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Background: Head and neck squamous cell carcinoma (HNSCC), an extremely
aggressive tumor, is often associated with poor outcomes. The standard
anatomy-based tumor–node–metastasis staging system does not satisfy the
requirements for screening treatment-sensitive patients. Thus, an ideal biomarker
leading to precise screening and treatment of HNSCC is urgently needed.

Methods: Ten machine learning algorithms—Lasso, Ridge, stepwise Cox,
CoxBoost, elastic network (Enet), partial least squares regression for Cox
(plsRcox), random survival forest (RSF), generalized boosted regression
modelling (GBM), supervised principal components (SuperPC), and survival
support vector machine (survival-SVM)—as well as 85 algorithm combinations
were applied to construct and identify a consensus immune-derived gene
signature (CIDGS).

Results: Based on the expression profiles of three cohorts comprising
719 patients with HNSCC, we identified 236 consensus prognostic genes,
which were then filtered into a CIDGS, using the 10 machine learning
algorithms and 85 algorithm combinations. The results of a study involving a
training cohort, two testing cohorts, and a meta-cohort consistently
demonstrated that CIDGS was capable of accurately predicting prognoses for
HNSCC. Incorporation of several core clinical features and 51 previously reported
signatures, enhanced the predictive capacity of the CIDGS to a level which was
markedly superior to that of other signatures. Notably, patients with low CIDGS
displayed fewer genomic alterations and higher immune cell infiltrate levels, as
well as increased sensitivity to immunotherapy and other therapeutic agents, in
addition to receiving better prognoses. The survival times of HNSCC patients with
high CIDGS, in particular, were shorter. Moreover, CIDGS enabled accurate
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stratification of the response to immunotherapy and prognoses for bladder cancer.
Niclosamide and ruxolitinib showed potential as therapeutic agents in HNSCC
patients with high CIDGS.

Conclusion: CIDGS may be used for stratifying risks as well as for predicting the
outcome of patients with HNSCC in a clinical setting.

KEYWORDS

biomarker, immunotherapy, prognosis, head and neck squamous cell carcinoma, a
machine learning, consensus immune-derived gene signature

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the eighth
most prevalent carcinoma worldwide (Sung et al., 2021). Given its
unique anatomical location and lack of available screening strategies
for early detection, HNSCCs are mostly unresectable or found early
metastasis at diagnosis (Bonartsev et al., 2022). Treatment
approaches for HNSCC are typically multimodal and
multidisciplinary and include surgical resection, radiation, or
chemotherapy combined with radiation (Johnson et al., 2020).
Cetuximab is approved for use in either combination therapy or
as monotherapy for unresectable HNSCCs (Vincenzi et al., 2010).
Notably, the overall 5-year survival rate of HNSCCs has risen from
55% to 66% (Pulte and Brenner, 2010); however, overall treatment
outcomes remain unsatisfactory. More recently, immunotherapy
has come to be considered as an effective therapeutic option for most
solid tumors (Billan et al., 2020). Since the first results of clinical
trials aimed at immune checkpoint inhibitors (ICIs) were published
in 2016 (Leemans et al., 2018), treatment of HNSCC has shifted to
pembrolizumab or nivolumab, which are recommended as first-line
treatments for locally advanced, recurrent, or metastatic HNSCCs
(Ferris et al., 2016; Seiwert et al., 2016; Burtness et al., 2019).
However, only 10%–20% of patients respond to these ICIs (Ferris
et al., 2016; Seiwert et al., 2016). Thus, better clinical management as
well as therapeutic approaches able to overcome the limitations of
current targeted therapies and improve HNSCC prognosis are
urgently needed.

The tumor–node–metastasis staging system is widely used to
evaluate the clinical stage of cancers. However, HNSCCs are
remarkably inter- and intra-tumorally heterogeneous owing to
their complex anatomical structure, diverse etiologies, and
inherent molecular changes that drive carcinogenesis. Hence, this
traditional staging system is largely ineffective against HNSCCs and
prevents clinicians from providing optimal treatment for patients
with HNSCC, thereby leading to latent over-or-under treatment.
The development of high-throughput sequencing has enabled
molecular biomarkers, such as EGFR, TP53, CDKN2A, CCND1,
and PTEN, to be identified as druggable genes (Leemans et al., 2018).
However, small-molecule inhibitors have been effective only against
some HNSCCs. Moreover, the use of mRNA or non-coding RNA
expression in specific pathways (e.g., metabolic reprogramming,
epigenetic modification, and immunity) as molecular biomarkers
remains scant. In addition, the application of multigene signatures in
clinical practice is affected by important limitations, such as a dearth
of appropriate modeling methods and a lack of strict validation via
large multicenter cohorts. Therefore, identification of reliable
molecular biomarkers that may help optimize drug therapy

aimed at HNSCC remains crucial. To overcome these issues,
85 machine-learning algorithm combinations were used to assess
the clinical value of mRNAs in HNSCCs and to construct a
consensus immune-derived gene signature (CIDGS). This CIDGS
was tested on 722 patients with HNSCC from several independent
datasets. This study is expected to provide a new basis for predicting
the outcomes and enhancing the treatment decision process
for HNSCCs.

