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Transferrin (Tf), widely known for its role as an iron-binding protein, exemplifies
multitasking in biological processes. The role of Tf in iron metabolism involves
both the uptake of iron from Tf by various cells, as well as the endocytosis
mediated by the complex of Tf and the transferrin receptor (TfR). The direct
conjugation of the therapeutic compound and immunotoxin studies using Tf
peptide or anti-Tf receptor antibodies as targeting moieties aims to prolong drug
circulation time and augment efficient cellular drug uptake, diminish systemic
toxicity, traverse the blood-brain barrier, restrict systemic exposure, overcome
multidrug resistance, and enhance therapeutic efficacy with disease specificity.
This review primarily discusses the various biological actions of Tf, as well as the
development of Tf-targeted nano-based drug delivery systems. The goal is to
establish the use of Tf as a disease-targeting component, accentuating the
potential therapeutic applications of this protein.
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1 Introduction

With the continuous innovation in drug development, an increasing number of novel
medications are emerging for addressing a range of diseases. However, during the course of
pharmaceutical development, challenges persist with three major aspects, namely, the
unpredictable drug release rates, specificity in targeting tissues and cells and the stability of
drugs. Additionally, issues related to systemic administration, such as potential toxic side
effects induced by high doses, continue to be a concern (Sanjay et al., 2018). One strategy for
improving the therapeutic index of medications involves utilizing drug delivery systems
(Vyas et al., 2001). In contrast to conventional drug formulations, this innovative drug
delivery system improves the stability of drugs within the body, delivers drugs specifically to
targeted cells, confines the therapeutic effect to the site of pathology thus keeping healthy
cells away from drug toxicity. Additionally, it can to some extent improve the solubility of
drugs and protect them from degradation and oxidation (Rajput and Agrawal, 2010;
Hossain et al., 2015).

Transferrin (Tf), as a naturally occurring protein in the body, has garnered significant
interest in the realms of drug targeting and delivery systems, owing to its non-toxic, non-
immunogenic, and biodegradable benefits. Simultaneously, the cell surface contains a
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significant quantity of transferrin receptors (TfR), which can achieve
site-specific targeting in conjunction with Tf. Cells leverage the
potential of the drug delivery system by transporting anticancer
drugs and therapeutic genes through the Tf pathway into malignant
proliferating cells that overexpress TfR (Kircheis et al., 2002).

This review provides a comprehensive summary of the structure,
function, and clinical applications of Tf, focusing on utilizing of Tf
and TfR in drug delivery systems, facilitating the transport of
therapeutic agents to malignant tissues or cells.

2 Transferrin occurrence

Tf is believed to have originated in the evolution of vertebrates or
early chordates, being one of the members of the Tf family. It was
first isolated by Schade and Caroline (1946). It is primarily
composed of hepatocytes (Beutler et al., 2000), with a molecular
weight approximately around 80 kDa. Functioning as a vital
chelator, it plays a crucial role in transporting iron within the
serum (Huebers and Finch, 1987). Other cells and tissues that
synthesize Tf include Sertoli cells (Lécureuil et al., 2004),
ependymal cells (Tsutsumi et al., 1989), oligodendroglial cells
(Bloch et al., 1985), and human breast cancer cell lines (Inoue
et al., 1993). The concentration of Tf in the bloodstream is roughly
35 μM (approximately 2.5 mg/mL) (Parkkinen et al., 2002), with
30% of it binding to iron ions in the plasma (Leibman and
Aisen, 1979).

The Tf family includes serum Tf, ovotransferrin (OTf),
lactoferrin (Lf), melanotransferrin (MTf), and the cellular
analogue, ferric ion binding protein (FBP). Tf in serum is found
in diverse bodily fluids, including plasma, bile, amniotic fluid,
cerebrospinal fluid, and milk (Qian et al., 2002). OTf is present
in the oviduct secretions of birds and reptiles (Williams et al., 1982).
Lf is present in milk, tears, and saliva (Metzboutigue et al., 1984).
MTf is present on the cell surface and is associated with growth and
differentiation (Sun et al., 1999). A recently discovered member of
the Tf family, MTf (also referred to as p97), has been recognized as a
crucial membrane protein in human malignant melanoma cells and
certain fetal tissues (Rose et al., 1986). The concentration of Tf in
plasma remains stable from birth, around 2–3 g/L, and it has a half-
life of 8 days in the body (Campenhout et al., 2003). Tf is closely
associated with human physiological health, and a concentration
below 0.1 g/L is linked to an elevated risk of infection, growth
retardation, and anemia (Hayashi et al., 1993).

3 Structural features

Tf is a monomeric glycoprotein composed of approximately
700 amino acids, playing a pivotal role in the body’s iron transport
and storage. Tf binds with iron ions to form diferric Tf, aids in
maintaining the body’s iron balance to meet its essential mineral
needs. In red blood cells, the transport and release of iron are also
associated with Tf, playing a vital role in the transport and
distribution of oxygen.

Tf exhibits high sequence homology across different species and
among various family members. For example, the homology
between serum Tf in rabbits and humans is approximately 78%,

while the homology between serum Tf and Lf is about 60% (Penezic
et al., 2017). The high degree of conservation in the primary
structure of Tf is dictated by its three-dimensional structure. Tf
gains stability from 19 intrachain disulfide bonds, and Tf is
safeguarded by three carbohydrate side chains, of which two
being N-linked (Asn-413 and Asn-611), and the third being
O-linked (Ser-32).

The polypeptide chain of the Tf molecule folds into two
evolutionarily related but functionally distinct lobes, namely, the
N-lobe (336 amino acids) and the C-lobe (343 amino acids). A brief
inter-lobe region connects these lobes through a short peptide
sequence. Each lobe comprises two structural domains, each
structural domain consisting of a series of α-helical domains that
cover the central β-sheet scaffold. The interactions between these
domains create a deep, hydrophilic cleft housing a binding site for
Fe3+. Both the N-lobe and C-lobe also contain four conserved amino
acid binding sites, consisting of 2 histidines, 1 aspartate, and
1 tyrosine. Tf without bound iron is termed apotransferrin (apo-
Tf), while Tf that has already bound to iron is called holotransferrin
(holo-Tf). At the metal binding site, Fe3+ is arranged in a distorted
octahedral geometry (MacGillivray et al., 1998). Additionally,
stability of Fe3+ is ensured by coordination with two oxygen
atoms derived from carbonate molecules (Hirose, 2000). The
surrounding amino acid residues are believed to enhance the
stabilization of the metal binding site, ensuring that the structural
domains adopt an open conformation crucial for the release of iron
ions (He et al., 2000). Each molecule of Tf has the capacity to
transport two trivalent iron ions (Fe3+) by interacting with TfR1 on
the cell surface (Figure 1). The created Fe3+-Tf-TfR1 complex
penetrates the cell via endocytosis mediated by membrane
proteins (Qian et al., 2002; AlSawaftah et al., 2021). Apart from
Fe3+, a variety of metal ions can also attach to the metal binding site.
Tf participates in the transportation of various metal ions (He et al.,
2000; Zhong et al., 2002).

