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Butyrate, a metabolite produced by gut bacteria, has demonstrated beneficial
effects in the colon and has been used to treat inflammatory bowel diseases.
However, the mechanism by which butyrate operates remains incompletely
understood. Given that oral butyrate can exert either a direct impact on the
gut mucosa or an indirect influence through its interaction with the gut
microbiome, this study aimed to investigate three key aspects: (1) whether
oral intake of butyrate modulates the expression of genes encoding short-
chain fatty acid (SCFA) transporters (Slc16a1, Slc16a3, Slc16a4, Slc5a8, Abcg2)
and receptors (Hcar2, Ffar2, Ffar3, Olfr78, Olfr558) in the colon, (2) the potential
involvement of gut microbiota in this modulation, and (3) the impact of oral
butyrate on the expression of colonic SCFA transporters and receptors during
colonic inflammation. Specific pathogen-free (SPF) and germ-free (GF) mice with
or without DSS-induced inflammation were provided with either water or a 0.5%
sodium butyrate solution. The findings revealed that butyrate decreased the
expression of Slc16a1, Slc5a8, and Hcar2 in SPF but not in GF mice, while it
increased the expression of Slc16a3 in GF and the efflux pump Abcg2 in both GF
and SPF animals. Moreover, the presence of microbiota was associated with the
upregulation of Hcar2, Ffar2, and Ffar3 expression and the downregulation of
Slc16a3. Interestingly, the challenge with DSS did not alter the expression of SCFA
transporters, regardless of the presence or absence of microbiota, and the effect
of butyrate on the transporter expression in SPF mice remained unaffected by
DSS. The expression of SCFA receptors was only partially affected by DSS. Our
results indicate that (1) consuming a relatively low concentration of butyrate can
influence the expression of colonic SCFA transporters and receptors, with their
expression beingmodulated by the gut microbiota, (2) the effect of butyrate does
not appear to result from direct substrate-induced regulation but rather reflects
an indirect effect associated with the gut microbiome, and (3) acute colon
inflammation does not lead to significant changes in the transcriptional
regulation of most SCFA transporters and receptors, with the effect of
butyrate in the inflamed colon remaining intact.
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Introduction

Inflammatory bowel disease (IBD) including its major clinical
forms ulcerative colitis (UC) and Crohn’s disease (CD), is a chronic,
recurrent disease characterized by intestinal inflammation whose
etiology is still poorly understood. Nevertheless, the pathogenesis of
IBD is multifactorial and results from genetic predisposition,
immunological status, and environmental factors, including
intestinal microbiota disbalance (Graham and Xavier, 2020). Gut
microbial dysbiosis was detected both in patients with UC and CD
and animal models of IBD (Ni et al., 2017; Facchin et al., 2020) and
was associated with a reduced number of short-chain fatty acid
(SCFA)-producing bacteria and reduced butyrate concentration
(Machiels et al., 2014; Laserna-Mendieta et al., 2018).

SCFAs including butyrate, propionate, and acetate, are produced
by the fermentation of nondigestible carbohydrates (dietary fibers)
by the gut microbiota and play an important role in maintaining
intestinal barrier functions and immune homeostasis. SCFAs,
particularly butyrate, have been shown to regulate the
proliferation and differentiation of intestinal epithelial cells and
their expression of mucins, antimicrobial peptides, and tight
junctions proteins; furthermore, butyrate exerts anti-
inflammatory effects in immune cells (Gonçalves et al., 2018;
Recharla et al., 2023). SCFAs interact with target epithelial or
immune cells either via cell-surface G-protein-coupled receptors
or by entering cells and controlling gene expression by the direct
inhibition of histone deacetylases (Dalile et al., 2019). Previous
studies have established that butyrate and other SCFAs can enter
enterocytes via passive nonionic diffusion or carrier-mediated
transport, facilitating the transport of SCFAs derived from gut
microbiota. This transport is mediated by the electroneutral H+-
dependent monocarboxylate transporters MCT1, MCT4, and
MCT5 and the electrogenic, Na+-dependent monocarboxylate
transporter SMCT1, which are encoded by the Slc16a1, Slc16a3,
Slc16a4, and Slc5a8 genes, respectively (Gill et al., 2005; Cresci et al.,
2010; Al-Mosauwi et al., 2016). Moreover, the efflux of butyrate has
been demonstrated through the ABCG2 efflux pump, expressed in
the apical membrane of intestinal epithelial cells (Gonçalves et al.,
2011). In addition to their interactions with transporters, SCFAs act
as ligands capable of activating cell signaling pathways in enterocytes
via at least five distinct membrane receptors: GPR109A/HCAR2
(hydrocarboxylic acid receptor 2), FFAR2 and FFAR3 (free fatty acid
receptor 2 and 3), OLFR78 (olfactory receptor 78), and OLFR558/
OR51E1 (olfactory receptor 558) (Priori et al., 2015; Priyadarshini
et al., 2018; Halperin Kuhns et al., 2019; Nishida et al., 2021).