Methods

Review of datasets

The expression profiles, clinical characteristics and follow-up
information pertaining to HNSCCs were acquired from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
datasets. We enrolled 719 patients from three cohorts: TCGA-
HNSC (n = 519), GSE41613 (n = 97), and GSE42743 (n = 103).
Additionally, the IMvigor210 cohort (n = 298) and the
GSE78220 cohort (n = 28) were incorporated into the validation
analysis (Hugo et al., 2016; Mariathasan et al., 2018). The detailed
information of five included cohorts were summarized in
Supplementary Table S1. RNA-sequencing data from the TCGA-
HNSC, IMvigor210, and GSE78220 cohorts were transformed using
log-2 transformation. All data from the Gene Expression Omnibus
database were obtained using the GeneChip Human Genome
U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA,
United States). The collected data were preprocessed by the
robust multiarray averaging (RMA) algorithm implemented in
the “affy” package (Irizarry et al., 2003).

Immune infiltration and consensus
clustering estimation

The “GSVA” function (Charoentong et al., 2017) was applied for
single-sample gene set enrichment analysis (ssGSEA) as well as for
detecting the levels and biologic functions of infiltration immune
cells in the training cohort (TCGA-HNSC). Based on the infiltration
levels of immune cells in tumor samples and immune functions,
resulting from ssGSEA, the “ConsensusCluster” package was used to
perform a resampling-based method termed consensus clustering
via K-means algorithms in order to investigate immune patterns
(Wilkerson and Hayes, 2010). Moreover, the cumulative
distribution function curves were synthetically constructed to
determine the best cluster that could be utilized to divide into
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“immune-cold” and “immune-hot” categories (Senbabaoglu et al.,
2014). Eight algorithms—CIBERSORT-abs, CIBERSORT,
quanTIseq, ESTIMATE, MCPcounter, TIMER, EPIC, and
xCELL—were employed to determine the robustness and
authenticity of ssGSEA and consensus clustering results.

Weighted correlation network
analysis (WGCNA)

The co-expressed gene networks in the TCGA-HNSC cohort
were constructed using the “WGCNA” function (Langfelder and
Horvath, 2008). The standard for a scale-free network was
defined by the best threshold β. A dynamic tree-cutting
process was used to determine mRNA profiles and explore the
correlation between immune them and clusters. The mRNA
module with the most correlation was used for the follow-
up analysis.

Machine learning-derived CIDGS

To construct a promising CIDGS, gene expression profiles were
converted into z-scores to strengthen comparability among different
samples (Liu et al., 2022a; Xu et al., 2022). The procedure which was
followed to generate signatures was as follows:

(1) Kaplan-Meier analysis was applied to identify prognostic
genes in the TCGA-HNSC cohort.

(2) Ten machine learning algorithms—supervised principal
components (SuperPC), Lasso, partial least squares
regression for Cox (plsRcox), Ridge, stepwise Cox, random
survival forest (RSF), survival support vector machine
(survival-SVM), CoxBoost, elastic network (Enet), and
generalized boosted regression modelling (GBM)—were
applied. Briefly, high-throughput calculations were
performed to determine the suitable signature. An RSF
algorithm was performed using the “randomForestSRC”
package. In particular, all pairs (ntree and mtry), which are
pivotal RSF parameters, were defined as the number of trees
in the forest and variables for splitting at each node,
respectively. Moreover, a 10-fold cross-validation was used
for a grid search on all pairs. The parameter with the top
1 C-index was recommended as the best pair. Three
algorithms (Enet, Ridge, and Lasso) were conducted using
the “glmnet” package. A Lambda algorithm was identified and
the threshold of the L1–L2 trade-off parameter (α−) was
defined as 0–1 (interval = 0.1). The “survival” package was
used to create the stepwise Cox model. Stepwise was applied
according to the Akaike information criterion. Component-
wise likelihood-based boosting was employed to fit a Cox
regression model using the “CoxBoost” function. The
“optimCoxBoostPenalty” function was employed to identify
the optimal penalty. The “cv.CoxBoost” function was used to
identify other tuning parameters. The CoxBoost function was
used as the principal routine to determine the dimensions of
the multivariate Cox model. The “plsRcox” function was used
to fit a partial least squares regression generalized linear

model. The number of components was identified by the
“cv.plsRcox” function. The SuperPC model was conducted
using the “SUPERPC” function and applied to generate a
linear combination of variables or factors of interest, which
captured the directions of the most variable factor in all
datasets. The optimal threshold in SuperPC was assessed
using the “superpc.cv” package according to a 10-fold
cross-validation. The “pre-validation” function was applied
to prevent issues arising from fitting of multivariate Cox
regression models to other cohorts. The “gbm” package
was used to evaluate the fit of the generalized boosted
regression model. The “cv.gbm” package was used to
determine an index for number trees. The survival-SVM
model was applied using the “survivalsvm” function. The
regression approach was incorporated into the censoring
concept to determine the constraints on inequality in the
support vector problem.

(3) A total of 85 algorithm combinations were applied to all
included cohorts. The best signature was defined as that with
the highest C-index.

Retrieving known signatures of HNSCC

Fifty-one reported signatures were obtained from PubMed for
analysis (Supplementary Table S2). Given that the cohorts lacked
data on non-coding RNA these signatures were not included. The
mRNA signature was constructed using ten machine learning
algorithms as well as 85 algorithm combinations. Receiver
operating characteristic (ROC) curve analysis and C-index
calculation were performed to assess the clinical application value
of the CIDGS.