4 Biological function

4.1 Tf-binds with iron

Iron is one of the essential metallic elements in life, playing a
crucial role in maintaining normal physiological activities.
Various physiological and biochemical processes in the body
are regulated by iron ions. Iron ions serve as cofactors for
ribonucleotide reductase, participating in DNA replication,
and are also engaged in the production of hemoglobin,
cytochromes, and various enzymes (Li and Qian, 2002)
(Figure 2). However, an excess of iron can generate free
radicals via the Fenton and Haber-Weiss reactions, promoting
oxidative stress and initiating lipid peroxidation, DNA damage,
and other consequences, ultimately resulting in oxidative damage
to tissues (Zhang et al., 2014; Kapitulnik, 2015). Both iron
deficiency and overload can impact overall health (Crawford
et al., 1998; Muckenthaler et al., 2017). The intricate
regulation of iron homeostasis in the body involves overseeing
the absorption, transport, utilization, and storage of iron. This
intricate regulatory network involves the interaction of various
proteins, with the most crucial one being Tf.
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The primary biological functions of Tf are associated with its
iron-binding properties. Tf not only transports iron ions in a form
that is both soluble and non-toxic to various parts of the body for cell
growth but also has the ability to remove free iron, providing a
protective effect on the organism (Elsayed et al., 2016). The main
route for iron ions to enter cells is through the interaction between
Tf and TfR1. Tf binds to Fe3+ to form the Fe3+-Tf complex, which
then gradually enters the cytoplasm by attaching to TfR1 situated on
the cell surface to form a complex. The binding and release of iron by
Tf are under the regulation of various factors, including pH,
temperature, chelating agents, and ion concentration. Studies
indicate that the stability of iron binding sites is maintained with
the involvement of various anions, such as chloride ions. Under
neutral conditions, chloride ions slow down the release of iron, while
under acidic conditions, chloride ions can accelerate the release of
iron. Adenosine triphosphate (ATP) can pump H+ ions into the cell
through a proton pump, reducing the pH to 5.5. This weakens the
binding between iron ions and Tf, thereby promoting the liberation
of iron ions (Paterson et al., 1984). Upon entering the cell, Fe3+

undergoes reduction to Fe2+ facilitated by the metal reductase Six-
Transmembrane Epithelial Antigen of the Prostate 3 (STEAP3), and

subsequently, it is transported to the cytoplasm. Within the
cytoplasm, a portion of Fe2+ participates in the biosynthesis of
specific target proteins, and concurrently, another portion is
sequestered in ferritin to avert the accumulation of excess free
iron ions, which could lead to oxidative stress. This stored iron
can be released when needed, undergoing degradation in lysosomes.
After releasing iron ions, Tf become capable to create a complex with
TfR1 and return to the cell surface, subsequently re-entering the
bloodstream. This cycle continues until it binds to iron ions again,
forming a complex, and the process repeats. Each Tf molecule can
complete this cycle approximately 100 times (Abdizadeh
et al., 2017).

Serum Tf is regarded as a component of the overall metal
transport system in the human body, it can uptake iron ions and
transport them to cells and tissues through the systemic circulation
(Baker and Morgan, 1969). In addition to iron, it can also be
involved in transporting various other metal ions, including
therapeutic metal ions (Savigni and Morgan, 1998),
radiodiagnostic metal ions, some toxic metal ions, as well as
other widespread metal ions such as Mn3+, Ga3+, Ti4+, and Hf4+

(Sun et al., 1999). Hemopexin exhibits a less pronounced role in iron

FIGURE 1
The cycle of cell iron uptake through the transferrin-transferrin receptor pathway. Differic transferrin (holo-Tf) binds to the TfR1 on the cell surface.
These complexes position themselves within clathrin-coated pits, and the invagination is initiated and acidified through the action of a proton pump
during endocytosis. During the acidification process of the endosome, iron is released from transferrin and transported out of endosomes through the
divalent metal transporter DMT1. The apo-transferrin (apo-Tf) and TfR1 complex is then recycled through exocytic vesicles back to the cell surface
and apo-transferrin is released into the circulation and re-used. Iron is stored as ferritin and hemosiderin. Tf, Transferrin; TfR1, Transferrin receptor 1;
DMT1, divalent metal transporter.
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uptake; instead, it might promote accelerated proliferation of tumor
cells by acting as an iron scavenger on the cell surface to hinder lipid
peroxidation (Kwok and Richardson, 2002).

4.2 Tf acts as an antimicrobial activity

The Tf protein exhibits antimicrobial activity. Studies have
found that the proliferation and invasion of various pathogenic
microorganisms depend on iron elements. Elevated levels of free
iron in the body foster the proliferation of pathogenic
microorganisms (Teehan et al., 2004). Inhibiting the uptake of
iron by pathogenic microorganisms is a primitive host defense
strategy. Through the utilization of Tf to sequester free iron, the
growth of diverse pathogenic microorganisms, such as Gram-

positive bacteria (Staphylococcus aureus), Gram-negative
bacteria (Pseudomonas aeruginosa), and fungi (Candida
albicans), can be hindered (Lin et al., 2014; Bruhn and
Spellberg, 2015).

In clinical settings, diseases that lead to elevated levels of free
iron, such as hereditary and acquired hemochromatosis, liver failure,
congenital heart surgery, and hematologic malignancies, usually
associate with a higher occurrence of bacterial infections (Beutler
et al., 2003). Research has revealed that apotransferrin can reduce
infections by sequestering free iron (von Bonsdorff et al., 2003). At
the same time, it can reduce the adhesive capabilities of both Gram-
negative and Gram-positive bacteria to surfaces (Ardehali et al.,
2003). OTf and Lf are considered primary antimicrobial agents.
They function by chelating iron ions necessary for microbial growth,
thereby controlling the availability of iron ions and inhibiting

FIGURE 2
The relationships between the absorption, excretion, storage, placental, and bone marrow transport of iron.
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microbial activity (Iyer and Lonnerdal, 1993; Lonnerdal and
Iyer, 1995).

4.3 Tf acts as growth factor and
cytoprotection

Tf is involved in various activities such as growth and
differentiation, including muscle growth (Shimooka et al., 1986),
embryonic development (Ohtsuka et al., 2001), cell mitosis
(Sirbasku et al., 1991), and angiogenic activities (Cancedda et al.,
1997). Research has found that differences in developmental stages
or physiological states can affect the regulatory function of Tf in cell
growth and development. Through intracerebral injection of lipo-Tf,
phenomenon of oligodendrocyte precursor cells undergo rapid
differentiation was observed in 2-7-day-old rats, whereas this
phenomenon was not observed in 10-day-old rats (García et al.,
2003). Similarly, Tf is linked to the proliferation of human colorectal
tumor cell lines. For the less differentiated HCT116 cells, Tf leads to
an increased binding of its epidermal growth factor (EGF) to its
receptor, while more differentiated colorectal cancer cell lines
exhibit the opposite effect (Zirvi, 1991; Yeoman et al., 1996). The
combination of iron with ferritin has been shown to impede
apoptosis in ovarian cancer cells. Signal molecules involved in
the apoptosis pathway (Myc, FasL, TNF-α, and TRAIL) might
have a pivotal role in regulating cell survival and death by
adjusting intracellular iron levels through the upregulation of
ferritin (Fassl et al., 2003). In addition, Tumor cells can restore
intracellular iron levels and prevent cell death by binding iron to
further ferritin. Ferritin, to some extent, can offer protection to
lymphohematopoietic cells and hepatocytes, shielding them from
damage caused by Fas-mediated cell death mechanisms (Lesnikov
et al., 2001).

