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Type 2 diabetes presents a significant global health burden and is frequently
linked to serious clinical complications, including diabetic cardiomyopathy,
nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from
Astragalus membranaceus, exhibits various biochemical and physiological
effects. In recent years, a growing number of researchers have investigated
the role of APS in glucose control and the treatment of diabetes and its
complications in various diabetes models, positioning APS as a promising
candidate for diabetes therapy. This review surveys the literature on APS from
several databases over the past 20 years, detailing its mechanisms of action in
preventing and treating diabetes mellitus. The findings indicate that APS can
address diabetes by enhancing insulin resistance, modulating the immune
system, protecting islet cells, and improving the intestinal microbiota. APS
demonstrates positive pharmacological value and clinical potential in
managing diabetic complications, including diabetic retinopathy, nephropathy,
cardiomyopathy, cognitive dysfunction, wound healing, and more. However,
further research is necessary to explore APS’s bioavailability, optimal dosage,
and additional clinical evidence.
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1 Introduction

As of 2021, the global diabetic population reached 529million, with diabetes standing as
a leading cause of blindness, renal failure, heart attacks, stroke, and lower limb amputation
(GBD, 2021 Diabetes Collaborators, 2023). While glucose-lowering therapies remain
fundamental in diabetes management, the pursuit of novel therapeutics has gained
momentum in research and development (Nauck et al., 2021). Herbal medicine
emerges as a promising avenue, offering the potential for diversified diabetes treatment
and improved patient quality of life (Tian et al., 2019; Ai et al., 2020; Zhang et al., 2022). Its
efficacy stems from various mechanisms, including inhibition of α-glucosidase and α-
amylase to reduce carbohydrate digestion and absorption, protection of pancreatic β-cells,
enhancement of insulin sensitivity, promotion of gluconeogenesis and glycogen storage in
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the liver and muscle, antioxidant defense against organ damage, and
attenuation of tissue inflammation to shield impaired tissues (Sun
et al., 2021).

Polysaccharides are prominent constituents of herbal plants,
and in recent decades, polysaccharides isolated from various herbs
have exhibited a range of biological activities, including antitumor,
antioxidant, hypoglycemic, antiradical, antiviral, hypolipidemic, and
immunomodulatory effects. Polysaccharides from herbs such as
Astragalus membranaceus, Angelica sinensis, Cordyceps sinensis,
and Ophiopogon japonicus possess antidiabetic properties (Zeng
et al., 2018).

A. membranaceus, initially documented in the Shennong Ben
Cao Jing (Classic of the Divine Husbandman’s Materia Medica),
refers to the dried root of the leguminous plants A.
membranaceus Bge. var. mongholicus (Bge.) Hsiao and A.
membranaceus (Fisch.) Bge (Chinese Pharmacopoeia
Commission, 2020) and can be applied in the treatment of
conditions such as weakness, wounds, anemia, fever, allergies,
chronic fatigue, loss of appetite, uterine hemorrhage, and uterine
prolapse (Kim et al., 2003). Studies have verified the
immunomodulatory, antioxidant, anti-inflammatory, and anti-
tumor properties of A. membranaceus, leading to its widespread
use in various diseases like cardiovascular diseases (Su et al.,
2021), diabetes mellitus (DM) (Tian et al., 2016), cancers (Sheik
et al., 2021), respiratory diseases (Yang C.-G. et al., 2023), and
neurological disorders (Xia et al., 2020).

Astragalus polysaccharides (APS) can be classified into
heteropolysaccharides, glucans, neutral polysaccharides, and acid
polysaccharides, with their monosaccharide composition varying
based on the astragalus source and polysaccharide molecular weight
(Tang and Huang, 2022). The complex chemical structures of
individual APS make their isolation and characterization
challenging, resulting in limited knowledge of APS composition.
To date, 30 polysaccharides have been isolated and identified from
A. membranaceus using extraction methods like water extraction,
microwave extraction, enzyme extraction, and alkaline water
extraction (Guo et al., 2018). Wang et al. utilized various
techniques to analyze APS structure and composition, revealing
rhamnose, galacturonic acid, glucose, galactose, and arabinose as
components, with Glc as the primary constituent. Gas
chromatography indicated eight main glycosidic bond types, with
1,4-glucose predominating, and NMR spectroscopy confirmed the
α-configuration of isohead hydrogen (Wang et al., 2017). Yan et al.
obtained APS by alcohol precipitation of astragalus extract followed
by Sevage deproteinization, yielding three APS fractions (APS-1,
APS-2, and APS-3) via DEAE-resin column chromatography (Yan
et al., 2012).

Numerous studies have highlighted the potential of APS in
treating Type 1 diabetes mellitus (T1DM), Type 2 diabetes
mellitus (T2DM), and diabetic complications such as diabetic
retinopathy (DR), diabetic nephropathy (DN), diabetic
cardiovascular disease, and diabetic cognitive dysfunction,
through various pathways (Wu et al., 2007; Dun et al., 2016; Sun
S. et al., 2019; Meng et al., 2020; Ma, 2022). However, the broad
scope of APS’s effects necessitates a detailed description to fully
comprehend its role in diabetes. Therefore, this review summarizes
APS’s role and underlying molecular mechanisms in diabetes and its
related complications.

