face
limitations due to specificity issues, underscoring the need for

novel and more refined TBK1 inhibitors (Feldman et al., 2005;
Pardanani et al., 2009; Sun et al., 2022). In this context,
computational methods offer a promising avenue for
identifying potential TBK1 inhibitors with improved specificity
and efficacy. The field of Computer-Aided Drug Design (CADD)
employs computational techniques to facilitate the search,
prediction, and identification of small compounds (known as
ligands) that exhibit the capability to interact with a designated
target molecule. This target molecule is often a disease-associated
protein (Sliwoski et al., 2014; Yu and MacKerell, 2017; Siddiqui
et al., 2021). The field of CADD has emerged as a valuable tool in
drug discovery, facilitating the search, prediction, and
identification of small molecules capable of interacting with
target proteins. Through virtual screening and computational
modeling approaches, researchers can efficiently navigate vast
chemical databases to identify lead compounds with the
potential for therapeutic application (Schneider and Fechner,
2005; Torres et al., 2019; Sharma et al., 2020; Sahakyan, 2021;
Shen et al., 2021; Siddiqui et al., 2023a; Siddiqui et al., 2023b). The
primary objective of our present investigation was to develop a
computational approach augmented with machine learning
techniques in order to find candidate compounds that have the
potential to be utilized for in vitro validation, specifically targeting
the TBK1 protein. In the present study, the researchers utilized the
extensive ZINC database to employ machine learning techniques
in the process of screening for prospective lead compounds. Our
work tries to add to the growing field of precision medicine by
bridging the gap between computational methods and cancer

FIGURE 1
The image indicated the workflow employed in the studies.
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therapies. By finding new TBK1 inhibitors, we hope to make it
possible for more targeted and effective breast cancer treatments,
which will eventually lead to better patient outcomes and quality of
life. The methodology utilized in our research has been depicted
in Figure 1.

2 Materials and methods

2.1 Data collection and preparation

In this study, the ZINC database was employed to discover
inhibitors in our method targeting the TBK1 protein. The ZINC
database was acquired from the web server in the form of SMILES
format and subsequently transformed into SDF format using the
Open Babel tool (O’Boyle et al., 2011; Irwin et al., 2020). ZINC
database had over 20 million molecules. In order to build a machine
learning model, obtaining drug activity data against the
TBK1 protein was essential. To achieve this, researchers accessed
the well-documented ChEMBL database. Specifically, data related to
Homo sapiens was retrieved in CSV format, and data processing was
performed using the pandas library in Python programming
language. The Rapid Decoy Retriever (RADER) was employed to
achieve data balance by constructing decoys (Wang et al., 2017).

2.2 Pharmacophore model generation and
virtual screening

The RCSB-PDB database has comprehensive data pertaining to
the inhibitory activity of several inhibitors on the TBK1 protein,
including details regarding their respective bound conformations.
The phase module of the Schrodinger software was employed for the
generation of a multi-template pharmacophore (Dixon et al.,
2006b). Pharmacophore structures were generated by extracting
conformations of established inhibitory drugs from the Protein Data
Bank (PDB) database. The creation of flexible molecular aligned
pharmacophore characteristics was achieved through the process of
superimposing and complying to similarity constraints. The
conformational data incorporated the angles of rotation of the
flexible bonds. The software generates molecular conformations
that fulfill the alignment of molecules. The assessment of
alignment fitness involves evaluating the similarity and quantity
of aligned features, the volume of overlapping features, and the Van
der Waals energy of the conformation. Next, the pharmacophoric
features are extracted, and subsequently, angle and distance
constraints are incorporated. Additional investigations using MD
(Molecular Dynamics) were incorporated into our methods to
ascertain the crucial residues implicated in interactions and their
contribution to ligand stability. The conclusions drawn from these
research were utilized to construct a pharmacophore model based
on ligand structure. The generated pharmacophore was employed to
conduct a screening of the ZINC database in order to discover a list
of compounds that exhibit pharmacophore properties similar to
those of previously described TBK1 inhibitors (Dixon et al., 2006a).
The compounds that passed the initial selection process were stored
in the ZNHT database for subsequent computational screening
procedures.

2.3 Descriptor calculation

“Mordred”, a python based tool was used for generating
different descriptors (Moriwaki and Tian, 2018). Mordred is a
versatile molecular descriptor calculation software, offering over
1800 descriptors in both 2D and 3D formats. It provides fast
performance, easy installation, and broad platform compatibility,
making it an ideal choice for cheminformatics studies, with
benchmark results showcasing superior speed compared to
PaDEL-Descriptor. It uses detour matrix algorithm for generating
descriptors and is twice as fast as other reported methods. This
algorithm divide all points of articulation of chemical structures into
subparagraphs. Following that, each subgraph’s detour matrix is
computed. Finally, further entries are filled and the subgraph detour
matrices are merged. It calculated an array of different descriptors
for our activity data including 1d, 2d, 3d and various fingerprint
based descriptors including pubchem, MACCS, GraphOnly for
our datasets.

2.4 Model generation and evaluation

There has been a substantial research published about the
utilization of machine learning (ML) techniques within the field
of computational drug development. The Scikit-learn machine
learning package was employed in this study, utilizing Python
version 3.10 (Van Rossum and Drake, 2009; Uddin et al., 2022).
The dataset was partitioned into training and testing sets using
the random shuffle and train test split module provided by
scikit-learn. The dataset was partitioned into training and
testing sets using an incremental approach, gradually
adjusting the train-test ratio from 80/20 to 70/30. This step
was taken to optimize the model and achieve the highest possible
accuracy. A total of 29 distinct models were assessed in order to
determine the optimal model for our dataset based on a range of
statistical criteria. The evaluation encompassed a variety of
models, namely, XGBoost, Random Forest, Multiple Layer
Perceptron, Support Vector Machine (SVM), Linear SVM,
Decision Tree, Logistic Regression, Gaussian Naive Bayes, and
Extra Tree Classifier. The statistical metrics included in this
study included accuracy, receiver operating characteristic
(ROC), area under the curve (AUC), and F1 Score for each
model. The highest-performing models were employed to
evaluate the results acquired from the pharmacophore-based
screening of the ZINC database, which was saved as the
ZNHT database.

