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Objective: Acutemyeloid leukemia (AML) is a malignant hematologic cancer with
poor prognosis. Emerging evidence suggests a close association between AML
progression and hypoxia. The purpose of this study was to establish a new risk
prognostic model for AML based on hypoxia-related genes, and to explore the
mechanisms by which hypoxia-related genes affect the prognosis of AML based
on tumor immune microenvironment (TIME) and drug resistance.

Methods: The AML patient samples obtained from Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) database were classified
into C1 and C2 based on hypoxia-related genes, followed by analysis utilizing
Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and
Gene Set Enrichment Analysis (GSEA). Through univariate and LASSO Cox
regression analysis, the hypoxia-related hub genes 26S proteasome non-
ATPase regulatory subunit 11 (PSMD11) and 26S proteasome non-ATPase
regulatory subunit 14 (PSMD14) were identified to construct the model. AML
patient samples were obtained from the TARGET and The Cancer Genome Atlas
(TCGA) databases, serving as the training and the validation sets, and were
stratified into high-risk and low-risk group according to the median risk score.
The correlations between the model and TIME and anti-tumor drugs were
analysed using CIBERSORT and Genomics of Drug Sensitivity in Cancer
(GDSC) databases. The expressions of PSMD11/PSMD14 in clinical samples and
AML sensitive and drug-resistant cell lines were detected by Western blot and
real-time PCR.

Results: The C1 group with high expression of hypoxia-related genes had lower
overall survival (OS). Immune-related signaling pathways were different between
C1/C2, and hypoxia was positively correlated with the activation of mammalian
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target of rapamycin (mTOR) signaling pathway. The model had good accuracy in
both the training and the validation sets. The high-risk group exhibited lower OS
and TIME activity, and was more sensitive to several anti-tumor drugs. PSMD11/
PSMD14 were highly expressed in relapsed patients and AML drug-resistant
cell lines.

Conclusion: The established novel risk prognostic model and experiment results
offer valuable insights for predicting AML prognosis and guiding drug selection. It
also provides a fundamental framework for the mechanisms through which
hypoxia impacts AML prognosis by modulating TIME and drug resistance.

KEYWORDS

acute myeloid leukemia, hypoxia-related genes, risk prognostic model, immune
microenvironment, drug resistance

1 Introduction

AML is a malignant clonal hematopoietic stem cell disease
characterized by abnormal proliferation of primitive naive cells
within the myeloid system (Döhner et al., 2015). It exhibits the
highest incidence among adult leukemia cases (Estey and Döhner,
2006; Acute Myeloid Leukemia—Cancer Stat Facts, 2023). Despite
achieving a complete response in many patients post-treatment,
approximately half of them experience relapse. Notably, the 5-year
survival rate decreases with age, with a mere 9% rate for individuals
aged 65 and older (Miller et al., 2022). While traditional chemotherapy
regimens and transplantation have been the standard treatment options,
emerging therapeutic regimens such as novel targeted drugs,
immunotherapy and cell therapy offer additional options for clinical
treatment (Kayser and Levis, 2022). However, the recurrence rate of
AML remains high and long-term survival remains low. Recently, with
the wide spread adoption of second-generation sequencing and other
technologies, the research on AML has gradually advanced (Newell and
Cook, 2021), creating a new avenue to investigate the factors associated
with the adverse prognosis of AML and its specific pathogenesis.

The bone marrow microenvironment (BMM) typically exists in a
low oxygen state, maintaining physiological homeostasis through low
blood partial pressure of oxygen (PO2). Hypoxia has conventionally
been considered a niche characteristic that supports quiescence in
hematopoietic stem cells (HSC) (Spencer et al., 2014). However, in
AML, the malignant proliferation of leukemia stem cells (LSC)
aggravates bone marrow hypoxia (Kosan and Godmann, 2016). In
contrast to its role as a normal HSC environment, hypoxic BMM forms
a “malignant niche” that fosters LSC survival and proliferation (Zhou
et al., 2016). In this hypoxic BMM, LSC is induced with the ability to
escape the cytotoxic effects of chemotherapy drugs, thereby acquiring
drug resistance (Annaloro et al., 2011). Increasing evidence suggests that
hypoxia provides an environment that promotes survival for AML cells,
protecting them from apoptosis (Kremer et al., 2013;Wang et al., 2014).
The study has indicated that hypoxia-mediated downregulation of Fms-
like tyrosine kinase can result in cytarabine resistance in vitroAML cells
(Sironi et al., 2015). The chemokine ligand 2 is capable of activating
signaling pathways associated with AML cell survival, migration, and
drug resistance under hypoxic conditions (Li et al., 2021b). Additionally,
inhibiting hypoxia-induced histone deacetylase 9 expression contributes
to the synergistic effect of venetoclax andMENIN inhibitor in KMT2A-
rearranged AML (Ling et al., 2023). Therefore, there exists a close
association between hypoxia and the malignant progression of AML.