Genomic alteration landscape

Raw data on somatic mutations and the Human
Methylation450 array were obtained from TCGA-HNSC datasets.
The tumor mutation burden (TMB) was identified by calculating
non-silent somatic mutations. To evaluate differences in genetic
mutations, the “maftools” and “ComplexHeatmap” functions were
applied to identify the 20 genes whose mutation frequencies were the
highest. The association between the CIDGS and TMB was assessed
via Spearman’s correlation analysis. Genomic Identification of
Significant Targets in Cancer 2.0 (Mermel et al., 2011) was used
to process data on copy number variation.

Enrichment analysis

Potential molecular mechanisms were predicted via Gene set
enrichment analysis (GSEA). Following differential analysis, all
genes were ranked based on their log2 fold-change (log2FC).
Using the “clusterProfiler” function, Gene ontology (GO)
categories and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were performed to determine
potential biological roles as well as functional pathways. The top
10 biologic pathways were selected for visualization.
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Immune landscape

The ESTIMATE algorithm was used to estimate tissue
components. The correlations between these parameters and the
CIDGS score were evaluated using Pearson’s correlation coefficients.
Next, the levels of immune cell populations were determined using
CIBERSORT. Then, ssGSEA was used to assess the ability of the two
CIDGS groups to resist tumor infiltration. Additionally, seven
algorithms were employed to explore the association between the
levels of immune cell populations and the CIDGS score. The levels of
immune checkpoints in the two groups were analyzed. The
association between immune checkpoints and the CIDGS score
was further analyzed.

Response to immunotherapy

Expression similarity between the two CIDGS groups and those
who did not respond to ICIs were evaluated via subclass mapping
(submap) analysis (Hoshida et al., 2007). Next, we evaluated the
efficacy of immunotherapy in the two CIDGS groups. The
IMvigor210 cohort (Mariathasan et al., 2018), which included
patients with bladder cancer receiving atezolizumab, was
analyzed to further verify the capability of the CIDGS score for
predicting responsiveness to immunotherapy. Furthermore, the
GSE78220 cohort (Hugo et al., 2016), which comprised
melanoma patients treated with ICIs, was also included in the study.

Prediction of potential drugs

The Genomics of Drug Sensitivity in Cancer was reviewed to
assess drug responses and potential drug candidates (Yang et al.,
2013). Potential small molecule inhibitors suitable for use in the
high-CIDGS group were explored based on a previously
published protocol (Yang et al., 2021). Sensitivity data
pertaining to therapeutic agents aimed at cancer cell lines
were acquired from two datasets [Cancer Therapeutics
Response Portal (CTRP) and profiling relative inhibition
simultaneously in mixtures (PRISM)], whereas gene expression
profiles were acquired from the Cancer Cell Line Encyclopedia
database. The area under the ROC curve (AUC) values were
presented by two datasets (CTRP and PRISM) with higher AUC
values indicating greater resistant to agents. Differential analysis
of the treatment response was calculated via the Wilcoxon rank-
sum test, with a log2FC > 0.2 threshold, indicating potential
compounds corresponding to patients with high CIDGS.
Furthermore, agents with AUC values that were negatively
correlated with CIDGS scores were screened using Spearman’s
correlation analysis (threshold R < −0.4). Thus, potential agents
suitable for patients with high CIDGS scores were identified via
intersection of the above analysis results.

The NCI-60 Human Tumor Cell Lines Screen database, which
contains information on 60 different tumor cells from nine cancer
types, was explored to assess the relationship of CIDGS-related
genes and agent sensitivity, and Pearson correlation analysis via the
“ggplot2” package with the CellMiner interface was applied to assess
such correlations.

Statistical analysis

R software (v4.1.3) was used to conduct all statistical analyses.
Correlation matrices were determined via Pearson’s and Spearman’s
correlation analyses. R package “survminer” was used to identify the
optimal cutoff value. The “survival” function was applied to conduct
Cox regression and Kaplan-Meier analyses, while the “CompareC”
function was used to calculate the C-index. ROC curves were plotted
using the “pROC” package. All analyses were based on two-tailed
tests and statistical significance was set at p < 0.05.

Results

Construction of immune infiltration
consensus clusters

Consensus cluster analysis was conducted using the ssGSEA
algorithm (Wilkerson and Hayes, 2010; Charoentong et al., 2017),
with TCGA-HNSC samples being divided into k (k = 2–9) clusters
(Supplementary Figure S1). The results revealed that k = 2 was
optimal (Figures 1A, B). C1 and C2 clusters differed significantly in
relation to immune cell infiltration and biological function.
Compared with the consensus cluster C1, C2 had significantly
higher immune infiltration levels (Figures 1C, D). In addition,
C2 showed markedly higher immune, stromal, and estimated
scores (Figures 1E–G, p < 0.001), whereas cluster C1 showed
higher tumor purity scores (Figure 1H, p < 0.001). Therefore,
C1 and C2 were considered as representing “immune-cold” and
“immune-hot” tumors, respectively. Other immune-related
algorithms further verified that the ssGSEA results were stable
and robust (Figure 1I).