2.5 ML based virtual screening of
ZNHT database

The best machine-learning model was used to screen the
ZNHT database created after screening the ZINC database.
After this dual screening approach we were able to shortlist
numerous molecules having both pharmacophore based profile
as well as ML based signature pattern. Thus, the shortlisted hits
were then subjected to more robust docking based computational
screening method.
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2.6 Molecular docking and
interaction studies

The crystal structure of TBK1 bound to the BX795 inhibitor
(PDB ID 4IM2) was used for docking studies (Tu et al., 2013; Rigden
and Fernández, 2021). Docking studies were performed using the
Glide docking module (Friesner et al., 2006). Hydrogen atoms were
incorporated using the Protein Preparation Wizard and subsequent
energy minimization was conducted to mitigate steric clashes of the
protein, utilizing the Maestro interface within the Schrödinger Suite.
The resulting prepared structure served as the basis for subsequent
docking studies. Ligands molecules were cleaned using ligprep
module. Different parameters which were optimized include
ligand sampling, ring flexibility for ligands, docking poses for
post dock minimization, inclusion of partial charges in scoring
scheme. 20 poses were retained for each ligand to perform post
dock minimization, while only top 3 poses were retained in
final results.

2.7 Molecular dynamics simulation

In the pursuit of identifying new inhibitors, molecular dynamics
(MD) simulations prove to be a valuable tool as they enable the
assessment of the ligand’s stability within the binding pocket of the
receptor. The MD simulations using Gromacs 2022.05 as stated in
references (Van Der Spoel et al., 2005; Siddiqui et al., 2023c). The
CHARMM parameters were obtained using the SwissParam web
service (Zoete et al., 2011). The previous publications provide a
comprehensive description of the methodology utilized for
establishing simulation studies in GROMACS (Siddiqui et al.,
2023b). The examination of the molecular dynamics (MD)
findings was conducted utilizing the UCSF-Chimera program
(Pettersen et al., 2004). The plots were generated utilizing the
XMGRACE software package [https://plasma-gate.weizmann.ac.il/
Grace/], while the calculations relying onMMPBSA were conducted
employing the Amber software (Valdés-Tresanco et al., 2021).

2.8 Similarity index studies and
physiochemical properties studies

Database searches for molecules that resemble specific
structures have grown in popularity over the past 10 years.
Cheminformatics, chemistry, and pattern recognition are just
a few of the applications and domains that make use of the
similarity searching notion (Rácz et al., 2018). Due to the rising
demand for drug discovery research, molecular searching has
recently emerged as one of the major themes of cheminformatics
study. Here in our studies we have used RDKit to calculate
molecular similarity based on Tanimoto coefficient between
two lists of molecules with SMILE structures [Landrum, 2010.
“RDKit.” Q2. https://www.rdkit.org/.] (Landrum, 2010). The
RDKit module was used using python library. Physiochemical
properties including LogP, molecular weight, number of
hydrogen bond donors and acceptors were also calculated
using the RDKIT package. ADMET properties were calculated
using the SwissADME web server (Daina et al., 2017).

3 Results and discussion

3.1 Data collection and preparation

The activity data pertaining to the compounds’ inhibition of
TBK1 was obtained by downloading the information from the
CHEMBL database, specifically identified by the unique identifier
“CHEMBL5408.” The dataset was assessed for redundancy, and any
duplicate molecules were eliminated. The investigation revealed a
broad spectrum of molecular activity, ranging from 0.06 nM to
50118723.36 nM, thereby presenting a wide array of inhibitors
exhibiting varying levels of activity. In our binary categorization
approach, compounds were categorized as active molecules if their
IC50 values were less than 1 μM, while compounds with IC50 values
more than 1 µM were considered inactive. By utilizing the
aforementioned criteria, a cumulative count of 629 molecules
exhibiting proven activity was obtained, while 164 molecules
were identified as confirmed inactive. Due to an imbalance in the
quantity of active and inactive molecules, the model constructed
using the aforementioned dataset may exhibit a bias towards the
identification of active molecules. In order to achieve data balance,
decoys were generated from the RADER method, resulting in the
addition of 469 molecules to the inactive dataset. Following the
process of data balancing, we observed a near-equilibrium ratio of
approximately 1:1 between active and inactive molecules. After the
inclusion of decoy molecules, the dataset had a total of
1,262 molecules. By removing the decoy, we obtained a dataset
that achieved balance in terms of representing both classes. This
balanced dataset may now be utilized to construct a machine
learning model that is free from bias.

3.2 Pharmacophore model generation and
virtual screening

The RCSB-PDB database encompasses a diverse array of
compounds, each accompanied by their respective inhibitory
properties and associated binding complexes involving TBK1

FIGURE 2
The graphic provides an explanation of the procedure that was
followed when developing the pharmacophore model.
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(Beyett et al., 2018). The methodology employed in our experiments
for constructing the pharmacophore model was based on the
framework depicted in Figure 2. The bound conformation of this
chemical was utilized in the development of a structure-ligand-based
pharmacophore hypothesis. The pharmacophore hypothesis was
developed using the phase module of Schrodinger, which involved
extracting group features from the reported conformation of
known ligands.

The RCSB-PDB database contains a wide range of chemicals,
each with their corresponding inhibitory characteristics and related
binding complexes including TBK1 (Ma et al., 2012). The
methodology utilized in our experimental approach for creating
the pharmacophore model was derived from the framework
illustrated in Figure 2. The utilization of the bound conformation
of this chemical played a crucial role in the creation of a structure-
ligand-based pharmacophore hypothesis. The pharmacophore
hypothesis was constructed utilizing the phase module of
Schrodinger software, which entailed collecting group
characteristics from the documented conformation of
established ligands.