The dual functions of Tf, acting both paracrinely and
autocrinely, have been demonstrated. Hypertrophic chondrocytes
have the capability to produce a substantial quantity of Tf, which can
be released into the surrounding environment through paracrine
secretion. This enables undifferentiated cells to interact with Tf

released by hypertrophic chondrocytes, utilizing TfR1 on their
surface (Gentili et al., 1994; Menter et al., 1995). Studies have
uncovered that when Tf binds to insulin-like growth factor
binding protein 3 (IGFBP-3), it loses its capacity to stimulate
bladder smooth muscle proliferation and induce apoptosis in
prostate cancer cells (Weinzimer et al., 2001). Tf is considered an
antimicrobial agent, inhibiting microbial antimicrobial activity by
chelating iron ions on one hand. On the other hand, irrespective of
its iron-binding properties, Tf functions as a growth factor,
participating in the modulation of immune and inflammatory
responses (Lonnerdal and Iyer, 1995).

5 Clinical applications of TF

The multiple actions of Tf can be exploited to produce a range of
potential therapeutic applications (Table 1).

5.1 Atransferrinemia

Atransferrinemia is an uncommon genetic disorder resulting
from irregularities in iron metabolism, and it is inherited as an
autosomal recessive trait (Hayashi et al., 1993; Beutler et al., 2000).
Cases of atransferrinemia are extremely rare, with fewer than
15 reported worldwide to date. This condition exhibits a unique
characteristic of being unrelated to race or gender prevalence, and it
predominantly manifests in individuals aged 1–2 years. The clinical
presentation includes severe microcytic anemia, and without
prompt treatment, there is a risk of stunted growth, serious
complications related to iron and, in extreme cases, can lead to
death. From a biochemical standpoint, there is a significant
deficiency in the levels of Tf in the serum. The shortage of serum
Tf results in the impairment of its iron clearance and transport
functions, causing profound iron-deficiency anemia in the body and
substantial iron overload in non-hematopoietic tissues.
Hypotransferrinemic (hpx/hpx) mice function as a model for
comprehending this disorder (Trenor et al., 2000). The severe

TABLE 1 Potential therapeutic applications of transferrin.

Potential therapeutic applications of transferrin

Pathophysiological
condition

Clinical
applications

Therapeutic options References

Transferrin levels deficiency Atransferrinemia Plasma transfusion Trombini et al. (2007)

Transferrin replacement therapy Beutler et al. (2000)

Iron chelators Adams and Barton (2011)

Free iron and/or iron overload Ischemia reperfusion injury Regulate the expression of transferrin to inhibit Fe2+ Gao et al. (1996), Perez et al.
(2009)

Use apo-Tf to clear free iron Hernandez et al. (1987)

Anti-oxidative Kaminski et al. (2002)

Growth and differentiation Tumor or cancer Targeted drug delivery via transferrin-transferrin receptor
pathway

Li and Qian (2002)

Promote cytotoxicity and proliferation of natural killer cells Okamoto et al. (1996)
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anemia observed in hpx/hpx mice and patients with hereditary
atransferrinemia indicates that when the Tf-Fe2+-transferrin
receptor 1 (TfR1) cycle pathway is unable to function properly, it
results in a reduction of iron entering erythroid precursors
(Bernstein, 1987).

The treatment of atransferrinemia can be carried out through
plasma transfusion. The suggested transfusion regimen includes
plasma transfusions every 2 weeks during the initial anemic stage
and every 4 weeks in the maintenance phase. The transfusion
volume is tailored according to the patient’s weight to attain a
post-transfusional Tf level of 50–60 mg/dL. Infusing lipoprotein-Tf
complexes can also be used to treat this condition. By administering
injections of 1–2 g of pure lipoprotein-Tf every 3–4 months over a
period of 4–7 years, it can reduce the impact of growth delay and
other associated effects of the disease (Hayashi et al., 1993).

5.2 Ischemia reperfusion injury

Ischemia-Reperfusion (IR) injury pertains to the clinical
syndrome in which, upon the restoration of blood flow after a
period of ischemia (lack of blood supply), cells in ischemic tissues
undergo more severe damage to their structure and metabolism
compared to the damage incurred during the ischemic phase. This
results in an exacerbation of tissue injury and a further deterioration
of organ function (Conrad et al., 2016). Diseases such as stroke
(Schaller and Graf, 2004), cardiovascular disorders (Wernly, 2004),
renal failure (Lien et al., 2003), and organ transplantation (Ohkohchi
et al., 1999) are all associated with IR injury (Kalogeris et al., 2012).
Iron ions, serving as crucial mediators in the electron transport
chain, play a key role in mitochondrial oxidation reactions and
oxygen transport. After tissue ischemia, mitochondrial dysfunction
results in the production of a substantial quantity of reactive oxygen
species, causing changes in the ion permeability of cell membranes.
Consequently, a substantial release of unstable iron ions occurs, and
the increased levels of free iron ions further catalyze the production
of free radicals. This cascade of events results in lipid peroxidation
and ferroptosis, exacerbating ischemic damage within the impacted
tissue (Stockwell et al., 2017; He et al., 2020).

Studies have uncovered differing degrees of increase in the levels
of iron ions, Tf, and TfR1 in the brains of individuals with ischemic
stroke (Ingrassia et al., 2019). Utilizing iron chelators to eliminate
iron demonstrates a protective effect against IR injury (De Vries
et al., 2004). Baicalin, as a natural inhibitor of ferroptosis, can
regulate the expression of Tf, inhibit Fe2+, and suppress lipid
peroxidation of cell membranes, thereby preventing cell death
(Yang et al., 2021). Further research has shown that baicalin can
also act as an iron chelator by forming iron-baicalin complexes. This
role helps regulate iron ion balance and inhibit the Fenton reaction
(Gao et al., 1996; Perez et al., 2009).

A potential therapeutic strategy involves utilizing apo-Tf to
eliminate free iron participating in redox reactions. In animal
models of IR injury, the intraperitoneal injection of apo-Tf has
been demonstrated to decrease the formation of circulating redox-
active iron and superoxide. This exerts a mitigating effect on renal IR
injury in mice. In an animal model of intestinal IR injury,
intravenous administration of apo-Tf can alleviate intestinal
vascular permeability (Hernandez et al., 1987).