The presence of hypoxia is a commonly observed hallmark in most
solid tumor (Bai et al., 2022). Its presence not only hampers clinical
efficacy, enhances tumor heterogeneity and drug resistance, but also
disrupts TIME, thereby promoting tumor immune escape (Vito et al.,
2020). Moreover, hypoxia-induced genes regulate diverse biological
processes, enabling tumor cells to avoid apoptosis (Harris, 2002). Many
known oncogenic signaling pathways overlap with hypoxia-induced
signaling pathways (Hanahan and Weinberg, 2011), wherein their
activation confers tumor cells with resistance to chemoradiotherapy
and increased aggressiveness (Jing et al., 2019). Hypoxia also
compromises the functionality of cytotoxic T cells and triggers the
recruitment of regulatory cells, thus reducing the immunogenicity of
tumors (Wu et al., 2022). In addition, it can stimulate tumor cells to
secrete a substantial quantity of immunosuppressive molecules (Zheng
et al., 2020), and regulate the number of immune checkpoint regulatory
factors present on the cell surface (Noman et al., 2015). Overall, hypoxia
directly inhibits the anti-tumor immune response, inducing immune
escape and promoting tumor malignancy (Janker et al., 2019).

Drug resistance has been established as one of the main culprits
of poor prognosis in AML (Estey, 2018), which can be attributed to
multi-gene and multi-pathway interactions (Bolandi et al., 2021).
Meanwhile, numerous studies have demonstrated that there are
multiple internal and external immune escape mechanisms in
AML (Vago and Gojo, 2020). For instance, immune escape
changes in TIME promotes the malignant progression of AML
(Christopher et al., 2018; Toffalori et al., 2019; Corradi et al., 2022).
Nevertheless, whether hypoxia can influence AML prognosis
through these two factors remain unclear and necessitates
further exploration.

Collectively, hypoxia is considered an adverse factor affecting
the prognosis of AML (Clarke and Fisher, 2019), as leukemic cells
induce bone marrow hypoxia that results in the remodeling of the
bone marrow niche (Li et al., 2021a). However, the effects of hypoxia
on TIME and drug resistance in AML as well as the specific
evaluation value of hypoxia-related genes in the clinical prognosis
of AML remain unclear. Therefore, this study aims to establish a
novel risk prognostic model for AML by utilizing hypoxia-related
genes. Additionally, it explores the association between this model
and TIME as well as anti-tumor drugs, and validates the correlation
between hypoxia-related genes and drug resistance, consequently
identifying the potential mechanism underlying hypoxia’s influence
on the prognosis of AML. The establishment of such as model holds
promise for future clinical treatments and drug selection.
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2 Materials and methods

2.1 Clinical samples

The clinical samples were bone marrow samples collected from
patients with AML and normal donors in the Department of
Hematology, The Affiliated Hospital of Guizhou Medical

University from 2021 to 2023. The patient’s condition was
diagnosed using morphological, cytochemical, and
immunotyping. Patients with AML were classified as “newly
diagnosed” and “relapse” by diagnosis. Therefore, the clinical
samples were divided into three groups: “normal donors”
(n = 27), “newly diagnosed” (n = 33) and “relapse” (n = 29).
Detailed data are shown in Supplementary Tables S1–S3. Written

FIGURE 1
Consensus cluster analysis of AML patient samples based on the expression of hypoxia-related genes. (A) CDF curve and Delta area curve for K =
2–6. (B)Heatmap of consensus clustering matrix when K = 2. (C)Heatmap of the 63 hypoxia-related genes expression levels in C1 and C2. (D) KM curves
of OS analysis for C1 and C2.
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FIGURE 2
DEGs, related BP and signaling pathways in C1 and C2. (A) Volcano plot of DEGs in the two groups. (B)Heatmap of the DEGs expression levels in the
two groups. (C) Bubble plots of the top 15 enriched BP and signaling pathways using GO and KEGG. (D)GSEA of the potential signaling pathways activated
by hypoxia. (E) Ridge plot of the posterior distribution of GSEA-GO, and GSEA-KEGG.
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informed consent was obtained from the individuals for the
publication of any potentially identifiable images or data included
in this article. The clinical samples in this paper were approved by
the Ethics Committee of the Affiliated Hospital of Guizhou Medical
University for basic research, and the approval number is
2021 Ethics Approval No. 182.

2.2 Datasets

AML clinical samples were retrieved from TARGET (https://
ocg.cancer.gov/programs/target) database as the training set, while
data from the TCGA (https://www.cancer.gov/ccg/research/
genome-sequencing/tcga) database were utilized as the
validation set.

2.3 Data visualization

The sangerbox (http://sangerbox.com/) and the packages in R
language mentioned below were employed for data visualization.

2.4 Consensus cluster analysis

The “Consensus Cluster Plus” package in R language was
applied for unsupervised consensus cluster analysis. Hypoxia
signature genes were obtained from the Molecular Signatures
Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/)
database. We selected ‘REACTOME_CELLULAR_RESPONSE_
TO_HYPOXIA.v2022.1.Hs.gmt’ as our target gene set for the
study. Hypoxia-related genes associated with AML clinical
samples were screened using VLOOKUP function. Cluster
numbers were between k = 2-6, and the relative area under the
cumulative distribution function (CDF) curve were used to evaluate
the clustering stability. Figures 1A–C was plotted using SangerBox.

2.5 Differentially expressed genes
(DEGs) analysis

The differential expression of mRNAs was evaluated using the
“Limma” package in R language, with thresholds of p < 0.05 and
log2|fold change| >0.585. The expression levels and distributions of
DEGs between C1 and C2 were analyzed using the “Pheatmap”
package in the R language. The sanger box was utilized to generate
Figures 2A, B.