The chemical BX795 has been shown to display TBK1 inhibition
at a concentration of 6 nM, as documented in prior studies (Clark
et al., 2009). The hydrophobic residues, specifically L15, G16, G18,
A21, A36, M86, M142, T156, and V168, as well as the charged or
uncharged group residues, notably Q17, K38, F88, N140, and D157,

were identified within a 5 Å proximity of BX795. The presence of a
positively charged residue, specifically K38, was observed to engage
in cation-pi interactions with the receptor. Therefore, the utilization
of an aromatic ring in the pharmacophore has the ability to replicate
this interaction. In a manner akin to the aforementioned scenario,
the nitrogen atom in proximity to the aromatic ring engaged in an
interaction with the N140 residue, assuming the role of a donor
group. The selection of a hydrophobic attribute was based on the
observation that the hydrophobic residues were predominantly
located in close proximity to the formamido-propyl group in the
control molecule. The construction of a 4-feature pharmacophore
model, was facilitated by conducting simulation studies on control
molecules and interaction experiments on established ligands as
depicted in Figures 3A–D. This model incorporates 1 hydrophobic
feature (H3), 2 donor groups (D1 and D2), and a single
aromatic group (R4).

The elongation of the hydrophobic pocket was noticed,
prompting the inclusion of an additional 15% tolerance to this
characteristic. Given the significance of donor groups in facilitating
hydrogen bond interactions, we incorporated a 15% increase in
weightage for these groups. This approach would enable the
selection of hits that possess these specific groups, which can
play a significant role in protein interaction. In order to establish
distance limits between the various pharmacophore groups, a
tolerance range of 10%–15% was implemented. Following the

FIGURE 3
(A–D): The Image indicates the pharmacophore model built using the reported crystal structure of TBK1 inhibitor BX795.
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implementation of the aforementioned model, a virtual screening of
the ZINC database was conducted, resulting in the identification of
132,571 hit molecules. This screening was performed on a
comprehensive database consisting of around 2 million
compounds. The screen’s saved hits, stored in the ZNHT
database, accounted for approximately 0.66% of the total hits
from the original database (Figure 4). During the initial filtration
process, about 99.33% of the compounds were eliminated due to the
absence of pharmacophore characteristics that corresponded to
previously identified recognized inhibitors.

3.3 Descriptor calculation

The “Mordred” python tool was utilized to derive several
descriptors for the dataset that was obtained by downloading.
Various descriptors were computed for our dataset, including 1D,
2D, and 3D descriptors, as well as fingerprint-based descriptors such
as PubChem, MACCS, and Graph. The descriptors underwent
preprocessing to identify and correct any mistakes, utilizing the
numpy and pandas packages. Following the pre-processing stage,
the data was utilized for machine learning modeling.

3.4 Model generation and evaluation

The entire dataset is partitioned into training and test sets, with a
gradual adjustment of the ratio from 80/20 to 70/30, in order to
improve the model and achieve the highest level of accuracy. The
training set consisted of a total of 959 compounds, whereas the test

set contained 303 compounds, as indicated in Table 1. The
molecules classified as active within the dataset were denoted by
the label “1,” whilst the molecules classified as inactive were denoted
by the label “0.” The dataset was utilized to construct a binary
classification model employing a selection of prominent machine

FIGURE 4
The image indicates the top selected molecules overlapped with
the 4 feature pharmacophore model.

TABLE 1 Training and test dataset used in our study.

Dataset Inhibitor Non-inhibitor Total

Training 479 480 959

Test 150 153 303

FIGURE 5
(A–E): The image “(A)” indicate the accuracy plot of various ML
models represented in the form of vertical bar plot. Image “(B)”
indicate the confusion matrix of “Extra Trees Classifier” model, which
displayed the best accuracy. Image “(C)” indicate the
classification report of the “Extra Tree Classifier” model in terms of
precision, recall, F1 and support values. Image “(D)” indicate the ROC
curve of “Extra Tree Classifier” model. Image “(E)” indicate the cross
validation score of “Extra Tree Classifier” model.
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learning methods such as random forest, support vector machine,
ada boost classifier, extra tree classifier, decision tree classifier,
bagging classifier, and others. Out of the 29 algorithms
considered, the Extra Trees classifier exhibited the highest levels
of accuracy (0.89), ROC (0.88), AUC (0.88), and F1 score (0.89). The
NuSVC and random forest classifier closely followed, as depicted
in Figure 5A.

The remaining models had a high degree of correlation,
particularly the top four models. The tabulation of top
10 machine learning models based on distinct statistical
parameters has been presented in Table 2. The Extra tree
classifier model that was chosen as the best performer exhibited
notably high levels of accuracy in both the training and test datasets,
as evidenced by the confusion matrix depicted in Figure 5B. The
model exhibited a high level of precision in accurately identifying
inactive chemicals (0.899), closely followed by its performance in
identifying active molecules (0.871). The recall value exhibited a very
high performance for active compounds (0.900), with inactive
molecules closely trailing behind (0.869). Figure 5C demonstrates
that both the F1 score and support values were high. The area under
the receiver operating characteristic (ROC) curve was determined to
be 0.93 for both the active and inactive classes (Figure 5D). The
additional tree classifier demonstrated a significantly high cross-
validation score of 0.856 when employing a 12-fold cross-validation
technique (Figure 5E). The Extra Tree Classifier model was chosen
for binary classification of the ZNHT database, which was developed
through virtual screening of the ZINC database using a
pharmacophore-based technique, depending on the statistical
parameters.

3.5 ML based screening of ZNHT database

The ZNHT database, which has a total of 132,571molecules, was
employed in order to ascertain probable hit compounds that could
interact with the TBK1 receptor. The descriptors data utilized for
constructing the machine learning model was computed for ZNHT
molecules employing the Mordred package. Subsequently, the data
was stored in a “ csv” format utilizing the pandas data-frame module
in Python. The descriptor file was successfully loaded and

subsequently utilized to conduct machine learning-based
screening of the ZNHT database. A total of 4,350 hits were
identified from the ZNHT database, exhibiting fingerprint
similarity to the active compounds. Therefore, by utilizing the
secondary machine learning-based filter, we successfully excluded
around 96.71% of the molecules contained in the ZNHT database.
Consequently, we retained a mere 3.28% of hits for further
computational investigation.