The findings that microbiota-derived butyrate plays an
important role in maintaining intestinal barrier integrity, gut
homeostasis, and reducing gut inflammation (Gonçalves et al.,
2018) led to many studies investigating the therapeutic
implications of butyrate treatment for IBD (Recharla et al., 2023).
In animal models of colitis (DSS-, TNBS- or IL10−/−-colitis), oral
butyrate supplementation attenuated the disease activity index,
inflammation and mucosal lesions (Vieira et al., 2012; Ji et al.,
2016; Lee et al., 2017; Chen et al., 2018), although some studies failed
to show benefits following butyrate treatment (Lee et al., 2022).
Moreover, butyrate failed to protect against TNBS-colitis inHcar2−/−

mice (Chen et al., 2018), and Ffar2−/− and Ffar3−/− mice were found
to be more susceptible to TNBS-colitis (Kim et al., 2013). Similarly,

the beneficial effect of dietary fibers in DSS colitis was diminished in
Hcar2−/−, Ffar2−/−, and Slc5a8−/− mice (Gurav et al., 2015; Macia
et al., 2015). However, the mechanisms through which oral butyrate
operates remain incompletely understood, particularly whether it
can directly affect the gut mucosa or if its effects are mediated
indirectly through its influence on the gut microbial community
(Dou et al., 2020; Facchin et al., 2020; Lee et al., 2022). Therefore, this
study aimed to compare the effects of butyrate on SCFA receptors
and transporters in the presence and absence of gut microbiota and
intestinal inflammation.

Materials and methods

Animals, treatments, and sample
preparation

The experiments were performed on 37 two-month-old
specific pathogen-free (SPF) and 34 germ-free (GF) female
BALB/c mice (Institute of Microbiology, Nový Hrádek, Czech
Republic), which were maintained on a 12 h/12 h light/dark
cycle and had free access to autoclaved tap water and an
irradiated sterile pellet diet of Altromin 1414 (Altromin, Lage,
Germany). The GF mice were kept under sterile conditions in
Trexler-type isolators since birth. The sterility was monitored
routinely by the aerobic and anaerobic cultivation of mouse
feces and swabs from the isolator. Colitis was induced by
replacing drinking water with 2.5% dextran sulfate sodium
(DSS, M.W. 36–50 kDa; MP Biomedicals, Illkirch, France) in
water for 7 days (Hudcovic et al., 2001). Sodium butyrate was
administered in drinking water at a concentration of 0.5% (Vieira
et al., 2012; Chen et al., 2018).

Both SPF and GF mice were divided into the following six
groups (Figure 1): (1) the control group (CTRL), given water
without DSS and sodium butyrate; (2) the DSS group, given 2.5%
DSS solution in water for 1 week; (3) the butyrate group, given 0.5%
sodium butyrate solution in water for 1 week (1BT); (4) the butyrate
group, given 0.5% sodium butyrate solution in water for 2 weeks
(2BT); (5) the butyrate and DSS group (1BT+1BT/DSS), given
sodium butyrate (0.5%) solution 1 week followed by a mixture of
sodium butyrate (0.5%) and DSS (2.5%) the following week; and (6)
the butyrate and DSS group (2BT + DSS), in which mice received
0.5% sodium butyrate for 2 weeks and 2.5% DSS solution the
following week. All mice were anesthetized with isoflurane vapor
and decapitated, and the colonic tissue was collected, flash-frozen in
liquid nitrogen, and stored at −80°C. The present study builds upon
previous research conducted by Jourova et al. (2022) and Satka et al.
(2022). Their work demonstrated that administering butyrate to SPF
mice for 2 weeks before subjecting them to DSS treatment helped
reduce symptoms of intestinal inflammation. These symptoms
included clinical indicators, such as colon length shortening,
histopathological changes, and decreased colonic epithelial
leakiness. Conversely, GF mice showed only a minor increase in
clinical score and colon length shortening under similar conditions.