2.6 Survival analysis

The survival analysis was conducted using the “survival”
package in the R language, and the OS of patients belonging to
different clusters (C1 and C2) were analyzed and evaluated.
Furthermore, a comparison was made between the 1-,3-and 5-
year OS of high- and low-risk groups in both the training and
validation sets. The Sangerbox was utilized for the visualization of
Kaplan-Meier (KM) survival curves in Figures 1D, 3C, 4A.

2.7 Functional enrichment analysis

GO and KEGG were conducted using the “Cluster Profilter”
package in R language, false discovery rate (FDR) < 0.05. Figure 2C
was generated using sangerbox.

2.8 GSEA

The DEGs was subjected to pathway enrichment analysis
using GSEA: (https://www.broadinstitute.org/gsea/). Normalize
enrichment score (NES): The normalized enrichment score after
correction was normalized by the data of the gene set; NOM
p-val: The p-value obtained by statistical analysis of ES value
represents the reliability of the result; FDR q-val: The p-value
after multiple hypothesis testing correction represents the
probability of false positive results, The, the smaller the
p-value, the more significant. |NES|>1, FDR <0.25, p < 0.
05 was considered statistically significant. And “Cluster
Profilter” in R language was used to draw Figures 2D, E.

2.9 Identification of hypoxia-related
prognostic genes

Univariate Cox regression analysis was adopted to obtain
34 hypoxia-related genes that exhibited significant associations
with OS in AML patients (hazard ratio, HR = 95%, p < 0.05). The
“ggforest” package in R language was utilized to construct
Figure 3A. LASSO Cox regression analysis was performed on
34 hypoxia-related genes to eliminate any false positive hypoxia-
related genes that may be associated with prognosis. The
“glmnet” package in R language was utilized to generate
Figures 3B, 2 hypoxia-related genes were selected according
to the minimum λ value for constructing the risk
prognostic model.

2.10 Construction of the hypoxia-related
risk prognostic model

The risk scoring formula is as follows:

Risk score � ∑
n

i�1
coefi p xi

The term “Coefi” denotes the coefficient, while “Xi” represents
the normalized count of each core gene. Receiver Operating
characteristic (ROC) curve was generated using the R language
package “time ROC”. The accuracy of the prognostic model in
predicting the 1 -, 3 - and 5-year OS of AML patients was assessed by
calculating the Area Under Curve (AUC) in both the training and
validation datasets. Figures 3D, E was plotted using SangerBox.

2.11 Characterization of immune landscape

The CIBERSORT (https://cibersortx.stanford.edu/) in
conjunction with the LM22 feature matrix was applied to
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FIGURE 3
Construction of an AML risk prognostic model using hypoxia-Related Genes in the training set. (A) Forest plot of the univariate Cox regression
analysis. (B) LASSO Cox regression exhibiting 2 hypoxia-related hub genes based on minimum λ = 0.09. (C) KM survival curves in the high- and low risk
groups. (D)Distribution of the risk scores, scatter plot of the survival status, heatmap of PSMD11 and PSMD14 expression levels in the two groups. (E) ROC
curves of the risk prognostic model predicting the prognosis of AML patients.
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analyze the differences in immune infiltration of
22 immune cells among different groups. The Pearson
product-moment correlation coefficient was utilized to
compute the correlation among immune cells, while the
Mantel test was employed to statistically analyze the
correlation between the risk score matrix and the immune
cell matrix. r = 0-1 represents correlation, with higher values
indicating stronger correlation, and p < 0.05 was considered
statistically significant. The “CIBERSORT” package was used to
conduct Figures 5A–C, while the “ggcor” package in R language
was used to generate Figure 5D.

2.12 Drug sensitivity analysis

The model was trained and drug sensitivity of the samples
was predicted using ridge regression, based on the relationship
between gene expression and drug IC50 in the training set. GDSC
datebase preformed to analyze drug sensitivity of cancer cells.
The sanger box was utilized to draw Figure 6A. The
“oncoPredict” packages in R language were used to
construct Figure 6B.

2.13 Extraction of bone marrow
mononuclear cells from clinical samples

5 mL of bone marrow from AML patients or normal donors was
collected by bone marrow puncture under routine sterile conditions
and preserved with EDTA anticoagulation. Bone marrow was
diluted 1:1 in equal volume with saline and was slowly added
along the wall to a centrifuge tube pre-loaded with Ficoll
(Solarbio Technologies, Beijing, China) separation solution, and
Ficoll was 1:1 with diluted bone marrow. After centrifugation at
2,000 rpm for 15 min at room temperature, the intermediate white
cell layer was aspirated and transferred to a new centrifuge tube.
After centrifugation at 1,500 rpm for 5 min, the supernatant was
discarded. The remaining precipitate, namely, bone marrow
mononuclear cells, was retained after being washed three times
with saline and subsequent discarding of the supernatant.