5.3 Cancer therapy

Unrestrained cell division and evasion of the immune system to
avoid cell death are among the pivotal characteristics of tumor cells
(Hanahan and Weinberg, 2011). Numerous studies propose that
cancer cells necessitate a higher amount of iron than normal cells to
facilitate their rapid growth and proliferation. Cellular
carcinogenesis can disrupt iron metabolism, causing the
abnormal expression of iron-related proteins such as Tf within
tumor cells (Yu et al., 2017). The close association between iron
metabolism and the elimination of tumor cells, along with the
inhibition of tumor growth, have together positioned Tf as a
potential novel target for cancer treatment.

Studies have suggested that the lipoprotein Tf holds promise for
cancer treatment. The collaborative effect of Tf, insulin-like growth
factor-1 (IGF-1), and interleukin-2 (IL-2) can more efficiently
stimulate certain immune cell types, such as lymphokine-
activated killer cells (LAK) and natural killer cells (NK),
augmenting their cytotoxicity and proliferative capacities. This
contributes to a more efficient immune response against potential
threats. Furthermore, a dedicated cell growth medium containing
Tf, referred to as RDSF, has the capacity to stimulate the growth and
proliferation of LAK cells (Okamoto et al., 1996). The co-
administration of Tf and the antimalarial drug artemisinin (ART)
can enhance the drug resistance in small cell lung cancer (SCLC). In
vitro studies demonstrate that after Tf pre-treatment, ART is able to
eliminate SCLC cells at nanomolar concentrations (Sadava
et al., 2002).

6 Transferrin-transferrin
receptor system

TfR1 are ubiquitously found on the cell membrane surface and
constitute a transmembrane glycoprotein. It is created through the
cross-linking of two subunits by disulfide bonds, with each subunit
having a molecular weight of 90 kDa, resulting in a homodimeric
structure (Aisen, 2004). The gene encoding TfR1 is situated in the
q21-25 region of chromosome 3. It is mRNA expression is under the
regulation of iron, and its role encompasses facilitating the cellular
uptake of iron by binding with iron-loaded Tf (Gammella et al.,
2017). TfR1 preferentially binds to Tf molecules carrying two iron
ions, forming a Fe-Tf-TfR1 complex, which enters the cell through
endocytosis. During endocytosis, the complex is enveloped by
clathrin, forming an endocytic vesicle. Within the vesicle, proton
pumps utilize energy provided by ATP to pump H+ into the vesicle,
lowering its pH to 5.5 or below. This acidic environment induces a
conformational change in Tf, releasing iron ions into the cytoplasm.
The iron ions are then stored in the ferritin in their divalent form
(Gkouvatsos et al., 2012). Simultaneously, the Tf-TfR1 complex is
recycled to the cell surface via exocytosis. Subsequently, as the
extracellular fluid pH increases, the dissociation occurs between
Tf and TfR1. Tf returns to the bloodstream, mediating the next
round of transport. The entire cycling process takes only 10–20 min
(Hopkins and Trowbridge, 1983).

There are two recognized types of TfR, TfR1 and transferrin
receptor 2 (TfR2). Among these, TfR1, also referred to as CD71,
stands out as the predominant subtype. It is expressed in almost all
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cells of the human body. Its conformation and affinity for Tf can
undergo alterations depending on the body’s pH, playing a vital role
in facilitating the absorption of iron bound to Tf into the cells
(Kawabata et al., 1999). TfR2 is the second subtype of TfR1, and it
shares a similar structural composition with TfR1. TfR2 is frequently
found in hepatocytes and plays a role in overseeing and preserving
the absorption and distribution of iron ions in the body through the
modulation of hepcidin hormone levels. This helps maintain
dynamic balance in iron ion levels within the body (Kawabata
et al., 2000).

Research indicates that compared to normal cells, various cancer
cell lines such as pancreatic, colorectal, lung, and bladder cancers
exhibit significantly elevated levels of TfR1 (Ryschich et al., 2004;
Prutki et al., 2006). Moreover, the degree of TfR1 expression shows a
positive correlation with the malignancy of tumors. This is
presumably to fulfill the heightened demand for iron required by
cancer cells for their growth and proliferation (Singh et al., 2011).
Studies suggest that TfR1 has the capability to activate the NF-κB
signaling pathway through its interaction with IKK (Inhibitor of the
NF-κB Kinase). This interferes the balance between cell proliferation
and apoptosis, promoting tumor cell survival by inhibiting apoptosis
(Kenneth et al., 2013). Additionally, TfR1 can induce the generation
of reactive oxygen species by promoting mitochondrial respiration.

This oxidative stress can lead to DNAmutations, contributing to the
occurrence and metastasis of tumors (Daniels-Wells and Penichet,
2016). Diminishing the levels of TfR1 expression and suppressing
the mRNA expression of TfR1 can effectively hinder the
proliferation of tumor cells. Research indicates that TfR1 is
involved in cellular immune regulation. TfR1 is highly expressed
on the glomerular mesangium, and it plays a role in immune
regulation by binding with IgA in the glomerular mesangial cells.
This involvement in immune regulation extends to the processes of
apoptosis and proliferation in cells (Berthelot et al., 2012).

7 Transferrin/transferrin receptor
mediated drug delivery

One of the strategies to reduce the adverse effects of drugs and
enhance therapeutic efficiency is to specifically deliver the drugs to
target cells, for example, through methods such as nanoparticles
(NPs), liposomes, or targeted drug carriers (Table 2). Drug delivery
systems possess the potential to extend the circulation duration of
drugs in the body, enhance drug metabolism patterns, and regulate
the distribution of drugs within the body. Therefore, Drug delivery
systems mediated by ligand-receptor interactions have garnered

TABLE 2 Examples of transferrin-conjugated and -targeted nano-based drug delivery systems.

Direct conjugation of transferrin receptor to anticancer drugs

Conjugated compound Targeting moiety Study model References

Saporin Chimeric human TfR antibody genetically fused to
avidin (IgG3)

U266 myeloid/plasmacytoma lymphoblast
cell lines

Daniels et al. (2007)

Human Tf GL-15 human glioblastoma multiform cell
lines

Cimini et al. (2012)

Diphtheria toxin Anti-human TfR antibody (IgG1) M21 cell lines Trowbridge and Domingo (1981)

Human Tf (CRM-107) Phase I and II clinical trials Weaver and Laske (2003)

Doxorubicin Transferrin-conjugated biodegradable
polymersome

C6 cell line Pang et al. (2011)

Transferrin conjugated magnetic silica PLGA U87MG tumor-bearing mice Cui et al. (2013)

Cisplatin Covalently linked with gallium (Ga-Tf) Mcf-7 and HeLa human cervical cancer cell
lines

Head et al. (1997)

Tf-PEG-liposome MKN45P, tumor bearing mice Iinuma et al. (2002)

Paclitaxel Tf-conjugated nanoparticle PC3 human prostate cancer cell line Sahoo et al. (2004)

Delivery through the blood brain barrier for the treatment of brain glioma

Paclitaxel Tf-conjugated nanoparticles C6 rat glioma cell line Shah et al. (2009)

Resveratrol Lactoferrin C6 cell line Guo et al. (2013)