The experiments were approved by the Committee for the
Protection and Use of Experimental Animals of the Institute of
Microbiology, v. v. i, Czech Academy of Sciences (approval
ID: 21/2018).
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Histological assessment
Tissues from the distal colon were washed in phosphate-

buffered saline, fixed in Carnoy’s fluid, embedded in paraffin,
sectioned (7 μm) and stained with hematoxylin and eosin. The
samples were observed using an Olympus BX 40 microscope
equipped with an Olympus Camedia DP 70 digital camera, and
subsequent image analysis was conducted utilizing Olympus DP-
Soft software. The colonic crypt length was measured as described
previously (Hausmann et al., 2011). Colonic crypt length was
assessed solely in well-oriented crypts where the entire
invagination from the colonic surface was distinctly visible.
Twenty individual crypt measurements per animal were analyzed
from six mice in each group.

Sample preparation and gene expression analysis
Total RNAwas isolated from 30–50 mg of the frozen distal colon

using RNeasy Plus universal Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Due to DSS
contamination of samples and inhibition of the subsequent
reactions, RNA samples were purified using the GenElute
Mammalian Total RNA miniprep kit (Sigma-Aldrich, Merck
KGaA, Darmstadt, Germany) and DNase treatment using the
On-Column DNase I Digestion set (Sigma-Aldrich). Isolated total
RNA was transcribed to cDNA using random hexamers and the
HighCapacity cDNA Reverse Transcription Kit (Life Technologies,
Carlsbad, Ca, USA). Quantitative polymerase chain reactions were
performed in the LightCycler 480 PCR System (Roche Diagnostic
GmbH, Mannheim, Germany) using 5x Hot FIREpol Probe qPCR
Mix Plus (ROX) (Solis BioDyne, Tartu, Estonia) and predesigned
TaqMan Assays (Life Technologies) for monocarboxylate
transporter 1 (Slc16a1, Mm01306379_m1), monocarboxylate
transporter 4 (Slc16a3, Mm00446102_m1), monocarboxylate
transporter 5 (Slc16a4, Mm00525195_m1), sodium-coupled
monocarboxylate transporter 1 (Slc5a8, Mm00520629_m1), breast

cancer resistance protein (Abcg2, Mm00496364_m1),
hydrocarboxylic acid receptor 2 (Hcar2, Mm01199527_m1), free
fatty acid receptor 2 (Ffar2, Mm02620654_s1), free fatty acid
receptor 3 (Ffar3, Mm07294891_g1), olfactory receptor 78 (Olfr
78, Mm00628116_m1), olfactory receptor 558 (Olfr558,
Mm01279850_m1), mucin 2 (Muc2, Mm01276696_m1), gut
hormone peptide YY (Pyy, Mm00520715_m1), tumor necrosis
factor α (Tnfα, Mm00443258_m1), and interleukin 1β (IL-1β,
Mm00434228_m1). The quantity of the transcripts was
determined using the standard curve method with serial 3-fold
dilutions of the mixed cDNA sample, and the quantity of the
transcripts of the genes of interest was calculated relative to the
geometric mean of the reference genes succinate dehydrogenase
subunit A (Sdha, Mm01352366_m1) and hypoxanthine-guanine
phosphoribosyl transferase 1 (Hprt, Mm01545399_m1).