2.14 Cell culture

The authenticity of THP-1 and U937 human leukemia cell
lines was confirmed by STR analysis, and they were cultured in a

FIGURE 4
Validation of the risk prognosticmodels in the validation set. (A) KM survival curves in the high- and low-risk group. (B)Distribution of the risk scores,
scatter plot of the survival status, heatmap of PSMD11 and PSMD14 expression levels in the two groups. (C) ROC curves of the risk prognostic model
predicting the prognosis of AML patients.
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FIGURE 5
Correlation between the risk prognosis models and TIME. (A) Heatmap demonstrating the distribution of immune cells in the high and low-risk
groups. (B) Stacked bar chart representing the overall calculation of immune cell infiltration in the two groups. (C) Box plots showing the infiltration of
immune cells in both groups. (D) Correlation matrix of risk score matrix and immune cell matrix.
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5% CO2 incubator at 37°Cusing RPMI1640 medium containing
10% fetal bovine serum. Drug-resistant variants, namely, THP-
1R and U937R, were generated by supplementing 1% penicillin
(100 units/mL) and streptomycin (100 mg/mL) to the medium
along with increasing concentrations of cytarabine (Ara-C). The

drug concentration was gradually escalated, repeating this
process three to five times at each concentration after the cells
have proliferated to a normal shape. The drug induction was
maintained for a duration of 6–8 months until the cells achieved a
stable state at the final concentration.

FIGURE 6
Association of the risk prognostic model with anti-tumor drugs. (A)Heatmap showing the distribution of the 22 anti-tumor drugs in high- and low-
risk groups. (B) Box plot revealing the different drug sensitivities in the two groups.
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2.15 Real-time PCR

The extraction of total RNAs from cells was performed using
Trizol reagent (Invitrogen, Carlsbad, CA, United States). The
mixture was vigorously shaken for 15 s after the addition of
chloroform, followed by incubation at room temperature for
3 min. The samples were centrifuged at 12,000 rpm for 15 min at
4°C, and the supernatant was retained. An equal volume of
isopropanol was added, followed by centrifugation at 12,000 rpm
for 10 min at 4°C. Subsequently, the supernatant was discarded. The
RNA precipitate was washed with 500 µL of 75% ethanol.
Subsequently, the samples were subjected to centrifugation at a
speed of 7,500 rpm for a duration of 3 min at a temperature of 4°C,
followed by removal of the supernatant. The samples were air-dried
for 5 min at room temperature to allow ethanol evaporation,
followed by addition of DEPC water and measurement of
concentration. cDNA was extracted using a reverse transcription
kit (MedChemExpressMCE, United States of America). Real-time
PCR was performed using SYBR Green PCR Master Mix
(MedChemExpressMCE, United States) kit and PRISM 7500 real-
time PCR Detection System (Thermo Fisher Scientific,
United States). Relative expression of the target genes was
calculated using β-actin as the reference through comparative
cycle threshold (CT) values (2−ΔΔCT). The following human
primers were used in this paper:

β-actin F 5′-CTACCTCATGAAGATCCTCACCGA-3´;
β-actin R 5′-TTCTCCTTAATGTCACGCACGATT-3´;
PSMD11 F 5′-AGTTCCAGAGAGCCCAGTCT-3´;
PSMD11 R 5′-TTGCACTGCCTCTTCATCGT-3´;
PSMD14 F 5′- GTCAGTGTGGAGGCAGTTGATC-3′;
PSMD14 R 5′-CCACACCAGAAAGCCAACAACC-3′.

2.16 Western blot

The primary antibodies against PSMD11 and PSMD14 (Affinity
Biosciences, United States of America) were diluted at 1:500 and 1:
1,000, respectively, the β-actin primary antibody (Wuhan Sanying,
China) was diluted at 1:3,000. Protein lysates were extracted from
cells by adding 1 mM PMSF to the RIPA lysis buffer (Solarbio
Science and Technology). The mixture was vigorously shaken and
incubated on ice for 30 min. Subsequently, the supernatant was
obtained by centrifugation at 12,000 rpm for 15 min at 4°C. The
concentration of protein was determined using the BCA Protein
Assay kit (Pierce, Hercules, CA, United States). The proteins were
mixed with Loading buffer 1:4 and boiled at 100°C for 10 min 40 μg
of proteins were then added to a 10% SDS-PAGE gel and
electrophoresed into the separation gel at a constant voltage of
80 V followed by switching to a stable voltage of 120 V. At the end of
electrophoresis, the separated proteins were transferred onto PVDF
membranes and rotated at 250 mA for 1 h. After shaking with PBS
containing 5% skim milk on a shaker for 2 h at room temperature,
the membranes were washed. The primary antibodies were then
incubated for more than 8 h at 4°C. After washing the membranes,
secondary antibodies were incubated for at room temperature for
45 min. All protein bands were visualized using the Enhanced
Chemistry kit (7Sea Biotech, Shanghai, China). β-actin was used
as the internal reference.

2.17 Cell counting Kit-8 assay (CCK8)

CCK8 assay was used to detect the sensitivity of leukemia cell
lines to Ara-C. The cells were inoculated into individual wells of a
96-well plate at a seeding density of 3 ×104 cells/100 μL, with five
replicates per experimental group. After subjecting the cells to
various concentrations of Ara-c for a duration of 24 h, a volume
of 10 μL CCK8 reagent was added into each well, the concentrations
of Ara-c in U937 and U937R cell lines were 4, 16, 64, 192, 386, 578,
768 and 1,536 μM, meanwhile the concentrations of Ara-c inTHP-1
and THP-1R cell lines were 0.5, 4, 64, 192, 386, 578,
768 and1536 μM. The absorbance at 450 nm was quantified using
a microplate spectrophotometer after co-culthring for 1–2 h. The
IC50 value was determined by employing the GraphPad Prism
9.5 software.