3.6 Molecular docking and
interaction studies

The crystallographic structure of the TBK1 protein complexed
with the antagonist BX795 (PDB id 4IM2) was employed in our
investigation of structural binding. This structure served as the basis
for conducting docking investigations. The structure was
experimentally determined by X-ray diffraction studies. It has
resolution of 2.50 Å and R-value of 0.255. The Glide XP docking
approach was employed to conduct a docking-based assessment of
compounds in order to determine their binding affinity to the
receptor. Various parameters were tuned in the glide tool in

TABLE 2 The table indicates the ROC, AUC, precision recall and F1 score of top 10 ML models.

Sr No. Model Accuracy ROC AUC F1 score

1 ExtraTreesClassifier 0.89 0.88 0.88 0.89

2 NuSVC 0.88 0.87 0.88 0.88

3 RandomForestClassifier 0.88 0.87 0.88 0.88

4 SVC 0.89 0.87 0.88 0.88

5 AdaBoostClassifier 0.87 0.87 0.87 0.87

6 BaggingClassifier 0.87 0.87 0.87 0.87

7 LGBMClassifier 0.87 0.87 0.87 0.87

8 DecisionTreeClassifier 0.87 0.87 0.87 0.87

9 ExtraTreeClassifier 0.86 0.86 0.86 0.86

10 KNeighborsClassifier 0.86 0.86 0.86 0.86

FIGURE 6
The image indicates the re-dock pose (green) of the control
molecule predicted by the Glide docking software compared with the
reported crystal pose (grey).
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order to achieve the most optimal redocking stance, as depicted in
Figure 6. Following a meticulous optimization of the docking
parameters, we successfully generated the docking pose,
exhibiting a root-mean-square deviation (RMSD) of less than
0.19 Å. The re-dock position exhibited a binding affinity
of −9.641 kcal/mol. The propyl chain of BX795 exhibited modest
torsional restrictions, resulting in minor structural aberrations in the
thiophenyl ring. After conducting docking-based screening, it was
shown that only 10 compounds exhibited a binding affinity higher
than the control molecule. The compounds were subjected to
thorough analysis in order to assess their potential for molecular
interaction with the receptor, as depicted in Figures 7A–J. The
observation was made that all compounds exhibited binding to the
identical binding pocket of the TBK1 protein, but with diverse
binding conformations. Compound 1 exhibited a docking score
of −10.4 kcal/mol, while molecule 2 demonstrated a binding affinity
of −10.35 kcal/mol, making it a close contender. In a similar vein,
molecule 3 had a binding affinity of −10.34 kcal/mol, whilst

molecule 4 demonstrated an affinity of −10.04 kcal/mol. The
summary of the binding affinities of the compounds that have
been nominated is presented in Table 3. The 2d structures of the
compounds have been summarized in Supplementary Table S1

The molecules underwent molecular dynamics (MD) studies,
which will be further elaborated in the subsequent section. All of the
compounds exhibited binding to the identical binding pocket of the
TBK1 protein. The most significant observation is that all the
compounds had a comparable interaction pattern, with a little
greater hydrogen bond interaction compared to the
control molecule.

3.7 Molecular dynamics simulation and free
energy studies

MD-based experiments were conducted on further selected
compounds using the Gromacs 2022.4 software tool. Upon

FIGURE 7
(A–J): The images (A–J) indicates the docked poses predicted by the glide docking module of the inhibitors 1–10 respectively.
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careful examination of the trajectories of the different molecules
(Figures 8A, B), it was seen that a number of compounds on the
short list exhibited stable RMSD plots, with RMSD values below
3 Armstrong. All molecules, except for molecule 8, exhibited stable
RMSD plots throughout the simulation. Only minor conformational
changes were observed at RMSD values below 3 Å, indicating their
robust pose stability. Compound 1, 2, 3, 4, 5, 6, and 10 demonstrated
stable orientations and exhibited RMSD values that were
predominantly in proximity to or lower than the RMSD values
of the control molecule. The compounds designated as 7 and
9 likewise achieved a stable conformation, but their RMSD values
were slightly higher than that of the control molecule. In contrast,
Molecule 8 exhibited consistent deviations as a result of its limited
pose stability, consistently undergoing conformational changes
during the molecular dynamics simulation. The investigation of
hydrogen bond interactions indicated that molecules 1, 4, 5, and
10 exhibited an equivalent or greater number of hydrogen bonds
compared to the control molecule (see Figures 8C, D).

The molecules created a total of 17 hydrogen bonds, with 5, 4,
4, and 4 bonds being formed by each separate molecule. The
remaining molecules, specifically molecules 2, 3, 6, 7, 8, and 9,
exhibited an average number of hydrogen bonds of 3, 3, 2, 3, 1,
and 3, respectively. Remarkably, in simulated experiments, it was
seen that chemical compound 1 formed a maximum of six
hydrogen bonds with the receptor following a minor
adjustment in its benzene-1,3-diol moiety at around
150 nanoseconds. The aforementioned findings suggest that
this particular group plays a pivotal role in facilitating
hydrogen bond interactions with the receptor, hence
presenting potential applications in the development of
innovative inhibitors. Also, the RMSD plots of the protein
backbone and RMSF plot of protein residues indicated that
most of the molecules have consistent RMSD in the backbone
except for the protein bound to the ligand 3, which displayed
highest deviations (Figures 8E–H). The results of the MMPBSA
calculations indicated that four compounds had a water-based
binding affinity that was comparable to, or even higher than, that

of the control molecule. The affinities of the compounds,
specifically molecules 1, 4, 5, and 10, were observed to have
values of −48.78, −45.47, −46.78, and −47.56, respectively. Based
on a meticulous examination of the RMSD plots, as well as an
assessment of the hydrogen bonding pattern and the water-based
scoring scheme, it is possible to deduce that four specific
molecules, namely, 1, 4, 5, and 10, should be given priority for
subsequent review. Furthermore, it has been shown that groups
such as benzene-1,3-diol and pyrrole have potential for
utilization in the development of new inhibitors against the
TBK1 inhibitor.