Statistical analysis

All quantitative data were analyzed using GraphPad Prism 8
software (GraphPad, La Jolla, CA, USA) and are presented as the
mean ± SEM. Data were assessed for normality (Shapiro-Wilk test)
and for variance equality (Brown-Forsythe test). When necessary,
data were transformed to fit assumptions of normality and
homogeneity of variance before analysis (data in graphs are
nontransformed). One-way analysis of variance (ANOVA)
followed by Tukey’s post hoc test was performed to examine
statistical significance in datasets of multiple groups. Two-way
ANOVA followed by Tukey’s post hoc test was used to analyze
the interaction between the effects of butyrate treatment and gut
microbial status on the expression of butyrate transporters and
receptors in the murine colon. Student’s t-test was performed to
examine the statistical significance between two groups. p values less
than 0.05 were considered statistically significant.

FIGURE 1
Experimental timeline. DSS, dextran sodium sulfate; BT, sodium butyrate; for more details see the text. The number of animals in each experimental
group is given in parentheses (SPF/GF mice).
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Results

The regulation of SCFA transporters and
receptors in GF and SPF mice given
oral butyrate

Diets containing dietary fibers, the main substrates for bacterial
fermentation and the production of SCFAs, stimulate colonic SCFA
transport. To test how oral butyrate affects the mRNA abundance of

colonic SCFA transporters and receptors, mice received sodium
butyrate in drinking water for 1 or 2 weeks (experimental design,
Figure 1). Comparison of the groups CTRL, 1BT, and 2BT showed
that the responses of GF and SPF mice were different (Figure 2). In
SPF mice, butyrate significantly decreased the expression of the
solute carriers Slc16a1, Slc16a3, Slc16a4, and Slc5a8 and increased
the expression of the efflux pump Abcg2 after 2 weeks. The receptors
Hcar2 and Olfr78 were also significantly decreased, whereas Olfr558
expression was upregulated and Ffar2 and Ffar3 expression was not

FIGURE 2
Time course of the effect of butyrate on the expression of colonic SCFA transporters and receptors in specific pathogen-free (SPF) and germ-free
(GF) mice. Themice drank either water (CTRL group) or 0.5% sodium butyrate solution for 7 (1BT group) or 14 days (2BT group). The results are presented
as the mean ± SEM (n = 4–10 per group). The data for SPF (lowercase letters) and GF (uppercase letters) were analyzed separately by one-way ANOVA
followed by Tukey’s post hoc test. Values with same letters are not statistically different.
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FIGURE 3
Effects of the microbiota and butyrate on the expression of genes encoding colonic SCFA transporters and receptors, gut hormone PYY, and mucin
2 in specific pathogen-free (SPF) and germ-free (GF)mice. CTRL,mice receiving standard diet andwater ad libitum; 2BT,mice receiving standard diet and
sodium butyrate solution (0.5%) replacing drinking water in the last 14 days before sacrifice. The results are presented as the mean ± SEM (n = 4–10 per
group) and were analyzed by a two-way ANOVA followed by Tukey’s post hoc test. The results of two-way ANOVA are given in tables and the results
of post hoc tests in the graphs: *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001; ns, not significant.
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changed. In contrast, butyrate in GF mice altered Slc16a3 and Olfr78
expression, but in the opposite direction compared to that of
SPF animals.

To investigate the influence of the microbiota on the effect of
butyrate, we further analyzed the interaction between the gut
microbiota and the 2-weeks butyrate treatment on the expression
of SCFA transporters and receptors in the distal colon of mice
(Figure 3). Two-way ANOVA revealed that microbial status had a
significant effect on the expression of the Slc16a3 and Slc16a4
transporters and the Olfr78, Ffar2, and Ffar3 receptors, and
butyrate had a significant effect on the treatment on Slc16a4,
Slc5a8 and Abcg2 transporters and the Hcar2 receptor. The
interaction between butyrate treatment and microbial status
significantly impacted the transporters Slc16a1 and Slc16a3 and
some receptors (Hcar2, Olfr78, and Olfr558).