Identification of hub modules

Based on the cluster dendrogram, WGCNA was conducted to
identify the genes most associated with immune infiltration
(Figure 2A). The threshold of β was set to five (R2 = 0.9;
Supplementary Figure S2). We identified a total of 33 hub
modules. Interestingly, the dark turquoise and blue modules,
which comprised 763 genes, showed the highest correlation
coefficients among all hub modules with immune infiltration
features (Figure 2C). Gene ontology analysis revealed that all hub
genes were markedly associated with several immune functions
including “positive regulation of leukocyte cell-cell adhesion,”
“cytokine-mediated signaling pathway,” “T cell activation,”
“regulation of T cell activation,” “positive regulation of cytokine
production,” and “regulation of leukocyte cell-cell adhesion”
(Figure 2D). For cellular component, these genes were
significantly found in the “endocytic vesicle,” “endocytic vesicle
membrane,” “MHC class II protein complex,” “MHC protein
complex,” and “integral component of luminal side of
endoplasmic reticulum membrane” (Figure 2D). With respect to
their molecular function, these immune-related genes were
significantly related to “cytokine binding,” “chemokine activity,”
“peptide antigen binding,” “cytokine receptor binding,” and
“immune receptor activity” (Figure 2D). Moreover, KEGG
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analysis indicated that these genes were associated with several
immune-related pathways, such as “phagosome,” “cytokine-
cytokine receptor interaction,” “chemokine signaling pathway,”
and “human T-cell leukemia virus one infection” (Figure 2E).
These results revealed that the identified module genes correlated
with immune-related pathways, demonstrating their involvement in
immune regulation.

Integrative construction of the CIDGS

Univariate Cox analysis identified 90 of the 236 identified
immune-related genes as prognostic genes (Supplementary Table
S3). These 90 prognostic genes were then used in machine learning
algorithms to determine the CIDGS. In the TCGA-HNSC datasets, a

10-fold cross-validation framework was applied to fit 85 types of
predictive model signatures via the LOOCV framework (Figure 3A).
The C-index of each predictive signature across two validation
cohorts was calculated (Figure 3A). Notably, the results indicated
that a combination of RSF and stepwise Cox (direction = both), with
an optimal C-index was 0.68, were the optimal predictive models
(Figure 3A). Thus, 90 optimal immune-related genes were identified
using this model. Next, the expression levels of these 90 optimal
immune-related genes were weighted using regression coefficients to
calculate the CIDGS score for each patient (Supplementary Table
S4). Based on the highest cutoff value, HNSCCs were classified as
high- or low-CIDGS groups. Kaplan-Meier analysis of the training
datasets (TCGA-HNSC) confirmed that overall survival (OS) in the
low CIDGS group (p < 0.05; Figure 3B), as well as in two other
validation datasets (GSE41613 and GSE42743, p < 0.05; Figures 3C,

FIGURE 1
Identification of consensus clusters. (A) k = 2 was considered as the optimal number. (B) Cumulative distribution function (CDF) plots of the
consensus indexes of different k values (by different indicators). (C,D) Immune cell populations and functions were verified by ssGSEA. (E–H) Differences
in tumor components between clusters C1 and cluster C2. (I) Immune cell populations within C1 and C2 were assessed using different analysis tools. ns,
not significant; ***p < 0.001.
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D) and Meta-cohort datasets (p < 0.001; Figure 3E) was significantly
higher. These results revealed that the CIDGS was highly stable and
that it may be extrapolated across multiple independent cohorts.

Comparative performance of CIDGS

Machine learning algorithms (Ahluwalia et al., 2021) were used
to compare the performance of the CIDGS with that of 51 previously
reported HNSCC-related signatures (Supplementary Table S5), as
well as to identify predictive and prognostic gene signatures. A total
of 51 mRNA signatures, which were related to several biological
processes, including pyroptosis, immune checkpoints, glycolysis,
autophagy, aging, inflammation, hypoxia, cytoproptosis,
ferroptosis, lipid, N6-methyladenosine, and other hotspot
mechanisms/processes, were comprehensively identified and
included in the analysis. Assessment of the average C-index of all
signatures indicated that the CIDGS had the highest C-index

(Figure 4A). ROC curve analysis was used to assess the
performance of the CIDGS in the TCGA-HNSC cohort. The
AUCs for 1-, 2-, and 3-year overall survival were 0.86, 0.833, and
0.727, respectively (Figure 4B), further indicating that the prediction
performance of the CIDGS, obtained via a combination of multiple
machine learning algorithms, greatly outperformed those of other
reported signatures.

Nomogram construction

To further assess the stability and robustness of the CIDGS, its
prognostic performance was compared with that of several clinical
features. ROC analysis indicated that the CIDGS risk score and
nomogram yielded an AUC which was significantly higher than
those of the other clinical features in the TCGA-HNSC cohort
(Figure 5A). Moreover, the CIDGS had the highest C-index, thereby
demonstrating its solid and robust capability for evaluating the

FIGURE 2
Identification of hub modules. (A,B)Weighted correlation network analysis (WGCNA) for cluster dendrogram design. (C,D) Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses for identifying hub modules.
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prognoses for HNSCCs (Figure 5B). Notably, time-dependent ROC
analysis also indicated that the AUCs for 1-, 2-, and 3-year OS of the
meta-cohort were 0.915, 0.975, and 0.948, respectively (Figure 5C).
Therefore, a prognostic nomogram combining several clinical

factors and the CIDGS score was constructed (Figure 5D).
Furthermore, the calibration plot indicated that this prognostic
nomogram effectively predicted actual survival outcomes
(Figure 5E). Overall, the CIDGS showed an excellent predictive

FIGURE 3
Integrative construction of CIDGS. (A) Eighty-five algorithm combinations were used to identify the CIDGS. The average C-index of three cohorts
(TCGA-HNSC, GSE41613, andGSE42743) was calculated. (B–E) The overall survival in TCGA-HNSC, GSE41613, andGSE42743, andMeta-cohort datasets
was analyzed using Kaplan–Meier curves.
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performance, thereby demonstrating its potential as a clinically
relevant prognostic tool.