2 Methods

Studies related to APS’s anti-diabetic effects were identified
through major scientific databases (PubMed, Web of Science,
Embase, Google Scholar, and China National Knowledge
Infrastructure) over the last 20 years. Some articles were also
discovered through citation tracing or by visiting journal
websites. Keywords used during the search included APS,
astragalus membrane, astragalus montana, antidiabetic,
hypoglycemic, hypolipidemic, mechanism, insulin sensitivity, and
insulin resistance.

3 Effects of APS in DM

DM is a chronic disease characterized by hyperglycemia (Mathis
et al., 2001). T1DM is a chronic, immune-mediated disease
characterized by the destruction of insulin-producing β-cells in
the pancreas (Norris et al., 2020), while T2DM is primarily
characterized by insulin resistance and impaired insulin secretion
(DeFronzo et al., 2015).

APS improves both T1DM and T2DM through different
molecular mechanisms. In streptozotocin combined with a high-
fat diet (HFD)-induced diabetic rats, APS (700 mg/kg, orally) for
8 weeks significantly reduced fasting plasma glucose, random blood
glucose, glycated hemoglobin, and homeostatic model assessment of
insulin tolerance (Zou et al., 2009). In another study in diabetic rats
with streptozotocin/HFD, APS (400 mg/kg, orally) treatment for
5 weeks significantly reduced random blood glucose and improved
insulin sensitivity in diabetic rats (Wu et al., 2005). In KKAy mice,
APS improved hyperglycemia and systemic insulin sensitivity and
reduced hepatic triglyceride and free fatty acid content (Mao et al.,
2007). Furthermore, in Goto Kakizaki (GK) rats, APS (500 mg/kg,
orally) for 8 weeks resulted in reduced body weight, area under the
curve of postprandial blood glucose, and total cholesterol,
triglycerides, and low-density lipoprotein cholesterol levels (Wei
et al., 2018). In a study using APS (200 mg/kg, orally) to prevent the
onset of diabetes in non-obese diabetes (NOD) mice, it was found
that APS-administered NOD mice had a lower incidence of T1DM
than the controls (Chen et al., 2008). The molecular mechanism of
APS’s hypoglycemic effect involves its action on insulin-sensitive
organs such as the liver, skeletal muscle, adipose tissue, and
pancreas (Figure 2).

3.1 Improvement of insulin resistance by APS

Insulin resistance is characterized by an insulin-mediated defect
in glucose metabolism control, particularly in the muscles, adipose
tissues, and liver (Roden and Shulman, 2019; James et al., 2021). The
insulin-sensitizing effect of APS has been extensively documented
(Mao et al., 2009; Zhang et al., 2015; Sun J. et al., 2019). Adipose
tissue is a major insulin target, and impaired glucose uptake in
adipose tissue is linked to insulin resistance (Abel et al., 2001). The
use of mouse 3T3-L1 preadipocytes is common in studying the
insulin-sensitizing activity of hypoglycemic compounds. Zhang et al.
(2018) used 3T3-L1 preadipocytes and APS (0.1 μg/mL) for
intervention, demonstrating that APS increased preadipocyte
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proliferation in a dose-dependent manner, increased mRNA and
protein content of glucose transporter protein 4, enhanced tyrosine
phosphorylation of insulin receptor substrate 1 and phospho-Akt
content, and increased AMP-activated protein kinase (AMPK)
content. Ke et al. (2017) found that APS (1 μg/mL) suppressed
miR-721 expression and increased PPAR-γ expression, promoting
glucose uptake and enhancing insulin sensitivity in 3T3-L1
adipocytes in a dose- and time-dependent manner, through the
miR-721-PPAR-γ-PI3K/AKT-GLUT4 signaling pathway.

The liver plays a central role in glucose synthesis and
metabolism and is a major target organ for insulin resistance
(Rodríguez-Gutiérrez et al., 2018). Wei et al. (2018) used a
T2DM rat model established with GK rats and administered APS
(500 mg/kg/day, orally) for 8 weeks. The results showed that APS
attenuated insulin resistance in T2DM by upregulating or
maintaining hepatic miR-203a-3p expression levels and by
decreasing GRP78, CHOP, pJNK1, and cysteine asparaginase-12
protein expression levels. GU et al. (2015) administered APS
(700 mg/kg, orally) for 8 weeks in GK rats and found that APS
elevated hepatic PPARα, FGF21, and SIRT1 expression levels,
reduced chronic inflammation, and partially attenuated hepatic
steatosis, inhibiting aberrant glucose-lipid metabolism and insulin
resistance.