Docetaxel Tf-conjugated nanoparticles Male Sprague-Dawley rats inoculated with
C6 cell

Gan and Feng (2010), Guo et al.
(2013)

Transferrin-conjugated nanoparticles as contrast agents for imaging applications

Gadolinium-based contrast agent (Gd-
DTPA)

SiO2-coated quantum dots (QD) Male mice Korkusuz et al. (2012)

Gadolinium-based contrast agent
(Magnevist)

Tf-conjugated liposomes Athymic nude mice inoculated with PC-
3M-Luc cells

Korotcov et al. (2010)

Doxorubicin Tf-conjugated nanoparticles HeLa cell line Chen et al. (2012)
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significant attention (Vyas et al., 2001; Barratt, 2013). Natural
ligands and their receptors present in the human body not only
enable site-specific targeting but also offer advantages (Vyas and
Sihorkar, 2000). Tf and its receptor, serving as targeting ligands, can
deliver therapeutic drugs to malignant sites overexpressing the TfR1.
Drug delivery systems, as a novel therapeutic approach, have vast
prospects. Studies suggest that, in comparison to the development of
new drugs, the creation of innovative drug delivery systems offers
the benefits of a shorter development period and reduced costs
(Zhang et al., 2013) (Figure 3).

7.1 Direct conjugation of transferrin receptor
to anticancer drugs

Cancer has emerged as one of the primary causes of mortality
globally. Currently, traditional cancer treatment methods such as
surgical resection, chemotherapy, and radiation therapy have
drawbacks, including limited efficacy, susceptibility to drug
resistance, and significant toxic side effects (Xia et al., 2022).

Targeted therapy has the potential to extend drug circulation
time, reduce systemic toxicity, and precisely deliver therapeutic
compounds to the site of the disease. Therefore, it is of
significant importance to search for, develop, and utilize a stable
tumor marker for targeted therapy in the treatment of tumors.

TfR1 is widely expressed in various tissues and cells throughout
the human body, but its expression levels vary significantly based on
the cellular proliferation and metabolic conditions. Studies have
identified a high expression of TfR1 in numerous cancer cells,
including pancreatic cancer, colorectal cancer, and lung cancer,
in contrast to normal cells. The contrasting expression of
TfR1 between tumor cells and normal cells represents a
promising target for cancer therapy. Tf, antibodies, and nucleic
acid aptamers are all ligands for TfR1. Constructing a targeted drug
delivery system by loading chemotherapy drugs onto these ligands
can achieve targeted treatment of tumors while reducing damage to
normal cells. TfR1 is not only reusable, but the internalization cycle
of Tf-TfR1 pathway is rapid and efficient, averaging only 10 min per
cycle (Dautryvarsat et al., 1983). This allows for the rapid entry of
drugs into cells (Liu et al., 2013a), enabling a short-term increase in

FIGURE 3
Tf as a protein-based delivery system for oncological therapeutics and imaging agents. Tf can be loaded with different drugs, imaging agents,
liposomes, polymeric nanoparticles, inorganic nanoparticles and have intrinsic targeting capabilities toward the receptor TfR1, which is overexpressed in
many tumors. Tf, Transferrin; TfR1, Transferrin receptor 1.
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drug concentration within the cells to exert its therapeutic effects
(Chang et al., 2012; Nam et al., 2013). The Tf-TfR1 delivery system
enables site-specific delivery of various therapeutic metal ions,
drugs, proteins, and gene.

The covalently linked complex of Tf and doxorubicin (DOX)
exhibits cytotoxic effects in various cancer cell lines, including breast
cancer, cervical cancer, and liver cancer cell lines (Faulk et al., 1990;
Singh et al., 1998). DOX as a common chemotherapy drug, is widely
used in the treatment of malignant tumors such as lymphoma and
leukemia. However, research has revealed that DOX lacks targeted
effects and exhibits dose and time dependence. It can accumulate
significantly in the heart, causing serious damage to the cardiac
tissue (Carvalho et al., 2014). NPs are widely utilized in cancer
treatment due to their excellent internalization, high stability, large
drug-carrying capacity, and reduced accumulation in the liver
(Chompoosor et al., 2010). Loading DOX onto NPs and then
coupling it with Tf, leveraging the recognition of TfR1, allows for
the specific transport of DOX to tumor cells. This targeted delivery
approach enhances the therapeutic effectiveness of DOX in
oncological therapy (Szwed et al., 2014). Moreover, by surface
modification of DOX liposomes with Tf and folic acid, it
effectively inhibits tumor growth, enhances mouse survival rates,
and minimizes toxic side effects (Gao et al., 2013).

β-elemene is an efficient and low-toxicity anti-cancer active
ingredient extracted and isolated from Curcuma wenyujin.
However, β-elemene has drawbacks such as strong
hydrophobicity and low bioavailability. Although the
development of oral formulations and injectable solutions has
improved its water solubility and bioavailability, clinical
applications still face challenges like significant vein irritation,
weak tumor-targeting capability, and insufficient therapeutic
efficacy (Zhai et al., 2018). The study found that designing β-
elemene as a Tf-modified microemulsion, which specifically binds
to Tf receptors on lung cancer cells, demonstrated enhanced
cytotoxicity and apoptosis. In vivo experiments, it was proven to
achieve an inhibition rate of 80% on tumors, prolonging the survival
period of mice, and exhibiting low systemic toxicity (Zhang
et al., 2019).

The primary function of Tf lies in its ability to transport iron, a
crucial regulator of cellular growth. Studies indicate that the
presence of intracellular iron can activate ART (AS), leading to
potent cytotoxic effects on tumor cells both in vivo and in vitro.
Consequently, the research team led by Hou chose to anchor Tf as a
targeting molecule onto the surface of copper sulfide nanoparticles,
utilizing it for the delivery of ART. This system exhibits selective
targeting of tumor cells, absorbed by breast cancer cells through Tf-
mediated endocytosis. Simultaneously, it transports ART and iron
ions to the tumor, thereby enhancing its anti-tumor activity (Hou
et al., 2017). The observed efficiency of Tf in drug transport has been
utilized by conjugating Tf with diphtheria toxin, resulting in
cytotoxic effects in brain cancer cells. The administration of
diphtheria toxin conjugated with Tf (TF-CRM107) has been
injected into the tumors of patients with malignant brain tumors
in clinical settings. Positive anti-tumor effects have been noted in
patients with malignant brain tumors that exhibit resistance to
conventional treatments (Wang et al., 2000; Weaver and Laske,
2003). Carmustine (BCNU) is the most commonly used
chemotherapy drug for brain gliomas, but severe side effects

occur when administered intravenously. The study found that the
preparation of a novel TF-BCNU-PLGA nanoparticle system by
modifying PLGA carriers with Tf protein can exert a stronger
inhibitory effect on glioma cells (Chunsheng et al., 2007).