Comprehensive analysis of CIDGS-
related genes

The expression levels of 90 CIDGS-related genes in HNSCC
tumors and healthy samples were determined. Interestingly, most
CIDGS-related genes, such as XRCC6, ST13, PES1, EFHD2, APOL2,
ACTR2, and CDCP1, were markedly upregulated in HNSCC tumor
samples, whereas several other genes, such as MARCO, MRC1, and

CD83, were upregulated in healthy samples (Figure 6A). Notably,
the copy number variation mutation frequency varied among the
CIDGS-related genes (Figure 6B). Additionally, the co-expression
network of the CIDGS-related genes (with a cutoff value of 0.5)
revealed a very high correlation strength between the genes
(Figure 6C). GO analysis indicated that the CIDGS-related genes
were mostly associated with several biologic functions, including
“T cell activation,” “regulation of T cell activation,” “lymphocyte
differentiation,” and “mononuclear cell differentiation,” among
others (Figure 6D). In addition, KEGG analysis revealed that
CIDGS-related genes were highly associated with several
pathways, including “the NF-κB signaling pathway,” “the B cell

FIGURE 4
Comparison of CIDGS with previously reported signatures. (A) The average C-index of the CIDGS score and 51 HNSCC-related signatures. (B) ROC
analysis of the CIDGS score and previously reported HNSCC-related signatures for predicting 1-, 2-, and 3-year prognoses.

Frontiers in Pharmacology frontiersin.org08

Hu et al. 10.3389/fphar.2024.1341346

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1341346


receptor signaling pathway,” “the chemokine signaling pathway,”
“cell adhesion molecules,” “the T cell receptor signaling pathway”
(Figure 6E). These results indicated the latent tumorigenic function
of CIDGS-related genes in HNSCCs.

Characteristics of the immune landscape

Multiple immune algorithms were used to explore immune
landscapes. The immune scores in the low-CIDGS group were
significantly higher (p = 0.002; Figure 7A), while its stromal and
estimate scores showed a tendency to increase (p > 0.05; Figures 7B,
C). Furthermore, patients with low CIDGS showed a tendency towards
increased tumor purity (p> 0.05; Figure 7D). Notably, tumor purity and
the CIDGS score were positively correlated, whereas the immune and
estimate scores, but not the stromal score, were negatively correlated
(Figures 7E–H). Additionally, an analysis of the immune landscape
using the CIBERSORT algorithm indicated that the relative percentage
of immune cells in patients with low CIDGS was remarkably higher
(Figure 7I), indicating that the immune infiltration level was negatively
associated with the CIDGS score. The ratio of the immune cell
population in both groups was also examined (Figure 7J). The
fractions of T follicular helper (p = 0.03), activated CD4 memory T
(p = 0.033), naïve B (p = 0.002), plasma (p < 0.001), and T regulatory
(p = 0.002) cells in patients with high CIDGS were remarkably lower,
whereas those of activatedmast cells (p= 0.024), eosinophils (p< 0.001),

and M0 macrophages (p = 0.013) in patients with low CIDGS were
significantly lower. Notably, the ssGSEA algorithm indicated that the
infiltrations by natural killer, B, CD8+ T, interstitial dendritic,
plasmacytoid dendritic, T follicular helper, T helper 1/2, and
regulatory T cells, as well as tumor-infiltrating lymphocytes and
neutrophils in patients with low CIDGS were obviously higher (p <
0.05; Figure 7K). Additionally, the checkpoint, T cell co-inhibition/
stimulation, promotion of inflammation, and cytolytic activity in
patients with low CIDGS were also remarkably upregulated (p <
0.05; Figure 7L). Correlation analysis using seven algorithms
indicated that the levels of immune cell populations were negatively
associated with the CIDGS score (Figure 7M). Thus, a lowCIDGS score
correlates with a greater immune infiltration level, and thus may help
predict the immunotherapy effect.

CIDGS predictive potential for response to
immunotherapy

The above shown significant differences between the immune
characteristics of the two CIDGS groups indicated that immune
characteristics of CIDGSs that are developed using immune-related
patterns may differ. Therefore, we predicted that sensitivity to
immunotherapy would be different between HNSCCs with high
and low CIDGS scores (Supplementary Table S6). GO enrichment
analysis showed that “humoral immune responses,” “lymphocyte-