Interestingly, post hoc comparison revealed that butyrate
downregulated the expression of Slc16a1 (p < 0.01), Slc5a8 (p <
0.05), and Hcar2 (p < 0.01) in SPF but not GF mice, whereas in the
case of Slc16a4, the decrease was not significant in SPF mice. In
contrast, butyrate treatment upregulated Slc16a3 expression in GF
mice (p < 0.01) and Abcg2 expression in both SPF and GFmice (p <
0.05 and 0.01, respectively). The effect of microbiota on the
expression of SCFA transporters and receptors differed from
that of butyrate. Microbiota downregulated the expression of
Slc16a3 (p < 0.01) but had an opposite effect on the expression
of Hcar2 (p < 0.05), Ffar2 (p < 0.0001), and Ffar3 (p < 0.01). In
addition, the absence of microbiota prevented the decrease in
Slc16a1, Slc5a8 and Hcar2 expression induced by increased
butyrate intake.

To investigate whether the interplay between microbial status
and oral butyrate can extend its influence on other local processes in
the gut, we conducted additional studies to examine the effects of
butyrate and microbiota on the expression of Pyy and Muc2 genes.
These genes encode the gut hormone PYY andmucin 2, respectively,
both of which are known to be modulated by butyrate. Additionally,
the secretion of PYY is linked to the activation of FFAR2 receptors,
as reviewed recently (Dalile et al., 2019). For both Pyy and Muc2,
two-way ANOVA showed that butyrate treatment, microbial status
and the butyrate treatment x microbial status interaction had a
significant effect (Figure 3). Butyrate administration significantly
downregulated Pyy expression (p < 0.001) and upregulated Muc2
expression (p < 0.001) in SPF but not GFmice and the GF conditions
suppressed expression of Muc2 just at the level of significance
(p = 0.0504).

These data suggest that butyrate administration for 2 weeks has
an impact on the colonic expression of SCFA transporters and
receptors, mucin, and the gastrointestinal hormone PYY and that
their expression is modulated by the presence/absence of gut
microbiota.

Effect of butyrate on acute DSS-
induced colitis

As SCFAs exert anti-inflammatory effects in the intestinal
mucosa, we investigated the expression of SCFA transporters and
receptors during inflammation in mice with acute DSS-induced
colitis. First, we studied the manifestation of the disease at the level

of colonic crypt length shortening and inflammation (Figure 4). The
histological examination (Figure 4A) of SPF mice revealed
significant inflammatory cell infiltration into the lamina propria,
thickening of the submucosa, loss of the epithelial layer, and
disappearance of mucosal crypts in the colonic wall of DSS-
treated controls (group DSS; grade 3.3 ± 0.3). These changes
were also observed to a lesser extent in mice pretreated with
butyrate for 1 week and cotreated with butyrate and DSS the
following week (group 1BT+ 1BT/DSS; grade 2.2 ± 0.2). In
contrast, mice pretreated with butyrate for 2 weeks displayed a
notable inhibitory effect on DSS-induced histological changes
(group 2BT + DSS; grade 1.9 ± 0.1) compared to the DSS
controls. These mice exhibited reduced inflammatory cell
infiltration and fewer pathological changes in the mucosa or
epithelial layer. Conversely, histological alterations in the colonic
mucosa of GF mice were mild. Control mice treated with DSS
displayed increased infiltration of inflammatory cells into the lamina
propria and partial disappearance of mucosal crypts in the colonic
wall (group DSS; grade 1.7 ± 0.3). Mice pretreated with butyrate for
1 week and cotreated with butyrate and DSS the following week
(1BT + BT/DSS group; grade 1.1 ± 0.3) exhibited subtle signs of
inflammation. However, mice pretreated with SB for 2 weeks
showed a reduced impact on DSS-induced histological changes
(2BT + DSS group; grade 1.4 ± 0.2) compared to the DSS controls.