2.18 Statistical analyses

The statistical software GraphPad Prism 9.5 was utilized for
conducting both the analysis and visualization of data. The Shapiro-
Wilk test and the Kolmogorov-Smirnov test were used to test the
normal distribution of data. After the data passed the normal
distribution test, the unpaired t-test was employed to compare
and evaluate the differences between two groups. The
experimental data were represented as mean ± standaed
deviation (SD). The significance level, denoted by p calue, is
interpreted as follows: *p < 0.05, **p < 0.01, ***p < 0.001 ****p <
0.0001; among these values, p < 0.05 is considered statistically
significant.

3 Results

3.1 The AML patient samples were grouped
using consensus cluster analysis based on
hypoxia-related genes

To investigate the association between hypoxia and poor
prognosis in AML, AML patient samples were grouped into
differentsubtypes. Firstly, a search was conducted in the
MSigDB database using the keyword “hypoxia”, resulting in
60 gene sets. After thorough consideration of factors such as
the number of genes within each set, correlation with the
research field, we ultimately identified a gene set containing
75 hypoxia-related genes as the target gene set. After screening
using the VLOOKUP function, 63 of these genes were found to
be linked to AML. Subsequently, unsupervised consensus cluster
analysis was performed on 187 AML samples downloaded from
the TARGET database, which were based on these 63 genes. The
clustering stability is assessed by employing the CDF curve and
Delta area curve for different cluster numbers (K = 2–6), the
selection of K = 2 for clustering was presumed to be the optimal
choice (Figure 1A). Accordingly, AML patient samples were
classified into two subtypes, namely, C1 (n = 121) and C2
(n = 66) (Figure 1B). The heatmap revealed that the hypoxia-
related genes in C1 displayed higher expression compared to
those in C2 by analyzing the expression distribution of

Frontiers in Pharmacology frontiersin.org10

Liu et al. 10.3389/fphar.2024.1339465

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1339465


63 hypoxia-related genes (Figure 1C). Therefore, C1 was defined
as the high-expression hypoxia-related gene group, whereas
C2 as the low-expression group. To explore the effects of
hypoxia-related genes on the clinical prognosis of AML,
survival analysis was performed in the two groups. The KM
survival curve indicated a worse OS in the C1 group. (p <
0.05) (Figure 1D).

3.2 Identification of DEGs and signaling
pathways between the different
hypoxia subtypes

We screened out the DEGs between the two subtypes, GO,
KEGG and GSEA were performed to analyse their biological
functions and signalling pathways associated with hypoxia. This
analysis allowed us to elucidate the mechanism by which hypoxia
affects the clinical prognosis of AML. The “Limma” package in R
language was utilized for filtering the DEGs between the two
subtypes (|log2 FC|>0.585, p < 0.05). The volcano plot revealed
7,735 DEGs between C1 and C2, with 7,505 genes upregulated and
230 genes downregulated (Figure 2A). The heatmap, further
revealed the expression level and distribution of DEGs between
C1 and C2, (Figure 2B). GO and KEGG enrichment analyses of
DEGs identified the top 15 relevant biological processes (BP) and
signaling pathways (Figure 2C). Notably, the top three enriched of
GO terms were the cellular protein metabolic process, cellular
protein modification process and protein modification process.
Parallelly, KEGG-enriched signaling pathways included human
T-cell leukemia virus type 1 infection, the T cell receptor
signaling pathway, PD-L1 expression and the PD-1 checkpoint
pathway in cancer, TH17 cell differentiation and other immune-
related signaling pathways.

To compensate for any omissions in the DEGs-based GO and
KEGG analysis, especially owing to the threshold setting, and further
elucidate the related signaling pathways that may be activated by
hypoxia, GSEA was used to compare the gene sets (Figure 2D).
GSEA revealed positive correlations between the high expression of
hypoxia-related genes and the activation of several signaling
pathways, including the cytoplasmic pattern recognition receptor
signaling pathway (NES = 2.24), pathways in cancer (NES = 1.55),
protein acetylation (NES = 2.21) and mTOR signaling pathways
(NES = 1.68). The ridge plot presented the posterior distribution of
GSEA-GO and GSEA-KEGG (p < 0.05) (Figure 2E), confirming
significant enrichment in the cytoplasmic pattern recognition
receptor signaling pathway and protein acetylation pathways,
which are consistent with the previously enriched biological
processes, such as protein modification processes.

3.3 Construction of an AML risk prognostic
model using hypoxia-related genes

In further investigating the value of hypoxia-related genes in
assessing the clinical prognosis of AML, a risk prognostic model of
AML was constructed based on hypoxia-related genes. Initially, a
univariate Cox regression analysis was performed to select 34 genes
that were directly associated with the prognosis of AML from the

63 hypoxia-related genes (HR = 95%, p < 0.05) (Figure 3A). These
34 hypoxia-related genes were further analyzed using LASSO Cox
regression to eliminate false positive factors related to prognosis.
Using a minimum λ = 0.09, two hypoxia-related hub genes,
PSMD11 and PSMD14, were finally selected to construct the risk
prognosis model for patients with AML (Figure 3B). The risk scores
for patients with AML were calculated by assessing the expression
levels of PSMD11 and PSMD14 and applying risk coefficients
according to the following formula: Risk Score =
PSMD11*0.150603712635304+PSMD14*0.193834319424803.