FIGURE 5
A prognostic nomogram. (A) ROC analysis of the CIDGS score and clinically relevant pathological factors. (B) C-index of the CIDGS and clinical
factors for evaluating treatment outcome. (C)Nomogrammodel presenting the CIDGS and clinicopathological factors. (D)Nomogrammodel predicting
overall survival using calibration curves. (E) Time-ROC analysis for predicting prognosis for the Meta-cohort. ***p < 0.001.
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mediated immunity,” “myeloid leukocyte migration,” and “leukocyte
chemotaxis” were remarkably related to low CIDGS (Figure 8A).
KEGG analysis further demonstrated that “the Wnt signaling
pathway,” “the IL-17 signaling pathway,” “cytokine-cytokine
receptor interactions,” “hematopoietic cell lineage,” and “the
PI3K−Akt signaling pathway” were significantly associated with
low CIDGS (Figure 8B). GSEA based on KEGG data of the two
CIDGS groups was conducted to select the top 10 pathways. Several
pathways, such as “T cell receptor signaling pathways,” “FC gamma-
mediated phagocytosis,” “transporters,” and “natural killer cell-
mediated cytotoxicity,” were found in the low-CIDGS group
(Figure 8C), while “biosynthesis-related pathways” (e.g.,
glycosaminoglycan, glycan, and steroid biosynthesis) and
“metabolism-related pathways” (e.g., amino and nucleotide sugars,
fructose and mannose, and galactose metabolism) were associated
with high CIDGS (Figure 8D). To better assess the immunotherapy

response, we further explored the expression levels of 47 immune
checkpoint members, including the TNF superfamily and
B7CD28 family (Figure 8E). These results indicated that a high
CIDGS score was associated with lower expression of BTLA,
TMIGD2, ICOS, CTLA-4, IDO1, LGALS9, CD27, TNFRSF8,
PDCD1, CD40LG, TNFRSF18, CD200R1, TNFRSF25, LAG3,
TNFRSF4, CD244, CD200, CD28, TIGIT, and CD48, and higher
expression of CD276 and CD44 (p < 0.05; Figure 8E).
Interestingly, CTLA4 and PD-1 were highly expressed in patients
with low CIDGS (p < 0.001; Figures 8F, G). Moreover, the expression
levels of CTLA4 (R = −0.34), PDCD1 (R = −0.32),CD40LG (R = −0.4),
and TIGIT (R = −0.2) were negatively associated with the CIDGS
score (Figures 8H–K). These results revealed that HNSCCs with low
CIDGS scores would benefit from treatment with immune checkpoint
inhibitors and that several immune molecules showed potential as
promising targets for immunotherapy.

FIGURE 6
Landscape of CIDGS-related genes. (A) Expressions of CIDGS-related genes between HNSCC and healthy samples. (B) Frequencies of copy number
variations (CNV) in CIDGS-related genes. (C)Correlation intensity between CIDGS-related genes. The correlation coefficient was set at 0.6. (D,E)GO and
KEGG analyses of CIDGS-associated genes. ***p < 0.001; **p < 0.01; *p < 0.05.
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Validation of the CIDGS for immunotherapy

PD-1/PDL-1 immunotherapy is an anticancer treatment with
synergistic survival benefits (Curran et al., 2010). Given that the low-

CIDGS group shows higher expression levels of immune-related
molecules and an activated tumor microenvironment (TME), we
surmised that this group may be more responsive to
immunotherapy. Thus, immune response testing algorithms, such as

FIGURE 7
Characterization of the immune landscape. (A–D) Tissue components were assessed using the ESTMATE algorithm. (E–H) Associations between
CIDGS score and tissue components. (I,J) The CIBERSORT algorithm was used to determine the proportion of immune cells. (K,L) Immune cell
populations and functions were determined using ssGSEA. (M) Multiple algorithms were applied to assess the relationship between CIDGS and immune
cell subtypes. ns, not significant; ***p < 0.001; **p < 0.01; *p < 0.05.
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submap, were applied to assess the performance of CIDGS for predicting
response to immunotherapy.Overall, patients with lowCIDGSbenefited
from the superior efficacy of anti-CTLA-4 immunotherapy (Figure 9A).
The prognostic performance of the CIDGS in immunotherapy was
further verified in the IMvigor210 cohort, in which the response to
immunotherapy agents was divided into four subgroups as follows:
progressive disease (PD), stable disease (SD), partial response (PR), and
complete response (CR). The CIDGS score of the CR/PR group was
obviously lower than that of the SD/PD group (Figure 9B). Additionally,
the percentage of CR/PR was distinctly higher in patients with low
CIDGS (Figure 9C). Furthermore, patients with low CIDGS scores had
remarkably longer OSs (p = 0.0012; Figure 9D). Significantly longer OS
was also observed in stage I + II patients with bladder carcinoma (p =

0.029; Figure 9E), as well as in stage III + IV patients (p = 0.0044;
Figure 9F). The GSE78220 cohort showed similar results (Figures 9G–I).
These findings revealed that patients with low CIDGS may benefit from
immune checkpoint inhibitors.

Somatic mutational landscape and
biological mechanisms

The TMB, which is also considered as a molecular marker, was
applied to calculate the number of somatic mutations (Merino et al.,
2020). The differences between somatic mutations were further
assessed. The waterfall plot indicated that the mutation rate was