Compared with control animals (CTRL group), we found a
significant reduction in crypt length in the DSS group, independent
of microbial status, with the length being 2.2 times shorter in SPF
mice and 1.5 times shorter in the GF group (p < 0.0001; Figure 4B);
there was also detected more than 2 times upregulation of IL-1β
expression in DSS-treated SPF mice compared to control animals
(p < 0.05; Figure 4C). In SPF mice, the co-administration of butyrate
and DSS (1BT+1BT/DSS group) prevented crypt shortening (p <
0.0001) and the upregulation of IL-1β expression (p < 0.05). On the
other hand, pretreatment of SPF mice with butyrate before
induction of DSS colitis (2BT + DSS group) did not mitigate the
impact of DSS on the expression of IL-1β, although we observed
significant reduction in the effect of DSS on crypt length, compared
to mice of DSS group. In GF mice, the administration of butyrate
failed to alleviate the DSS-induced reduction in crypt length in both
1BT+1BT/DSS group and 2BT + DSS group, and the expression of
IL-1βwas decreased following the co-administration of butyrate and
DSS (1BT+1BT/DSS group) compared to that of untreated, control
GFmice (CTRL group) (Figures 4B, C). The patterns of butyrate and
DSS effects on Tnfα expression were similar but did not reach
statistical significance. These data indicated that a serious
inflammatory response occurred in the mouse colon and that
tissue damage could occur simultaneously. A detailed description
of the clinical score and the histopathological changes in SPF mice
was already published in our previous publication (Jourova et al.,
2022), as well as the clinical score and the length of the colon in GF
mice (Satka et al., 2022).

Challenge with DSS did not change the mRNA expression of
SCFA transporters in the colon regardless of the presence or absence
of microbiota (Figure 5). Co-administration of DSS and butyrate
(1BT+1BT/DSS group) significantly altered the expression of
Slc16a1 (p < 0.01), Slc16a4 (p < 0.05), Slc5a8 (p < 0.001) and
Abcg2 (p < 0.0001) in SPF but not GF mice treated with DSS
(DSS group). Except for Abcg2, DSS had a similar effect on the
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expression of SCFA transporters if it was applied alone or after a
preceding 2-weeks administration of butyrate. The expression of
SCFA receptors was only partially affected by DSS. DSS significantly
downregulated the expression of Ffar2 (p < 0.001) in SPF mice and
upregulated the expression in GF animals (p < 0.01); this effect
showed a tendency to persist in the case of co-administration or
pretreatment with butyrate. In contrast, DSS upregulated Olfr78
expression in both SPF (p < 0.001) and GF animals (p < 0.01) and co-
administration of DSS and butyrate (1BT+1BT/DSS group)
prevented this upregulation in SPF but not GF mice. Like Olfr78,
the expression of Pyy was also upregulated in the presence of DSS in
both SPF and GF mice and the co-administration of DSS and
butyrate successfully prevented this upregulation in SPF mice but
not GF mice.

Discussion

The mechanism by which SCFAs, particularly butyrate, promote
immunity and improve IBD treatment efficacy is not completely
understood, even though it is known that SCFAs act at the cell
surface as endogenous ligands for some G protein-coupled receptors
and intracellularly as inhibitors of histone deacetylases (Gonçalves
et al., 2018; Dalile et al., 2019). Previous studies have shown that the
administration of sodium butyrate in drinking water ameliorates
inflammation and epithelial barrier dysfunction (Vieira et al., 2012;
Ji et al., 2016; Lee et al., 2017; Chen et al., 2018; Jourova et al., 2022);
nevertheless, orally administered butyrate is thought to be absorbed
and utilized before reaching the colon (Daniel et al., 1989; Wang
et al., 2023). Here, we demonstrate that a relatively low