The training set consisted of 187 AML patient samples
downloaded from the TARGET database, which were further
categorized into a high-risk group (n = 94) and a low-risk
group (n = 93) based on the median risk score. Moreover,
survival analysis was performed on the two groups, with the
KM survival curve demonstrating a lower OS rate in the high-
risk group (p < 0.05) (Figure 3C). Additionally, we analyzed the
risk scores, survival status and PSMD11 and PSMD14 expression in
the two groups. The high-risk group exhibited poorer clinical
outcomes, whereas the expression levels of the two hub genes
were significantly upregulated in this group (Figure 3D).
Furthermore, the training set model was assessed using ROC-
AUC to determine its accuracy. The AUC values for predicting the
1-, 3- and 5-year OS of patients with AML using this model were
found to be 0.62, 0.68 and 0.68 respectively (Figure 3E). Thus,
collectively, these results indicate that the hypoxia-related genes
PSMD11 and PSMD14-based AML risk prognostic model
demonstrates good accuracy in predicting prognosis.

3.4 Verification of the predictive power of
the hypoxia-related gene risk
prognostic model

To confirm the reliability of the risk prognostic model,
external dataset was employed for validation. A total of
151 AML clinical samples downloaded from the TCGA
database was used as the validation set and were stratified into
high-risk (n = 76) and low-risk (n = 75) groups based on the
median risk scores. Similar to the training set, the KM survival
demonstrated a lower OS in the high-risk group of the validation
set (p < 0.05) (Figure 4A). Analyses were then conducted on the
risk scores, survival status and core gene expression levels of
AML patient samples in the validation set. The results obtained
were consistent with those observed in the training set
(Figure 4B). Finally, the AUC values of predicting the
prognosis of 1-, 3- and 5-year AML patients were 0.65,
0.56 and 0.62, respectively (Figure 4C). This indicates that the
model maintains its prediction ability in the validation set.

3.5 Association of the risk prognostic model
with TIME of AML

The influence of hypoxia on the progression of AML through
alterations in the TIME remains unclear. Therefore, the correlation
between the risk prognostic model and the TIME of AML was
investigated in this study. First, we utilized a heatmap to illustrate
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FIGURE 7
Association of PSMD11 and PSMD14 with the poor AML prognosis. (A) The mRNA expression of PSMD11 and PSMD14 in the “normal donors group”
(n = 27), “newly diagnosed group” (n = 33) and “relapse group” (n = 29). (B) The protein expression of PSMD11 and PSMD14 in the “normal donors group”
(n = 12), “newly diagnosed group” (n = 12) and “relapse group” (n = 12). Grey values of PSMD11, PSMD14. (C)mRNA expression of PSMD11 and PSMD14 at
newly diagnosed and relapse in the same patient (n = 11). (D) Risk scores for the “favorable group” (n = 11), “intermediate group” (n = 9), “adverse
group” (n = 13).

Frontiers in Pharmacology frontiersin.org12

Liu et al. 10.3389/fphar.2024.1339465

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1339465


the distribution of immune cells between the high- and low-risk groups
(Figure 5A). CIBERSORT combined with the LM22 characteristic
matrix was adopted to analyze the disparity in immune cell
infiltration between the two groups. Stacked bar chart represented
the overall calculation of immune cell infiltration for each sample
(Figure 5B). Additionally, the box plots demonstrated that the
infiltration degree of B cells naive, mast cells resting and T cells
CD4 memory resting was higher in the high-risk group, whereas
that of eosinophils, macrophage M2 and monocytes was higher in
the low-risk group (p < 0.05) (Figure 5C). These findings indicate that
the activity of the immune microenvironment was lower in the high-
risk group. Finally, the correlation between the risk scorematrix and the
immune cell matrix was statistically analyzed using Mantel test. The
heatmap of the correlation matrix revealed a significant association

between the risk score and NK cells as well as mast cells (0.01<Mantel’s
p < 0.05, Person’r = 0–1) (Figure 5D).

3.6 Association of the risk prognostic model
with anti-tumor drugs in AML

In order to explore the biological significance of the risk
prognosis model, we performed drug predictions in the high-
and low-risk groups. The “oncoPredict” package was utilized to
identify 22 anti-tumor drugs associated with risk scores based on the
GDSC database.The heatmap illustrated the distribution of drug
susceptibility between the two groups (Figure 6A). The box plots of
22 drugs demonstrated that the high-risk group was more sensitive

FIGURE 8
High expressions of PSMD11 and PSMD14 in AML drug-resistant cell lines. (A) The cell viability of U937, U937R, THP-1 and THP-1R cell lines. (B) The
mRNA expression of PSMD11 and PSMD14 in AML cell lines. (C) The protein expression of PSMD11 and PSMD14 in AML cell lines. Grey values of PSMD11,
PSMD14. The cell experiments were independently repeated three times for each trial.
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to the mTOR inhibitor rapamycin and the dual ATP competitive
PI3K andmTOR inhibitor Dactolisib which were consistent with the
results of GSEA. In other words, hypoxia in AML was found to
activate the mTOR signaling pathway, with high-risk groups
characterised by high expression of hypoxia-related genes,
exhibiting higher sensitivity to mTOR inhibitors. Furthermore,
the high-risk group also displayed lower resistance to protease
receptor inhibitor bortezomib and protease inhibitor MG132,
suggesting that these drugs are effective in patients with high
expression of PSMD11 and PSMD14, components of the 26S
proteasome complex. (p < 0.05) (Figure 6B). Consequently, these
anti-tumor drugs may yield better therapeutic outcomes in the high-
risk group. Collectively, the risk prognosis model holds biological
significance.