3.8 Similarity index studies and
physiochemical properties studies

The RDKit module in Python was employed to compute the
chemical similarity index using a dataset of known inhibitors
published in CHEMBL that exhibit antagonist activity against the
TBK1 protein. It was noted that all compounds had a similarity
index below 74% when compared to the reported molecules, as
measured by both the Tanimoto MACCS value and the similarity
index value was found to be below 38% in terms of the Tanimoto
MORGAN value. Therefore, all of the compounds possess unique
structures that have not been previously documented in relation
to the TBK1 protein. During the manual cross-checking process
for reported activity of the molecules, a similar observation was
made in the “Reported Activity” column of the ZINC database.
Therefore, it can be inferred that all of the selected hit molecules
possess the potential to function as unique compounds that have
not been previously documented to have any activity against the
TBK1 protein. Based on previous computational investigations, it
is recommended to prioritize these compounds for further
in vitro studies. The molecular similarity data has been
presented and summarized in Table 4. The physiochemical
characteristics examination of the molecules revealed that all
of them possess a molecular weight that is lower than that of the

TABLE 3 The table indicates the Glide docking score and the MMPBSA score summary of the top shortlisted molecules.

Sr No. Name of compound Code used Glide score MMPBSA score

1 ZINC12113810 1 −10.4 −48.78

2 ZINC12370930 2 −10.35 −12.30

3 ZINC04338236 3 −10.34 −32.50

4 ZINC08548500 4 −10.06 −45.47

5 ZINC26330579 5 −10.03 −46.78

6 ZINC98100095 6 −10.03 −39.83

7 ZINC89797427 7 −9.95 −41.48

8 ZINC02278530 8 −9.91 −42.47

9 ZINC22111451 9 −9.85 −39.07

10 ZINC69924561 10 −9.84 −47.56

11 BX795 CNT −9.64 −47.11
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control molecule BX795, as shown in Table 5. With the exception
of molecule 2, all molecules exhibited LogP values within an
acceptable range below 5. Log S values were also below 5 for most
molecules except 2 and 8. The drug likeness was high for all

molecules based on the lipinki’s rule as predicted by the
SwissADME web server. The observed count of hydrogen
bond donors and acceptors for all compounds was found to be
less than 10 and 5, respectively.

FIGURE 8
(A–H): The images “(A, B)” indicates the RMSD plots of ligands when in bound form with TBK1 protein. The images “(C, D)” indicate the hydrogen
bond plots of the ligands during the course of simulation. The images “(E, F)” indicate the RMSD plot of the protein backbone, while the images “(G, H)”
indicate the RMSF plot of the protein residues.
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4 Conclusion

In this study, machine learning techniques were applied to
computationally identify novel inhibitors of the TBK1 protein.
Utilizing pharmacophore-based screening, we efficiently reduced
the search space to 6.59%, resulting in a database of
132,571 entries. Subsequent machine learning-based filtering
further reduced the database to 0.66% of its original size, with
the optimized model demonstrating exceptional performance.
Both the pharmacophore and machine learning model can
serve as efficient filtering methods for binary categorization of
novel inhibitors from large commercial and non-commercial
databases. These methods offer efficient filtration for
identifying potential inhibitors from extensive databases,
warranting further investigation. The study’s innovative
approach, integrating pharmacophore and machine learning
methods, fills a gap in the literature concerning virtual

screening targeting TBK1. With the identification of four
promising compounds, future research will focus on assessing
their activity in cell-based or enzyme-based systems, potentially
enhancing their therapeutic efficacy against TBK1. Although, two
novel groups including benzene-1,3-diol and pyrrole were found,
which can be used in novel ligand design to enhance potency of
previous scaffolds against the TBK1 protein. The studies here lays
the foundation for using AI integrated methodology for screening
new inhibitors against the TBK1 protein. This will serve as the
focus of our research team’s future endeavors.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

TABLE 4 The table presents a concise overview of the Tanimoto similarity index for the most highly ranked compounds.

Sr No. Compound Tanimoto MACCS similarity Tanimoto MORGAN similarity CHEMBL compound

1 1 0.492537 0.369748 CHEMBL2207179

2 2 0.557692 0.371681 CHEMBL3931286

3 3 0.701493 0.319328 CHEMBL3936038

4 4 0.478261 0.33945 CHEMBL3956718

5 5 0.655172 0.315315 CHEMBL3902251

6 6 0.75 0.333333 CHEMBL3900950

7 7 0.611111 0.291667 CHEMBL3928914

8 8 0.7 0.290541 CHEMBL2011937

9 9 0.463768 0.327273 CHEMBL3956718

10 10 0.744681 0.380952 CHEMBL3931286

TABLE 5 The table indicates the ADMET profile of the selected 10 molecules.

Name of
compound

Molecular
weight

Lipinki
druglikeness

GI
absorption

LogS LogP Hydrogen bond
donors

Hydrogen bond
acceptors

ZINC12113810 346.140 Yes High −4.72 3.268 6 3

ZINC12370930 432.060 Yes High −6.73 5.673 5 2

ZINC04338236 395.100 Yes High −3.51 2.100 9 4

ZINC08548500 397.080 Yes High −4.84 4.110 6 2

ZINC26330579 404.110 Yes Low −3.99 3.544 8 3

ZINC98100095 350.090 Yes High −3.68 1.934 7 2

ZINC89797427 364.120 Yes High −4.86 4.144 6 2

ZINC02278530 529.070 Yes High −6.43 4.951 8 3

ZINC22111451 417.020 Yes High −5.13 4.177 6 2

ZINC69924561 333.130 Yes High −3.63 2.105 8 2

BX795 591.090 Yes Low −6.00 4.122 9 4

Frontiers in Pharmacology frontiersin.org11

Siddiqui et al. 10.3389/fphar.2024.1342392

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1342392


Author contributions

AS: Conceptualization, Funding acquisition, Project
administration, Supervision, Writing–original draft. AJ:
Conceptualization, Formal Analysis, Methodology, Validation,
Visualization, Writing–review and editing. MZ: Formal
Analysis, Investigation, Methodology, Resources, Software,
Visualization, Writing–review and editing. SJ: Data curation,
Investigation, Methodology, Resources, Validation, Visualization,
Writing–original draft.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
research has been funded by Deputy for Research and Innovation,
Ministry of Education through Initiative of Institutional Funding
at University of Ha’il—Saudi Arabia through project number IFP-
22 156.