FIGURE 4
Dextran sodium sulfate (DSS)-induced colitis and the effect of oral butyrate (BT) on crypt length and expression of proinflammatory cytokines. (A)
Hematoxylin and eosin staining of colon tissue from specific pathogen-free (SPF) and germ-free (GF) mice treated with DSS. The histopathological
changes in the colonic mucosa following DSS treatment were assessed through histological scoring at the end of the experiment. These changes are
illustrated using representative histological sections. (B) The length of colonic crypts and (C) mRNA expression of interleukin 1β (IL-1β) and tumor
necrosis factor α (Tnfα) in SPF and GF mice treated with DSS and BT. CTRL, control, untreated mice; DSS, mice that drank 2.5% DSS for 7 days; 1BT+1BT/
DSS, mice that drank 0.5% BT solution for 1 week and then the mixture of 0.5% BT and 2.5% DSS for the second week; 2BT + DSS, mice pretreated with
0.5% BT for 2 weeks before drinking 2.5% DSS the following week. The results are presented as the mean ± SEM (n = 6 per group for the measurement of
crypt lengths; n = 4–10 per group for the analysis of proinflammatory cytokine expression) and were analyzed by one-way ANOVA separately for SPF and
GF mice. Different from the CTRL group: *p < 0.05, **p < 0.01, ****p < 0.0001; different from the DSS group: xP < 0.05, xxxxP < 0.0001; different from the
1BT+1BT/DSS group: +p < 0.05, +++p < 0.001. Differences between SPF and GF mice in identical experimental groups were compared using Student’s
t-test: $p < 0.05, $$p < 0.01, $$$p < 0.001, $$$$p < 0.0001.
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FIGURE 5
Effect of oral butyrate administration on colonic SCFA transporters and receptors, gut hormone PYY, and mucin 2 in specific pathogen-free (SPF)
and germ-free (GF) mice treated with DSS. CTRL, control, untreated mice; DSS, mice that drank 2.5% DSS for 7 days; 1BT+1BT/DSS, mice that drank 0.5%
BT solution for 1 week and then the mixture of 0.5% BT and 2.5% DSS for the second week; 2BT + DSS, mice pretreated with 0.5% BT for 2 weeks before
drinking 2.5% DSS the following week. The results are presented as the mean ± SEM (n = 4–10 per group) and were analyzed by one-way ANOVA
separately for SPF and GF mice. Different from the CTRL group: *p < 0.05, **p < 0.01, ***p < 0.001; different from the DSS group: xP < 0.05, xxP < 0.05,
xxxP < 0.001, xxxxP < 0.0001; different from the 1BT+1BT/DSS group: +p < 0.05, ++++p < 0.0001. Differences between SPF and GF mice in identical
experimental groups were compared using Student’s t-test: $p < 0.05, $$p < 0.01, $$$p < 0.001.
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concentration of sodium butyrate in a drinking solution modulated
the expression of the SCFA carriers Slc16a1, Slc16a3, Slc16a4, and
Slc5a8 and the efflux pumpAbcg2. The observed effect of butyrate on
the expression of SCFA transporters does not seem to reflect direct
substrate-induced regulation via butyrate. First, the effect of oral
butyrate differed between SPF and GF mice. Second, we found
downregulated expression of SCFA solute carriers in SPF mice
treated with butyrate, but butyrate stimulated the expression and
function of Slc16a1 (MCT1) and Slc16a3 (MCT4) in colonic
epithelial cell lines (Borthakur et al., 2008; Ziegler et al., 2016))
or in the intestinal epithelium (Dengler et al., 2015). Third, oral
administration of butyrate significantly upregulated Slc16a3
expression but only in GF and not SPF mice.

In this report, we also showed that not only the expression of
SCFA transporters but also that of SCFA receptors is modulated by
the gut microbiota and by oral intake of butyrate. We found that the
expression of Ffar2, which is expressed both in enteroendocrine cells
(EEC) and colonocytes, and Ffar3, which is expressed in EEC and
enteric neurons but not colonocytes (Priyadarshini et al., 2018),
strongly depends on gut microbiota but not on oral butyrate
treatment. A similar effect of the microbiota on the expression of
Ffar2 was observed in the mouse ileum (Yajima et al., 2016). In
contrast to Ffar2 and Ffar3, the expression ofHcar2, a colonic SCFA
receptor (Priyadarshini et al., 2018), depended not only on gut
microbiota, as was already shown earlier by Cresci et al. (Cresci et al.,
2010), but also on oral butyrate. Similar to the colonic Slc16a1 and
Slc5a8 transporters, oral butyrate dampened Hcar2 expression in
SPF but not GF mice. These data indicate a relationship between the
regulation ofHcar2, the principal butyrate receptor in the colon, and
the colonic butyrate transporters Slc16a1 and Slc5a8. A similar link
between the expression of Hcar2 and Slc5a8 was shown by Cresci
et al. (Cresci et al., 2010). The importance of the microbiota for the
effect of oral butyrate on the gut is also supported by the results of
Pyy and Muc2 expression. In both cases, the effect of butyrate was
evident only in SPF but not GF animals, with downregulation in the
case of Pyy expression and upregulation in the case of Muc2
expression; this effect is similar to the effect of rectal butyrate
enemas on Muc2 expression in conventional mice (Gaudier et al.,
2009). The lack of the inhibitory effect of butyrate on Pyy expression
observed in our in vivo experiments with GF mice aligns with
findings from experiments conducted using sterile mouse
intestinal epithelial cell culture (Larraufie et al., 2018).