3.7 PSMD11 and PSMD14 were closely
associated with poor prognosis of AML

To further verify the influence of hub genes PSMD11 and
PSMD14 in the risk prognostic model on patient prognosis, their
expressions in bone marrow blood samples of AML patients and
normal donors were examined. Real-time PCR and Western blot
results revealed that the mRNA and protein expression levels of
PSMD11 and PSMD14 were highest in the relapse group and
lowest in the normal donors group, with significantly higher
levels observed in the relapse group compared to the newly
diagnosed group (p < 0.05) (Figures 7A, B). Notably, within a
subset of 11 patients providing both newly diagnosed and relapse
samples, the mRNA expression of PSMD11 and PSMD14 were
consistently higher in the relapse group than that in the newly
diagnosed group of the same patient (p < 0.05) (Figure 7C). Then,
we divided the newly diagnosed clinical samples into 3 risk
categories as favorable, intermediate, adverse groups based on
the updated ELN AML Guidelines for 2022 (Döhner et al., 2022),
and calculated risk scores for these clinical samples. The analysis
revealed that the risk scores of clinical samples in the adverse
group was significantly higher than those of the favorable group
(p < 0.05) (Figure 7D). Collectively, these results further confirm
the reliability of the risk prognosis model, and highlighted the
close association of PSMD11 and PSMD14 with the poor
AML prognosis.

3.8 PSMD11 and PSMD14 were highly
expressed in AML drug-resistant cell lines

Finally, to confirm the association between the risk
prognostic model and the resistance towards conventional
chemotherapeutic drug, we assessed the viability of AML-
sensitive cell lines U937 and THP-1, as well as drug-resistant
cell lines U937R and THP-1R under varying concentrations of
Ara-C was examined using CCK8. The IC50 values of U937 and
THP-1 were 2.152 and 2.544 μM, whereas those of U937R and
THP-1R were 126.5 and 131.7 μM, respectively, indicating that
U937R, THP-1R cells were 58.8 and 51.8 times more resistant
than U937and THP-1 cells (Figure 8A). Real-time PCR and
Western blot results showed that the mRNA and protein

expression levels of PSMD11 and PSMD14 were higher in
AML drug-resistant cell lines (p < 0.05) (Figures 8B, C). These
findings provide evidence that elevated levels of PSMD11 and
PSMD14 are closely related to AML drug resistance, indicating a
potential role of hypoxia in contributing to poor AML prognosis
through drug resistance.

4 Discussion

In this study, we focused on the role of hypoxia and its impact on
drug resistance and TIME in the prognosis of AML. Therefore, we
constructed a new risk prognostic model of AML using hypoxia-
related genes, namely, PSMD11 and PSMD14. This model
demonstrated good prognostic accuracy and provided a novel
reference for the clinical prognosis prediction of AML. We have
also observed that hypoxia can induce drug resistance and TIME
suppression in AML, which providing novel insights into the
mechanism underlying a poor prognosis in this disease.
Moreover, the enrichment analysis of GO and KEGG revealed
that the BP and signaling pathways were primarily associated
with protein modification and immune-related signaling,
indicating a potential role for hypoxia in promoting the
occurrence and progression of AML through modulation of
protein modification and alteration of TIME. Additionally, our
results revealed that mTOR signaling pathway may be activated
by hypoxia-related genes in AML. It is known that mTOR as a
pivotal regulator of cellular metabolism, exerts its control over cell
growth and proliferation via diverse signaling pathways (Kim and
Guan, 2015). Studies have suggested that the mTOR signaling
pathway is activated in many tumors, thereby promoting tumor
growth and proliferation and inducing drug resistance (Mossmann
et al., 2018; Hua et al., 2019). PI3K-Akt-mTOR activation is currently
known a poor prognostic factor in AML (Nepstad et al., 2020).
Therefore, further investigation is warranted to elucidate the
mechanism by which hypoxia activates mTOR signaling and
consequently contributes to unfavorable prognosis in AML.