FIGURE 8
CIDGS potential for predicting response to immunotherapy. (A,B) GO and KEGG analyses of 90 CIDGS-associated genes. (C,D) GSEA based on the
KEGG analysis. (E) Expression of immune checkpoint genes. (F,G) Expression of CTLA4 and PD-1. (H–K) Correlation between CIDGS scores and CTLA4,
PDCD1, CD40LG, and TIGIT levels. ***p < 0.001; **p < 0.01; *p < 0.05.
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92.17% (mutations in 306 of 332 samples) in the low- CIDGS group
and 96.41% (mutations in 161 of 167 samples) in the high-CIDGS
group, respectively (Figures 10A, B). Among these, frequently
mutated genes, including TP53, TTN, FAT1, CDKN2A, NOTCH1,
KMT2D, and DNAH5, in the high-CIDGS group exhibited high
mutational frequency. Spearman’s analysis revealed that the TMB
score was positively associated with the CIDGS score (R = 0.11, p =
0.013; Figure 10C). Based on the optimal cutoff value (median TMB
score), HNSCCs were classified as high- and low-TMB groups.
Kaplan-Meier analysis indicated that the low-TMB group was
associated with a significantly longer OS (p = 0.0055;
Figure 10D). We further explored whether the TMB or the
CIDGS score would be the better survival predictor for patients
with HNSCC. Unexpectedly, patients with low TMB/low CIDGS
conferred the greatest benefits to overall survival (p < 0.0001;
Figure 10E). Furthermore, the high-TMB/low-CIDGS group

received the most benefits in terms of OS (p < 0.001;
Figure 10E). The results described above indicated that CIDGS
showed potential as a promising prognostic biomarker for HNSCCs.

Predictive value of drug response and
treatment agents targeting CIDGS

The results having indicated that the high-CIDGS group was
more resistant to immunotherapy, we explored whether patients
with high CIDGS scores responded to common antitumor agents
(Figure 11A). Two CTRP-derived agents (niclosamide and
ruxolitinib) and 27 PRISM-derived agents, including salvinorin-a,
AC-264613, lerisetron, dinaciclib, and UNC2250, were identified.
The estimated AUC values of antitumor agents showed a
significantly negative relationship with CIDGS scores, with

FIGURE 9
Validation of CIDGS to define PD-L1 blockade immunotherapy application. (A) Subclass mapping analysis in 47 patients pre-treated with
immunotherapy. Smaller p-values represent higher similarity among paired expression profiles. (B,C) Differences in CIDGS scores among
immunotherapy response groups and distribution of immunotherapy responses among two CIDGS groups in the IMvigor210 cohort. (D–F) Overall
survival among two CIDGS groups in all patients, early stage patients, and in advanced patients from the IMvigor210 cohort. (G–I) CIDGS scores
among immunotherapy response groups, immunotherapy responses among two CIDGS groups, and overall survival among two CIDGS groups in the
GSE78220 cohort. **p < 0.01.
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patients with low CIDGS scores showing significantly higher AUC
values (Figure 11B–E). Furthermore, the relationship between
CIDGS-related gene expression and drug sensitivity was assessed
using Pearson’s correlation analysis (Figure 12). For example,
increased SLA2 expression was remarkably correlated with
increased resistance to nelarabine (Cor = 0.988, p < 0.001;
Figure 12A). Overall, the above-described results indicated that
the CIDGS can predict the response to chemotherapy or small-
molecule inhibitors in HNSCCs.

Discussion

The unique heterogeneous features of HNSCCs have rendered
available diagnostic and prognostic methods mostly ineffective,
leading in many cases to misdiagnoses, undertreatment, or
overtreatment (Salazar and Tabernero, 2014). Although advances
in molecular techniques have enabled the molecular landscapes and
subgroups of HNSCC to be identified (Walter et al., 2013; Keck et al.,
2015; Wichmann et al., 2015), differences between sequencing

platforms and analytical process as well as various prognostic
relationships linked to subgroups continue to hamper their
clinical application. Notably, treatment approaches aimed at
HNSCC, such as the use of small molecule inhibitors (e.g.,
cetuximab) and ICIs (e.g., pembrolizumab, nivolumab), have
become diversified (Ferris et al., 2016; Burtness et al., 2019).
However, reliable biomarkers capable of identifying “high-risk”
patients with HNSCC who stand to benefit from targeted
therapies are urgently needed. Hence, more personalized
assessment approaches that may help implement more efficient
clinical decisions are needed. Herein, we used multilevel
bioinformatics and machine learning algorithms to evaluate the
association between immune-related genes and prognoses, as well as
treatment benefits.

We used weighted correlation network analysis combined with
consensus clustering algorithms as well as ssGSEA to detect
immune-related genes in HNSCC. An integrative procedure
involving the gene expression matrix was performed to identify
the CIDGS. Ten machine learning algorithms were fitted to the
training cohort based on the Leave-One-Out Cross-Validation

FIGURE 10
Correlation between CIDGS and TMB. (A,B) Mutation frequencies in two CIDGS groups. (C) Association between CIDGS and TMB. (D) Different
overall survival in two TMB groups. (E) Overall survival in the different TMB groups combined with different CIDGS score groups.
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framework. A combination of stepwise Cox regression (direction =
both) and RSF was confirmed as the optimal model in two
independent cohorts. Based on 85 algorithm combinations, the
above integrative procedures were found to be the best fit for a
model aimed at assessing the prognoses for HNSCCs, following
which the dimensionality of variable algorithm combinations was
further reduced, thereby simplifying as well as optimizing the model
(Liu et al., 2022b). Kaplan–Meier and prognostic meta-analyses
indicated that the CIDGS was a deleterious indicator of OS.
Moreover, ROC and C-index analyses demonstrated that the
CIDGS performed outstandingly in all assessed cohorts,
indicating its potential for clinical application.