Acknowledgments

This research has been funded by Deputy for Research &
Innovation, Ministry of Education through Initiative of

Institutional Funding at University of Ha’il—Saudi Arabia
through project number IFP- 22 156.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1342392/
full#supplementary-material

References

Alam, M., Hasan, G. M., and Hassan, M. I. (2021). A review on the role of TANK-
binding kinase 1 signaling in cancer. Int. J. Biol. Macromol. 183, 2364–2375. doi:10.
1016/j.ijbiomac.2021.06.022

Beyett, T. S., Gan, X., Reilly, S. M., Chang, L., Gomez, A. V., Saltiel, A. R., et al. (2018).
Carboxylic acid derivatives of amlexanox display enhanced potency toward TBK1 and
IKKε and reveal mechanisms for selective inhibition. Mol. Pharmacol. 94, 1210–1219.
doi:10.1124/mol.118.112185

Clark, K., Plater, L., Peggie, M., and Cohen, P. (2009). Use of the pharmacological
inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB
kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and
activation. J. Biol. Chem. 284, 14136–14146. doi:10.1074/jbc.M109.000414

Cruz, V. H., and Brekken, R. A. (2018). Assessment of TANK-binding kinase 1 as a
therapeutic target in cancer. J. Cell Commun. Signal. 12, 83–90. doi:10.1007/s12079-017-
0438-y

Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: a free web tool to evaluate
pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small
molecules. Sci. Rep. 7, 42717. doi:10.1038/srep42717

Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., and Friesner, R.
A. (2006a). PHASE: a new engine for pharmacophore perception, 3D QSAR model
development, and 3D database screening: 1. Methodology and preliminary results.
J. Comput. Aided Mol. Des. 20, 647–671. doi:10.1007/s10822-006-9087-6

Dixon, S. L., Smondyrev, A. M., and Rao, S. N. (2006b). PHASE: a novel approach to
pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des. 67,
370–372. doi:10.1111/j.1747-0285.2006.00384.x

Durand, J. K., Zhang, Q., and Baldwin, A. S. (2018). Roles for the IKK-related kinases
TBK1 and IKKε in cancer. Cells 7, 139. doi:10.3390/cells7090139

Feldman, R. I., Wu, J. M., Polokoff, M. A., Kochanny, M. J., Dinter, H., Zhu, D., et al.
(2005). Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1.
J. Biol. Chem. 280, 19867–19874. doi:10.1074/jbc.M501367200

Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren,
T. A., et al. (2006). Extra precision glide: docking and scoring incorporating a model of
hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196.
doi:10.1021/jm051256o

Hasan, M., Gonugunta, V. K., Dobbs, N., Ali, A., Palchik, G., Calvaruso, M. A., et al.
(2017). Chronic innate immune activation of TBK1 suppresses mTORC1 activity and
dysregulates cellular metabolism. Proc. Natl. Acad. Sci. U. S. A. 114, 746–751. doi:10.
1073/pnas.1611113114

Hu, L., Xie, H., Liu, X., Potjewyd, F., James, L. I., Wilkerson, E. M., et al. (2020).
TBK1 is a synthetic lethal target in cancer with VHL loss. Cancer Discov. 10, 460–475.
doi:10.1158/2159-8290.CD-19-0837

Irwin, J. J., Tang, K. G., Young, J., Dandarchuluun, C., Wong, B. R.,
Khurelbaatar, M., et al. (2020). ZINC20—a free ultralarge-scale chemical
database for ligand discovery. J. Chem. Inf. Model. 60, 6065–6073. doi:10.1021/
acs.jcim.0c00675

Landrum, G. (2010). RDKit. Q2. Available at: https://www.rdkit.org.

Ma, X., Helgason, E., Phung, Q. T., Quan, C. L., Iyer, R. S., Lee, M. W., et al. (2012).
Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc.
Natl. Acad. Sci. 109, 9378–9383. doi:10.1073/pnas.1121552109

Moriwaki, H., Tian, Y. S., Kawashita, N., and Takagi, T. (2018). Mordred: a molecular
descriptor calculator. J. Cheminformatics 10, 4. doi:10.1186/s13321-018-0258-y

O’boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and
Hutchison, G. R. (2011). Open Babel: an open chemical toolbox. J. Cheminform 3,
33. doi:10.1186/1758-2946-3-33

Pardanani, A., Lasho, T., Smith, G., Burns, C. J., Fantino, E., and Tefferi, A. (2009).
CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and
preclinical studies using cell lines and primary cells from polycythemia vera patients.
Leukemia 23, 1441–1445. doi:10.1038/leu.2009.50

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng,
E. C., et al. (2004). UCSF Chimera--a visualization system for exploratory research and
analysis. J. Comput. Chem. 25, 1605–1612. doi:10.1002/jcc.20084

Pied, N., Daussy, C. F., Denis, Z., Ragues, J., Faure, M., Iggo, R., et al. (2022). TBK1 is
part of a galectin 8 dependent membrane damage recognition complex and drives
autophagy upon Adenovirus endosomal escape. PLoS Pathog. 18, e1010736. doi:10.
1371/journal.ppat.1010736

Rácz, A., Bajusz, D., and Héberger, K. (2018). Life beyond the Tanimoto coefficient:
similarity measures for interaction fingerprints. J. cheminformatics 10, 48–12. doi:10.
1186/s13321-018-0302-y