The chimeric human-mouse IgG3 biotin-fused antibody
(ch128.1Av) possesses the ability to specifically recognize TfR1
(Daniels et al., 2007), reducing the expression levels of TfR1.
When conjugated with saponin, this antibody can target and
treat malignant B-cell lymphoma while minimizing toxic side
effects (Daniels-Wells et al., 2013). The TfR1 monoclonal human
anti-human IgG1 antibody, when conjugated with a radioactive
substance, is capable of reducing the volume of pancreatic cancer
tumors and extending the survival period of mice (Daniels-Wells
et al., 2013; Sugyo et al., 2015). Tf protein, when dual-liganded with
temozolomide, can be used for the treatment of glioblastoma
(Kumar et al., 2007; Li et al., 2012). Similarly, other
chemotherapy drugs such as cisplatin, paclitaxel, and the like,
when covalently linked with Tf, can enhance the sensitivity of
tumor cells.

7.2 Transferrin receptor mediated drug
delivery through the blood brain barrier

Central nervous system (CNS) diseases encompass
neurodegenerative disorders and brain tumors, such as
Parkinson’s disease, Alzheimer’s disease, and gliomas. Over
1.5 billion people worldwide are affected by CNS diseases (Vieira
and Gamarra, 2016). The occurrence and fatality rates of CNS
disorders are increasing, propelled by the aging population and
the accelerated pace of life. These conditions typically have a
prolonged course and slow treatment progression. In the coming
decades, more people are expected to be affected by Alzheimer’s,
Parkinson’s, and cerebrovascular diseases.

Currently, the primary treatment methods for CNS diseases
include systemic administration, intracranial injections, and brain
implants. However, these approaches face limitations due to a lack of
clear brain targeting, thereby restricting their effectiveness. The
blood brain barrier (BBB), a dynamic physical barrier, is
positioned between the bloodstream and brain tissue. It consists
of tightly linked brain capillary endothelial cells (BCECs), pericytes,
astrocytes, and neurons, creating a compact endothelial cell
membrane (Bhowmik et al., 2015; Posadas et al., 2016). The BBB
serves as a functional barrier stabilizing the internal environment of
the CNS. It exhibits extremely stringent selectivity and
restrictiveness for molecules entering the brain. While facilitating
the entry of nutrients, it prevents harmful substances in the
bloodstream from accessing the brain. The BBB additionally
restricts the interchange of ions and fluids within the brain,
virtually preventing 98% of small molecule drugs and nearly all
large molecule drugs from entering brain tissues (Garg et al., 2015).
The BBB acts as an obstacle to the intracranial delivery of
therapeutic drugs for the nervous system. The BBB obstructs the
delivery of therapeutic drugs to the brain for intracranial diseases,
impeding the entry of many drugs. Even if a small quantity manages
to enter, it frequently falls short of achieving effective therapeutic
concentrations within the brain (Jones and Shusta, 2007). Therefore,
the BBB has become a hurdle for the transport of therapeutic drugs
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to the brain in neurological treatments. Developing successful
strategies to bypass the BBB is crucial for obtaining tools to
treat the CNS.

In recent years, there has been a focus on biological therapies for
CNS-related diseases. Several pharmaceutical and biotechnology
companies have developed various antibody variants targeting β-
amyloid plaques associated with Alzheimer’s disease, such as
solanezumab (Doody et al., 2014), gantenerumab (Ostrowitzki
et al., 2017), crenezumab (Cummings et al., 2018), and those
targeting α-synuclein associated with Parkinson’s disease, such as
prasinezumab (Jankovic et al., 2018) and BIIB054 (NCT03318523).
These antibodies have consistently demonstrated therapeutic
efficacy in preclinical models (Sevigny et al., 2016). However,
after entering the third clinical trial, all were discontinued largely
due to futility (Salloway et al., 2014; Logovinsky et al., 2016). The
commonality among all failed clinical trials is that the accumulation
of therapeutic antibodies in the brain relies on the passive
mechanism of uptake across the blood-brain barrier.

Receptor-mediated transport is currently one of the most
mature methods for drug delivery to the brain. Active targeted
drug delivery has become a hot topic in modern research on brain-
targeted drug delivery systems, leveraging specific receptors and
transport mechanisms within the BBB. Research has found that, in
contrast to endothelial cells in other organs, the BBB surface has
endogenous antibodies capable of specific recognition, such as the
common TfR. The selective expression of the TfR in brain capillaries
may lead to the preferential accumulation of TfR-targeted
substances in the brain (Friden et al., 1991). A promising
strategy involves targeting CNS active drugs to interact with
carrier and receptor proteins associated with the BBB. Research
has identified one targeting approach that focuses on the TfR
expressed by BCECs (Johnsen and Moos, 2016). The study found
that attaching larger nanocarriers to different TfR-targeting
molecules can increase the brain concentration of the
encapsulated drug cargo (Zhang et al., 2004). Multiple studies
have indicated that endogenous Tf, as a targeting molecule for
liposome transport, has various therapeutic effects, including
improvement after stroke and brain injury (Omori et al., 2003;
Reddy et al., 2006), treatment of glioblastoma multiforme (GBM)
tumors (Jhaveri et al., 2018; Lakkadwala and Singh, 2019), and gene
silencing after siRNA delivery into the brain (Cardoso et al., 2010).

Rosemary acid, as a natural compound, possesses various
pharmacological effects such as anti-inflammatory, antioxidant,
and anticancer properties (Baek and Lee, 2016). Research has
found that co-loading rosmarinic acid with solid lipidnano
particles (SLN) and surface modification with Tf on SLN can
enhance targeting to blood-brain barrier cells. This approach may
reduce the toxicity of the drug to the blood-brain barrier, while also
increasing antioxidant stress capabilities (Kuo et al., 2020).

Antibodies face limitations such as poor stability, strong
immunogenicity, and large molecular size, which restrict their
application. Peptide ligands are gaining more popularity as they
can circumvent these issues. T7 is a peptide ligand exhibiting a
strong affinity for TfR1. Using T7 as an effective brain-targeting
ligand, targeted molecular modification of gene-loaded dendrimeric
polymers can achieve gene therapy for brain tumors, significantly
enhancing gene expression within the brain (Kuang et al., 2013).
Research suggests that the T7 peptide can enhance the accumulation

of shRNA in the brain, thereby mediating the downregulation of
vascular endothelial growth factor (VEGF), with the aim of treating
GBM (Kuang et al., 2016). Using T7 peptide-functionalized
polyethylene glycol (PEG) -PLGA micelles, we constructed
micelles conjugated with T7 peptide and loaded with BCNU.
These micelles can selectively bind to the Tf overexpressed on
the blood-brain barrier and glioma cells, primarily concentrating
in the glioma while showing minimal accumulation in major organs
(Bi et al., 2016; Wei et al., 2016). To enhance the performance of the
targeted peptide, researchers developed a red blood cell membrane-
coated solid lipid nanoparticle (RBCSLN). RBSCLN, based on
natural lipid solid lipid NPs, was formed by wrapping
erythrocyte membranes modified with T7 peptide to bind
TfR1 and cross the BBB. In vivo studies demonstrated that this
innovative design resulted in a 50% reduction in tumor growth (Fu
et al., 2019). Research has revealed that T7 peptide-modified
liposomes can serve as carriers for delivering HER2 inhibitors,
actively targeting breast cancer tumors while concurrently
reducing toxicity to normal tissues (Zhang et al., 2021).
Simultaneously, T7 peptide-modified polymers exhibit efficient
cellular uptake capabilities in breast cancer MCF-7 cells, along
with rapid escape from endosomes/lysosomes (Gao et al., 2014).