The tumor-node-metastasis grading system is widely applied to
assess clinical outcomes and define treatment. Additionally, emerging
biomarkers are significantly associated with clinical approaches and
outcomes. Notably, the CIDGS functioned independently and its high
performance in predicting the prognosis of HNSCCs based on C-index
analysis was remarkable. The performance of 51 previously reported
signatures of various functional gene combinations were retrieved to
compare with that of the CIDGS. Although a few of these signatures
have been actually utilized in clinical practice or validated in clinical
trials (Magnes et al., 2021), C-index and ROC analyses suggested that
the CIDGS was a better predictor than any of the signatures that have
been already reported. The CIDGS, which was dimensionally reduced
by incorporating 85 algorithm combinations displayed outstanding
predictive capability, whereas the other signatures showed poor
generalizability of the model due to overfitting. Moreover, a
nomogram with accurate calibration curves further confirmed the
clinical potential of CIDGS, indicating that the CIDGS showed
potential as a promising surrogate model for assessing the prognosis
of HNSCCs.

The results of multiple algorithms indicated that the low-CIDGS
group showed high levels of infiltration by immune cells, including

neutrophils, B cells, natural killer cells, and CD8+ T cells. Such an
increase in the numbers of immune cells enhance antitumor
immunity (Wu et al., 2013) thereby leading to better
immunotherapeutic outcomes in patients with HNSCC showing a
low CIDGS. Substantiating these observations, patients with a low
CIDGS exhibit high expression levels of immune checkpoint
associated genes, such as BTLA, CD27, CTLA-4, and TIGIT.
Additionally, submap analysis of additional patient cohorts
(IMvigor210 and GSE78220) was conducted to further evaluate
the performance of the CIDGS and the molecular mechanisms
underlying its efficacy. The low-CIDGS group was associated
with immune-related pathways, such as natural killer cell-
mediated cytotoxicity, transporters, and T cell receptor signaling
pathways, whereas the high-CIDGS group was associated with
biosynthesis-related pathways (e.g., glycosaminoglycan, glycan)
and biosynthesis and metabolism-related pathways (e.g., amino
sugar, fructose and mannose, nucleotide sugar, and galactose
metabolism), which may explain the worse prognosis shown by
patients with high CIDGS. Moreover, CIDGS-related genes were
significantly associated with several pathways including apoptosis,
platelet activation, natural killer cell-mediated cytotoxicity, and
phagosome pathways. These results indicated that the CIDGS is
associated with the carcinogenesis of HNSCC and thus may help
identify immunotherapy-sensitive patients.

Cancer immunotherapy has remarkably improved the outcomes of
patients with solid tumors, including a subset of patients with HNSCC.
Two immune checkpoint inhibitors (nivolumab and pembrolizumab)
are known to be highly beneficial to patients with unresectable,
recurrent, or metastatic HNSCCs (Ferris et al., 2016; Burtness et al.,
2019). In this study, the low-CIDGS group showed a lower TMB. Some
genetic mutations generate clonal neoantigens which enhance
neoantigen intratumor heterogeneity, thereby attenuating the
antitumor response to ICI treatment (McGranahan et al., 2016).

FIGURE 11
Identification of candidate drug with high sensitivity. (A) Schematic diagram illustrating the candidate drug with high sensitivity in patients with high
CIDGS. (B,C) Correlations between CTRP- and PRISM-derived compounds. (D,E) Treatment response analysis of different agents. Lower y-axis values
represent stronger drug sensitivity effects. ***p < 0.001.
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Patients with low CIDGS also display immunosuppressive (“immune-
hot”) tumors characterized by high expression levels of immune cells as
well as proteins, such as CTLA4 and PD-1. Notably, patients with low
TMB andCIDGS experienced the highest OS. These results suggest that
a lowCIDGS leads tomore backup lymphocyte resources and increased

sensitivity to immunotherapy. With respect to the lower sensitivity
shown to immunotherapy by the high-CIDGS group, specific drugs that
could be beneficial for patients in this group were identified using two
databases (Rahman et al., 2019; Luna et al., 2021) and comprehensive
algorithms. Notably, several agents, such as niclosamide, ruxolitinib

FIGURE 12
Potential drugs targeting CIDGS. (A,B) Correlations between CIDGS-related genes and therapeutic agents. *p < 0.05; **p < 0.01.
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salvinorin-a, AC-264613, lerisetron, dinaciclib, andUNC2250, thatmay
potentially induce positive antitumor responses in patients with high
CIDGS were identified. These findings indicated that the CIDGS may
be considered as an outstanding model that can be used to evaluate
treatment outcomes of immunotherapy, with a high-CIDGS indicating
resistance to immunotherapy.

The clinical performance of the CIDGS in HNSCC, although
remarkable, was affected by certain limitations. This study was of a
retrospective nature. Thus, a large-scale, prospective, multicenter
study aimed at validating the clinical value of the CIDGS is needed.
Moreover, the role of most CIDGS-related genes in HNSCCs should
be further validated via both in vivo and in vitro experiments.
Furthermore, some public datasets lack certain clinical and
molecular features, thereby limiting any evaluation of a potential
association between the CIDGS and some key variables. Thus,
additional immunotherapy clinical trials aimed at validating the
efficacy of the CIDGS for predicting the response of patients with
HNSCC to immunotherapy are warranted.

Conclusion

Using 85 algorithm combinations, we found a promising
immune-related gene signature that may be utilized to evaluate
the prognosis for HNSCC as well as the benefits conferred by
immunotherapy and other therapeutic agents on patients with
HNSCC. The findings of the current study indicate that the
CIDGS shows potential as an outstanding model which may help
make clinical decisions and predict the benefits of treatments
targeting HNSCCs.
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