Indirect transcriptional regulation of colonic SCFA transporters
and receptors may depend on the interaction of oral butyrate with
the gut microbiota or with upstream parts of the gastrointestinal
tract. In the case of the effect of oral butyrate in SPF mice, we cannot
exclude the possibility that oral butyrate modulates the gut
microbiota and microbiota-secreted soluble factors, which might
control the expression of SCFA transporters and receptors. There is
strong evidence that oral sodium butyrate remarkably alters the gut
microbiota (Dou et al., 2020; Lee et al., 2022) and that Lactobacillus
plantarum-derived soluble factors or Lactobacillus delbrueckii
consumption upregulate Slc5a8 and Slc16a1 expression (Hou
et al., 2022; Kim et al., 2022). Furthermore, the SMCT1, MCT1,
and MCT4 transporters and the FFAR2 and FFAR3 receptors have
been found in the duodenum (Akiba et al., 2015; Kaji et al., 2015),
and butyrate has been shown to activate vagal afferents and release

gut hormones that might modulate intestinal transport (Dalile
et al., 2019).

Since butyrate has ameliorative effects in the treatment of colitis
(Recharla et al., 2023), and we have shown that butyrate together
with the microbiome affects the expression of transporters and
receptors in the colon, we further investigated the interaction
between oral treatment of butyrate and the presence/absence of
microbiome in a model of acute colitis. Even though downregulation
of Slc16a1 and MCT1 protein expression and upregulation of
Slc16a3 and MCT4 expression were detected in biopsies of
patients with IBD and in the colon of rats or mice with DSS-
induced colitis (Thibault et al., 2007; Erdmann et al., 2019; Zhang
et al., 2019), our results did not show any effect of DSS on SCFA
transporters in SPF mice. This discrepancy may result from
differences in the colitis models used including strain, time of
colitis, and degree of inflammation. In this regard, the expression
levels of SCFA transporters depend on the inflammatory state of the
colonic mucosa (Thibault et al., 2007; Zhang et al., 2019). Moreover,
DSS treatment significantly alters the structure of the intestinal
microbiota (Lin et al., 2023), whose diversity and composition might
differ among various locations/research groups.

In addition, we analyzed the expression of SCFA receptors in
mice with colitis and demonstrated that DSS treatment leads to
upregulation of Olfr78 expression regardless of the presence or
absence of gut microbiota and significant downregulation of
Ffar2 expression in SPF mice and upregulation in GF mice. In
addition, Ffar3 expression in SPF mice was also decreased, but
the decrease was not significant. In contrast, Hcar2 and Olfr558
expression was not changed in either SPF or GF mice. In this
regard, acute DSS colitis in conventional C57BL/6 mice decreased
the expression of Ffar2, Ffar3, and Hcar2 (Lin et al., 2023; Nan
et al., 2023), although this result was not confirmed by others
(Kotlo et al., 2020; Han et al., 2021). These findings indicate that
Olfr78, Ffar2, and Ffar3 may play a more important role in our
model of colitis/inflammation than other SCFA receptors and
that the response of Ffar receptors to inflammation depends on
the gut microbiota.

In conclusion, our study demonstrates that the intestinal
microbiota actively modulates the response of genes encoding
colonic SCFA transporters and receptors, mucin, and the gut
hormone PYY to oral butyrate administration. It is noteworthy
that the responses to butyrate did not differ significantly between the
colons of healthy subjects and those with experimentally induced
murine colitis. Our observations indicate alterations in the
expression of certain SCFA receptors and the hormone PYY in
colitis, while the expression of SCFA transporters remained
unchanged. It is important to note that these changes occurred
regardless of the presence or absence of gut microbiota. Overall, our
results suggest a promising avenue for further research in this area.
These findings highlight the potential indirect influence of butyrate
supplementation on its anti-colitic effects.
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