The 26S proteasome comprises a single catalytic 20S complex
(core particle) and one or two 19S regulatory complexes (regulatory
particle), which catalyzes the degradation of most proteins and plays
a crucial role in numerous cellular processes (Collins and Goldberg,
2017). The 19S regulatory complex is responsible for the
deubiquitination, unfolding and reorientation of proteins to
catalytic sites within the 20S complex (Budenholzer et al., 2017).
After recognizing ubiquitination labeled proteins, 26S proteasome
can degrade unnecessary or damaged thereby playing a proteins by a
crucial role in maintaining cell homeostasis (Collins and Goldberg,
2017). Hypoxia-related genes PSMD14 and PSMD11 are
components of the 19S subunit (Hoffman and Rechsteiner, 1997;
Sun et al., 2021). PSMD11, also known as RPN-6, plays a pivotal role
in the regulation of both the assembly and activity of 26S proteasome
(Vilchez et al., 2012) and its high expression or phosphorylation
promotes 26S proteasome assembly and enhance proteasome
activity (Lokireddy et al., 2015). Studies have revealed that
PSMD11 serves as a potential biomarker for predicting the
progression of pancreatic cancer (Sahni et al., 2020). Moreover,
the rapid synthesis of the PSMD11 protein is related to the activation
of the MEK1/ERK1/2 signaling pathway (Wang et al., 2018).
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PSMD14 is also known as POH1/Rpn11, and its high expression is
associated with tumor progression, high tumor grade, reduced
susceptibility to cytotoxic drugs, and poor prognosis (Spataro and
Buetti-Dinh, 2022). Numerous studies have associated PSMD14
with the occurrence and development of various tumors (Luo
et al., 2017; Song et al., 2017; Yu et al., 2019; Zhang et al., 2020a;
Lv et al., 2020; Jing et al., 2021). Notably, bortezomib, a proteasome
inhibitor, has been used in the clinical treatment of multiple
myeloma (Goldberg, 2012). The newly developed PSMD14
inhibitors, capzimin and thiolutin, also demonstrated robust anti-
cancer activity in solid tumors and leukemia cell lines (Spataro and
Buetti-Dinh, 2022). And PSMD14 inhibition can induce multiple
myeloma cell apoptosis and overcome bortezomib resistance (Song
et al., 2017). Thus, PSMD14 considered a drug target for cancer
treatment, especially in the context of inhibiting cancer progression
(Bustamante et al., 2023). In general, PSMD11 and PSMD14 are
closely related to tumor development and poor prognosis, however
few studies in the context of AML are lacking. Therefore, it is
necessary to continue exploring the mechanism of PSMD11 and
PSMD14 in AML. In this study, the in vitro cell experiments revealed
a potential mechanism by which hypoxia may lead to AML drug
resistance through overexpression of PSMD11/PSMD14. Moreover,
the analysis of anti-tumor drugs suggested that the AML patients
exhibiting high levels of PSMD11/14 expression may benefit from
utilizingmTOR inhibitors or proteasome inhibitors. Thus, PSMD11/
PSMD14 can be considered potential biological markers of AML
drug resistance, and the drug sensitivity analysis results have the
potential to guide drug selection for patients with AML.

The immune microenvironment landscape analysis under
immune cell infiltration has been widely used in tumor research,
analysis of the effect of the immune microenvironment on tumors
aids in the advancement of immunotherapy (Zhang et al., 2020b;
Klemm et al., 2020). Our study revealed that the immune
microenvironment exhibited diminished activity in the high-risk
group, therefore, we speculated hypoxia as a contributing factor to
the suppression of TIME in acute myeloid leukemia AML.
Moreover, strong correlations between the risk score and NK
cells as well as mast cells were observed, suggesting that hypoxia
may exert immunosuppressive effects in AML by modulating these
immune cell. Among them, mast cells secrete a variety of cytokines,
participate in immune regulation by activating antigen-presenting
cells (APCs), express major histocompatibility complex (MHC)
molecules, B7 molecules, and also function as APCs (Komi and
Redegeld, 2020). However, NK cell-mediated tumor recognition is
independent of MHC, but relies on the interaction of inhibiting and
activating receptors on NK cells and several ligands on the surface
of tumor cells (Poznanski and Ashkar, 2019). Our research team
has reported that Heme Oxygenase-1 (H O -1) induces NK cell
dysfunction and promotes the occurrence and development of
AML (Zhang et al., 2022; Feng et al., 2023). mRNA and protein
expressions of H O -1 are established to be upregulated in response
to oxidative stress and cell damage (Chiang et al., 2021).
Meanwhile, hypoxia and oxidative stress also interact with each
other. During the process of cell metabolism, hypoxia induces a
series of reactions to produce oxidative substances such as free
radicals and thereby promote cell damage (You et al., 2021).
Therefore, we hypothesize that hypoxia may regulate the
expression of H O -1 by influencing oxidative stress, thus

inhibiting the activity of NK cells and ultimately leading to the
poor prognosis of AML.

Finally, due to the utilization of publicly available databases for
model construction in this study, it lacks certain accuracy.
Nevertheless, the clinical sample experiments showed that the
high expression of PSMD11/PSMD14 was associated with poor
prognosis in AML which further confirmed the reliability of the
risk prognosis model. Additionally, further experimental
verification of the specific mechanism of hypoxia leading to
immunosuppression elucidated herein is required, which is the
limitation of this study and the future research direction of our
research team.

5 Conclusion

In this study, a robust and novel risk prognostic model of AML
was constructed using hypoxia-related genes, namely, PSMD11 and
PSMD14, which showed good prognostic accuracy. Moreover,
hypoxia has been observed to induce TIME inhibition in AML,
and to affect the malignant progression of AML through the
activation of the mTOR signaling pathway and overexpression of
PSMD11 and PSMD14. Anti-tumor drug analysis revealed that
patients in the high-risk group were more sensitive to mTOR
inhibitors and proteasome inhibitors. Furthermore, clinical
sample analysis and in vitro cell experiments confirmed the
reliability of the model and the correlation between hypoxia and
drug resistance. Thus, the established risk prognostic model offers
valuable insights for predicting AML prognosis and guiding drug
selection. It also sheds light on the mechanisms by which hypoxia
contributes to poor AML prognosis through TIME disruption and
drug resistance.
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