7.3 Transferrin-conjugated nanoparticles as
contrast agents for imaging applications

The progress in imaging technology carries substantial
implications for the identification, detection, and treatment of
diseases, enabling a relatively non-invasive, quantitative, and
timely visualization of tissues, morphology, and function.
Imaging requires a high level of sensitivity and specificity to
unveil physiological and pathological changes at the cellular level
(Jonas and Gutowsky, 1968). Magnetic Resonance Imaging (MRI),
relying on the physical phenomenon of nuclear magnetic resonance,
has become a commonly employed diagnostic method for
conditions such as tumor detection, leveraging its high soft tissue
resolution and non-ionizing characteristics. In 1990, precise
modification of ultrasmall superparamagnetic iron oxide (USPIO)
was accomplished by employing arabic gum (AG), facilitating its
capture by sialic acid glycoprotein receptors on the surface of
hepatocellular carcinoma cells. This enhanced the targeting of
contrast agents to the liver, facilitating weighted imaging for liver
cancer (Reimer et al., 1990). While MRI is widely utilized in clinical
settings, it has been observed that some tissues exhibit minimal
differences in magnetic resonance signal intensity. This challenge
makes it difficult to distinguish between lesions and normal tissue on
the images. Additionally, there are limitations such as short imaging
times, rapid diffusion, lack of specificity, and the occurrence of
adverse reactions in patients, which further restrict its usage
(McAteer and Choudhury, 2009). The development of low-cost,
minimally toxic, and highly functional novel contrast agents is a
current research hotspot.

The inability to penetrate the blood-brain barrier is currently
one of the limitations of clinically relevant contrast agents. Tf,
reported as a surface modifier for iron oxide, can prolong the
circulation time of materials in the bloodstream by modifying
iron oxide. This modification enables multimodal imaging,
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targeted delivery to cancer cells, increased accumulation of contrast
agents in target organs, and responsive release of contrast agents
(Liu et al., 2013b; Zhi et al., 2020). Research on Tf-targeted
nanocontrast agents primarily focuses on improving the precision
of detection for small tumors and metastatic tumors. The primary
emphasis lies in the detection of malignant tumors in the brain,
aiming to enhance accuracy in this challenging context (Korotcov
et al., 2010). Research has revealed that administering
superparamagnetic iron oxide NPs to mice with C6 glioma can
illustrate the benefits of targeted tumor cell delivery using Tf in
comparison to non-targeted controls. Compared to non-targeted
formulations, the signal intensity variation is more pronounced in
mice with C6 glioma when Tf-targeted NPs are administered.
Simultaneously, in vitro studies have also shown that this
nanoparticle formulation increases the cellular uptake of contrast
agents, corroborating research findings on cellular uptake and signal
enhancement. Compared to non-targeted formulations, the signal
intensity variation is more pronounced in mice with C6 glioma
when Tf-targeted NPs are administered (Korkusuz et al., 2013). The
current limitations of clinically relevant contrast agents include their
inability to penetrate the BBB. The study found that, compared to
nano carriers lacking Tf, Tf-bound NPs exhibit significant contrast
enhancement in MRI within the brain (Anthony et al., 2011).

In recent years, research has found that positron emission
tomography (PET) ligands based on TfR antibodies can be
successfully used for brain imaging. The amyloid β (Ab) antibody
mAb158, when radiolabeled and conjugated to a TfR antibody,
serves as a PET ligand for the diagnosis and evaluation of Ab. The
study found that PET imaging using this ligand in Alzheimer’s
mouse models clearly displays Ab regions in the brain. The PET
signal increases with the age of the subjects and correlates closely
with Ab levels in the brain (Sehlin et al., 2016).

8 Challenges and future directions for
current Tf-TfR1 drug delivery system

The targeted delivery of drugs through Tf-TfR1 drug delivery
systems is an emerging alternative for cancer treatment. This drug
delivery system has several advantages, including reducing systemic
drug distribution, achieving high drug concentrations at the lesion,
and realizing synergistic toxicity towards tumor cells. Despite such
promising prospects, current drug delivery methods for cancer still
face numerous limitations and challenges.

The inherent sensitivity of Tf to pH and enzymatic degradation
imposes limitations on the drug delivery systems it mediates. This
prompts the modification of Tf or the design and study of more
stable analogs and new ligands to enhance binding affinity, prolong
the half-life of drug circulation, and improve precise targeting of
specific cells or tissues. After TfR is internalized, the endocytic
vesicle enters an endosomal compartment, and during subsequent
acidification, the decreased pH leads to a reduction in the affinity of
Tf for iron, thereby inducing the release of iron (Skjorringe et al.,
2015). This suggests that, for drugs binding to Tf, designing a pH-
sensitive drug delivery system may be a relevant strategy. However,
it is important to note that the impact of decreased pH on TfR goes
beyond iron release. Crystal structure studies of TfR indicate
significant conformational changes in the receptor protein

structure during pH reduction. This may affect the binding of
antibodies or other ligands to these locations (Steere et al., 2012).

Through pulse-chase experiments on a panel of different TfR
antibodies using an in vitro model of the blood-brain barrier, it was
observed that, despite having the same affinity, the efficiency and
mode of crossing the blood-brain barrier varied among antibodies
(Sade et al., 2014). This phenomenon was attributed to differences in
the pH-sensitivity of the binding mode. The pH-insensitive variant
exhibited strong binding and high uptake but was directed for
degradation during intracellular sorting. In contrast, the pH-
sensitive variant was associated with late endosomes and showed
a higher degree of transcytosis. Therefore, by altering the ligand’s
pH sensitivity, activation during endosomal acidification can be
achieved, directing subsequent intracellular sorting toward
transcytosis rather than degradation. One approach to
modulating ligand pH sensitivity is to target it to regions of the
TfR protein known to undergo conformational changes during
endosomal acidification (Kim et al., 2016). pH-sensitive single-
chain variable fragments were also designed as a feature of
nanocarrier design, enabling nanoparticle release from the
receptor-ligand complex and inducing transcytosis with
subsequent distribution within the brain parenchyma (Clark and
Davis, 2015).