Revach, O.-Y., Liu, S., and Jenkins, R. W. (2020). Targeting TANK-binding kinase 1
(TBK1) in cancer. Expert Opin. Ther. targets 24, 1065–1078. doi:10.1080/14728222.
2020.1826929

Rigden, D. J., and Fernández, X. M. (2021). The 2021 Nucleic Acids Research database
issue and the online molecular biology database collection.Nucleic Acids Res. 49, D1–d9.
doi:10.1093/nar/gkaa1216

Frontiers in Pharmacology frontiersin.org12

Siddiqui et al. 10.3389/fphar.2024.1342392

https://www.frontiersin.org/articles/10.3389/fphar.2024.1342392/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1342392/full#supplementary-material
https://doi.org/10.1016/j.ijbiomac.2021.06.022
https://doi.org/10.1016/j.ijbiomac.2021.06.022
https://doi.org/10.1124/mol.118.112185
https://doi.org/10.1074/jbc.M109.000414
https://doi.org/10.1007/s12079-017-0438-y
https://doi.org/10.1007/s12079-017-0438-y
https://doi.org/10.1038/srep42717
https://doi.org/10.1007/s10822-006-9087-6
https://doi.org/10.1111/j.1747-0285.2006.00384.x
https://doi.org/10.3390/cells7090139
https://doi.org/10.1074/jbc.M501367200
https://doi.org/10.1021/jm051256o
https://doi.org/10.1073/pnas.1611113114
https://doi.org/10.1073/pnas.1611113114
https://doi.org/10.1158/2159-8290.CD-19-0837
https://doi.org/10.1021/acs.jcim.0c00675
https://doi.org/10.1021/acs.jcim.0c00675
https://www.rdkit.org
https://doi.org/10.1073/pnas.1121552109
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1038/leu.2009.50
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1371/journal.ppat.1010736
https://doi.org/10.1371/journal.ppat.1010736
https://doi.org/10.1186/s13321-018-0302-y
https://doi.org/10.1186/s13321-018-0302-y
https://doi.org/10.1080/14728222.2020.1826929
https://doi.org/10.1080/14728222.2020.1826929
https://doi.org/10.1093/nar/gkaa1216
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1342392


Runde, A. P., Mack, R., Sj, P. B., and Zhang, J. (2022). The role of TBK1 in cancer
pathogenesis and anticancer immunity. J. Exp. Clin. Cancer Res. 41, 135. doi:10.1186/
s13046-022-02352-y

Sahakyan, H. (2021). Improving virtual screening results with MM/GBSA and MM/PBSA
rescoring. J. Computer-Aided Mol. Des. 35, 731–736. doi:10.1007/s10822-021-00389-3

Schneider, G., and Fechner, U. (2005). Computer-based de novo design of drug-like
molecules. Nat. Rev. Drug Discov. 4, 649–663. doi:10.1038/nrd1799

Sharma, T., Harioudh, M. K., Kuldeep, J., Kumar, S., Banerjee, D., Ghosh, J. K., et al.
(2020). Identification of potential inhibitors of cathepsin-B using shape and
pharmacophore-based virtual screening, molecular docking and explicit water
thermodynamics. Mol. Inf. 39, 1900023. doi:10.1002/minf.201900023

Shen, C., Hu, Y., Wang, Z., Zhang, X., Zhong, H., Wang, G., et al. (2021). Canmachine
learning consistently improve the scoring power of classical scoring functions? Insights
into the role of machine learning in scoring functions. Briefings Bioinforma. 22,
497–514. doi:10.1093/bib/bbz173

Siddiqui, A. J., Badraoui, R., Jahan, S., Alshahrani, M. M., Siddiqui, M. A., Khan, A.,
et al. (2023a). Targeting NMDA receptor in Alzheimer’s disease: identifying novel
inhibitors using computational approaches. Front. Pharmacol. 14, 1208968. doi:10.
3389/fphar.2023.1208968

Siddiqui, A. J., Bhardwaj, J., Goyal, M., Prakash, K., Adnan, M., Alreshidi, M. M., et al.
(2020). Immune responses in liver and spleen against Plasmodium yoelii pre-erythrocytic
stages in Swiss mice model. J. Adv. Res. 24, 29–41. doi:10.1016/j.jare.2020.02.016

Siddiqui, A. J., Jahan, S., Patel, M., Abdelgadir, A., Alturaiki, W., Bardakci, F., et al.
(2023b). Identifying novel and potent inhibitors of EGFR protein for the drug
development against the breast cancer. J. Biomol. Struct. Dyn. 41, 14460–14472.
doi:10.1080/07391102.2023.2181646

Siddiqui, A. J., Jahan, S., Siddiqui, M. A., Khan, A., Alshahrani, M. M., Badraoui, R.,
et al. (2023c). Targeting monoamine oxidase B for the treatment of Alzheimer’s and
Parkinson’s diseases using novel inhibitors identified using an integrated approach of
machine learning and computer-aided drug design.Mathematics 11, 1464. doi:10.3390/
math11061464

Siddiqui, A. J., Jahan, S., Singh, R., Saxena, J., Ashraf, S. A., Khan, A., et al. (2022).
Plants in anticancer drug discovery: from molecular mechanism to chemoprevention.
BioMed Res. Int. 2022, 5425485. doi:10.1155/2022/5425485

Siddiqui, A. J., Khan, M. F., Hamadou, W. S., Goyal, M., Jahan, S., Jamal, A., et al. (2021).
Molecular docking and dynamics simulation revealed ivermectin as potential drug against
schistosoma-associated bladder cancer targeting protein signaling: computational drug
repositioning approach. Medicina 57, 1058. doi:10.3390/medicina57101058

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W., Jr. (2014). Computational
methods in drug discovery. Pharmacol. Rev. 66, 334–395. doi:10.1124/pr.112.007336

Sun, Y., Tang, H., Wang, X., Feng, F., Fan, T., Zhao, D., et al. (2022).
Identification of 1 H-pyrazolo [3, 4-b] pyridine derivatives as novel and potent