Additionally, research has identified another significant
limitation—the inability to efficiently bind a large quantity of
therapeutic compounds with Tf (Karagiannis et al., 2006). This
hinders the delivery of high-concentration drugs to target cells
within the endocytic cycle mediated by Tf, consequently
diminishing the intensity and efficiency of drug delivery. The
inherent characteristics of tumors, such as complexity and
heterogeneity, reduce the delivery efficiency of Tf-mediated drug
delivery systems. Poor blood flow, stromal cell barriers, and dense
extracellular matrix create a complex tumor microenvironment
(TME) that interferes with tissue penetration of drug delivery
systems, resulting in reduced delivery efficiency. Targeted drugs
need to be covalently linked to nano-carriers to achieve specific
targeting. There have been recent advancements in the design and
development of nanoparticle. Nanocarriers generally exhibit good
universality, with advantages such as high surface area, excellent
biocompatibility, and ease of modification and encapsulation
(Riccardi et al., 2021). The same nanocarrier can carry drugs of
different properties by introducing them onto the surface or inside
the nanocarrier through encapsulation, covalent binding, or physical
adsorption (Rabiei et al., 2020). Therefore, by rationally designing
nanocarriers, it is possible to overcome various shortcomings
associated with direct drug administration, such as low brain
penetration efficiency, poor targeting, high biological toxicity, and
large drug doses (Teleanu et al., 2019). However, the translation
from theoretical and laboratory research to clinically relevant drugs
still face numerous limitations.

The safety and side effects of nanomaterials still require further
investigation. The impact of the surface properties, particle size, and
host material of nano-carriers on crossing the blood-brain barrier
needs to be further assessed. Furthermore, the degradation and
biocompatibility of nano-carriers are also research priorities that
require significant attention. Many nano-materials are toxic to
tissues, posing a risk of triggering the immune system. Moreover,
since most targeted drugs aim at actively treating cancer, the
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addition of nano-materials increases the complexity of formulations,
leading to elevated risks of toxicity and immunogenicity, while also
raising production costs (Yusuf et al., 2023). When administered
systemically, NPs are prone to be enveloped by serum albumin,
immunoglobulins, and other blood components. This encapsulation
may result in the substantial accumulation of NPs in the liver and
spleen, with only a small fraction of the drugs actually reaching the
tumor (Yan et al., 2005). To address this issue, studies have found
that pairing with PEG during the preparation of NPs can prevent
immune system detection and successfully avoid premature
opsonization. PEG can also inhibit the binding of plasma
proteins to the surface of NPs, thereby extending the circulation
time of NPs in the body and enhancing their chances of reaching the
disease site (Jain and Jain, 2008; Noble et al., 2014; Ramalho
et al., 2022).

BBB limiting the effective transport of therapeutic drugs to the
CNS. Moreover, the efficiency of brain-targeted delivery is low, and
after intravenous administration, drugs are easily phagocytosed by
the reticuloendothelial system, preventing the attainment of effective
therapeutic drug concentrations in the brain, leading to suboptimal
treatment efficacy.

Intranasal (IN) drug delivery, as a method for administering
therapeutic agents for various medical conditions, has been
extensively researched. Studies have found that IN drug
delivery can bypass the blood-brain barrier, directly target the
brain, and treat CNS disorders. The nasal route offers several
advantages in the context of drug delivery for the treatment of
glioblastoma, as it provides relatively easy access to the target area.
The highly vascularized structure facilitates the absorption of
drugs into the bloodstream, and it allows for lower medication
doses by circumventing hepatic metabolism (Morales and Mousa,
2022; Wu et al., 2023). Research has found that IN delivery
of liposomes loaded with monosialotetrahexosylganglioside
(ganglioside GM1) can reach the tumor site through the
lymphatic system. This delivery is accompanied by the use of
near-infrared light (NIR) for photostimulation of lymphatic
vessels, generating reactive oxygen species (ROS) and
improving the anti-cancer effects (Semyachkina-Glushkovskaya
et al., 2023). Another method to facilitate the transport of
therapeutic agents across the blood-brain barrier is through the
use of focused ultrasound (FUS). Research has found that the
blood-brain barrier can be locally and temporarily disrupted by
combining low-intensity focused ultrasound (LIFU) with
microbubbles (Mitusova et al., 2022; Ramalho et al., 2022). Lin
et al. (2016) utilized low-intensity focused ultrasound (LIFU) to
induce the opening of the blood-brain barrier, allowing DOX-
loaded cationic liposomes to be delivered to gliomas. This
approach inhibited tumor growth while reducing side effects.
The efficacy of this system was also confirmed in a murine
model of resistant gliomas (Papachristodoulou et al., 2019). In
recent years, TfR-targeting peptides have shown a trend as
alternatives to antibodies due to their advantages of binding to
TfR without competing with plasma Tf. The smaller size of TfR-
targeting peptides provides an advantage over conventional
antibodies and Tf molecules in traversing the blood-brain
barrier (Sachdeva et al., 2019; Li et al., 2023). Therefore,
surface modification of NPs with TfR-targeting peptides can
optimize the performance of NPs, maintaining high receptor

specificity and enhancing the precision of targeted delivery
(Lakkadwala et al., 2019).

9 Conclusion

Iron homeostasis imbalance can lead to various diseases,
including cardiovascular diseases, endocrine disorders, malignant
tumors, etc., due to oxidative stress and endothelial cell damage.
Targeting proteins associated with abnormal iron metabolism is
essential for the management of a range of health conditions. The
exploration of Tf has been ongoing since 1946, and to this day, our
understanding of Tf has become more comprehensive. This includes
its discovery, evolution, encoding, gene regulation, spatial
configuration, iron ion transport, and the binding of TfR1.
Subsequently, the biological functions of Tf and its applications in
clinical therapy have further deepened the foundational research on
this protein. Simultaneously, a potential therapeutic strategy has been
recognized: utilizing Tf to sequester free iron, thereby delivering drugs
into rapidly growing cells, activating the body’s immune cells, and
preventing cell apoptosis. Research has found that Tf, as a protein
abundant in plasma, is an ideal candidate for purification from plasma
due to its crucial role in transporting iron and regulating iron
metabolism in the body. The recombinant forms of Tf can be
constructed by altering its metal binding sites or inserting peptide
sequences, from its original spatial structure. Through this approach,
it is possible to tailor drug delivery systems, offering the potential for
designing more effective drug delivery systems. At the same time, the
amalgamation of Tf with nanotechnology has catalyzed the creation of
numerous innovative drugs and enhanced formulations, showcasing
exceptional therapeutic effects.

Compared to traditional treatment methods, novel drug delivery
systems exhibit excellent biocompatibility, enhancing drug stability
while reducing toxic side effects. The targeting capability of drug
delivery systems stands as a pivotal factor contributing to their
extensive application prospects and clinical value. By designing
delivery systems with specificity, precise transport of drugs or
therapeutic genes to the site of pathology can be achieved.

This reduces toxic side effects on non-target tissues, and
enhances treatment efficacy. This approach not only elevates
local drug concentrations but also aids in minimizing side effects,
thereby enhancing the overall quality of life for patients. However,
creating drug delivery systems with substantial drug loading, non-
toxicity, and high efficiency poses a notable challenge in design and
synthesis. The continued advancement of drug delivery systems is
poised to exert a profound influence on the realm of human
healthcare. To achieve practical clinical applications, Tf stands as
an ideal candidate molecule. Continuing in-depth and
comprehensive research and development of Tf, along with its
drug delivery systems, will provide more insights for clinical
applications, as well as more improved therapeutic solutions for
clinical treatment.
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