TBK1 inhibitors: design, synthesis, biological evaluation, and molecular docking
study. J. Enzyme Inhibition Med. Chem. 37, 1411–1425. doi:10.1080/14756366.
2022.2076674

Tang, J.-L., Yang, Q., Xu, C.-H., Zhao, H., Liu, Y.-L., Liu, C.-Y., et al. (2021). Histone
deacetylase 3 promotes innate antiviral immunity through deacetylation of TBK1.
Protein and Cell 12, 261–278. doi:10.1007/s13238-020-00751-5

Torres, P. H., Sodero, A. C., Jofily, P., and Silva-, F. P., Jr (2019). Key topics in
molecular docking for drug design. Int. J. Mol. Sci. 20, 4574. doi:10.3390/ijms20184574

Tu, D., Zhu, Z., Zhou, A. Y., Yun, C.-H., Lee, K.-E., Toms, A. V., et al. (2013).
Structure and ubiquitination-dependent activation of TANK-binding kinase 1. Cell Rep.
3, 747–758. doi:10.1016/j.celrep.2013.01.033

Uddin, S., Ong, S., and Lu, H. (2022). Machine learning in project analytics: a
data-driven framework and case study. Sci. Rep. 12, 15252. doi:10.1038/s41598-
022-19728-x

Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., and Moreno, E.
(2021). gmx_MMPBSA: a new tool to perform end-state free energy calculations with
GROMACS. J. Chem. theory Comput. 17, 6281–6291. doi:10.1021/acs.jctc.1c00645

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H.
J. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718. doi:10.
1002/jcc.20291

Van Rossum, G., and Drake, F. (2009). Python 3 reference manual; CreateSpace. CA,
USA: Scotts Valley.

Wang, L., Pang, X., Li, Y., Zhang, Z., and Tan, W. (2017). RADER: a RApid DEcoy
Retriever to facilitate decoy based assessment of virtual screening. Bioinformatics 33,
1235–1237. doi:10.1093/bioinformatics/btw783

Xiao, Y., Zou, Q., Xie, X., Liu, T., Li, H. S., Jie, Z., et al. (2017). The kinase
TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and
antitumor immunity. J. Exp. Med. 214, 1493–1507. doi:10.1084/jem.20161524

Xu, D., Jin, T., Zhu, H., Chen, H., Ofengeim, D., Zou, C., et al. (2018).
TBK1 suppresses RIPK1-driven apoptosis and inflammation during development
and in aging. Cell 174, 1477–1491. doi:10.1016/j.cell.2018.07.041

Yan, X., Zheng, W., Geng, S., Zhou, M., and Xu, T. (2023). Cytokine receptor-like
factor 3 negatively regulates antiviral immunity by promoting the degradation of
TBK1 in teleost fish. J. Virology 97, 01792222–e201722. doi:10.1128/jvi.01792-22

Yu, W., and Mackerell, A. D., Jr. (2017). Computer-Aided drug design methods.
Methods Mol. Biol. 1520, 85–106. doi:10.1007/978-1-4939-6634-9_5

Zhang, T., Ma, C., Zhang, Z., Zhang, H., and Hu, H. (2021). NF-κB signaling in
inflammation and cancer. MedComm 2, 618–653. doi:10.1002/mco2.104

Zoete, V., Cuendet, M. A., Grosdidier, A., andMichielin, O. (2011). SwissParam: a fast
force field generation tool for small organic molecules. J. Comput. Chem. 32, 2359–2368.
doi:10.1002/jcc.21816

Frontiers in Pharmacology frontiersin.org13

Siddiqui et al. 10.3389/fphar.2024.1342392

https://doi.org/10.1186/s13046-022-02352-y
https://doi.org/10.1186/s13046-022-02352-y
https://doi.org/10.1007/s10822-021-00389-3
https://doi.org/10.1038/nrd1799
https://doi.org/10.1002/minf.201900023
https://doi.org/10.1093/bib/bbz173
https://doi.org/10.3389/fphar.2023.1208968
https://doi.org/10.3389/fphar.2023.1208968
https://doi.org/10.1016/j.jare.2020.02.016
https://doi.org/10.1080/07391102.2023.2181646
https://doi.org/10.3390/math11061464
https://doi.org/10.3390/math11061464
https://doi.org/10.1155/2022/5425485
https://doi.org/10.3390/medicina57101058
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1080/14756366.2022.2076674
https://doi.org/10.1080/14756366.2022.2076674
https://doi.org/10.1007/s13238-020-00751-5
https://doi.org/10.3390/ijms20184574
https://doi.org/10.1016/j.celrep.2013.01.033
https://doi.org/10.1038/s41598-022-19728-x
https://doi.org/10.1038/s41598-022-19728-x
https://doi.org/10.1021/acs.jctc.1c00645
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1093/bioinformatics/btw783
https://doi.org/10.1084/jem.20161524
https://doi.org/10.1016/j.cell.2018.07.041
https://doi.org/10.1128/jvi.01792-22
https://doi.org/10.1007/978-1-4939-6634-9_5
https://doi.org/10.1002/mco2.104
https://doi.org/10.1002/jcc.21816
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1342392

	Identification of TBK1 inhibitors against breast cancer using a computational approach supported by machine learning
	1 Introduction
	2 Materials and methods
	2.1 Data collection and preparation
	2.2 Pharmacophore model generation and virtual screening
	2.3 Descriptor calculation
	2.4 Model generation and evaluation
	2.5 ML based virtual screening of ZNHT database
	2.6 Molecular docking and interaction studies
	2.7 Molecular dynamics simulation
	2.8 Similarity index studies and physiochemical properties studies

	3 Results and discussion
	3.1 Data collection and preparation
	3.2 Pharmacophore model generation and virtual screening
	3.3 Descriptor calculation
	3.4 Model generation and evaluation
	3.5 ML based screening of ZNHT database
	3.6 Molecular docking and interaction studies
	3.7 Molecular dynamics simulation and free energy studies
	3.8 Similarity index studies and physiochemical properties studies

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