Skeletal muscle, constituting 40%–50% of total body mass, is the
primary tissue responsible for insulin-dependent glucose utilization
(Sinacore and Gulve, 1993). Myostatin, a growth factor secreted by
skeletal muscle, plays a pivotal role in regulating insulin signaling
and insulin resistance (Guo et al., 2009). Liu M. et al. (2013)
employed an HFD to induce diabetes in KKAy mice and treated
them with APS (700 mg/kg, orally) for 8 weeks. The results revealed
that APS treatment reduced myostatin expression and
malondialdehyde production in skeletal muscle of non-insulin-
dependent diabetic KKAy mice, ameliorated hyperglycemia,
hyperlipidemia, and insulin resistance. In vitro studies using
saturated acid palmitate-induced C2C12 cells showed that APS
treatment (200 μg/mL) reduced reactive oxygen species (ROS)
overproduction, extracellular signal-regulated kinase activation,
and nuclear factor kappa B function, partially restored impaired
glucose uptake, improved insulin sensitivity, and reduced myostatin
expression in skeletal muscle. Glucose processing in skeletal muscle
is regulated by the AMPK signaling pathway. Zou et al. (2009)
intervened in HFD combined with streptozotocin-induced diabetic
rats using APS (700 mg/kg, intragastric) and found that APS
alleviated glucose toxicity by increasing hepatic glycogen
synthesis and skeletal muscle glucose translocation through
AMPK activation in T2DM rats. Cellular assays further
demonstrated that APS treatment (400 μg/mL) significantly
increased glucose uptake in L6 myotubes in a time- and
concentration-dependent manner, promoted AMPK activation
mediated by Ca2+/calmodulin-dependent protein kinase β or
liver kinase B1 (Liu J. et al., 2013). Additionally, Liu et al. (2010)
treated 12-week-old diabetic KKAy mice with APS (700 mg/kg) for
8 weeks and found that APS-treated diabetic mice showed partial
restoration of insulin-induced phosphorylation of protein kinase B
Ser-473 and glucose transporter protein 4 translocation in skeletal
muscle. Wu et al. (2005) used APS (400 mg/kg, orally for 5 weeks) in
HFD combined with streptozotocin-treated diabetic rats and
observed that APS decreased the protein level and activity of

protein tyrosine phosphatase 1B in the muscle of type 2 diabetic
rats, increased insulin-induced tyrosine phosphorylation of insulin
receptor β-subunits and insulin receptor substrate-1. Collectively,
these studies demonstrate that APS can improve insulin resistance in
adipose tissue, liver, and skeletal muscle through various pathways,
highlighting its potential as an insulin sensitizer for type 2 diabetes
treatment (Figure 1).

3.2 Improvement of pancreatic islet cell
function by APS

Impaired insulin secretion by pancreatic β-cells is a core
pathomechanism of T2DM, where disease progression hampers
insulin secretion’s ability to maintain glucose homeostasis,
leading to hyperglycemia (Weyer et al., 1999; DeFronzo et al.,
2015). Pancreatic β-cells are crucial in maintaining glucose
metabolism balance. APS has been shown to improve pancreatic
β-cell number and function in diabetic rats through various
protective mechanisms (Cui et al., 2016; Tang et al., 2017; Yang
Z.-M. et al., 2021).

Yang Z.-M. et al. (2021) reported that APS treatment reversed
the decreased glucagon-like peptide-1 and its receptors expression
levels in the pancreas of T2DM diabetic rats, along with increased
expression of glucose transporter 2, promoting restoration of insulin
secretion levels by affecting the STR/GLP-1/GLP-1R pathway in the
enteropancreatic axis of T2DM rats. Deng et al. (2021) treated
MIN6 cells (mouse pancreatic β-cell line) with APS (50, 100, and
200 μg/mL) after high glucose (HG) with palmitic acid treatment.
APS-treated MIN6 cells exhibited higher viability, increased insulin
secretion and pancreatic and duodenal homeobox 1 expression, and
reduced apoptosis, reversing the effects of HG/palmitic acid on
MIN6 cells. Additionally, chronic low-grade inflammation plays a
crucial role in the development of metabolic disorders and diabetes
mellitus. Excessive release of cytokines can severely damage
pancreatic islet cells (Greenfield and Campbell, 2006). APS
suppresses interleukin (IL)-1β protein production and the
expression of several pro-inflammatory genes (e.g., iNOS, IL-1β,
IL-6, MCP-1, and CD11c), which may also contribute to APS’s
protective mechanism for islet cells (Lu et al., 2013). This
underscores APS’s ability to safeguard pancreatic islets by
reducing inflammatory factors, inhibiting islet β-cell apoptosis,
and promoting insulin secretion (Figure 2).

3.3 Effects of APS in immunomodulation

APS has immunomodulatory effects on various immune cells,
inhibiting over-activation of the immune system, and is widely
used as an immunomodulator in clinical practice (Li et al., 2022).
T1DM is an autoimmune disease mediated by T cells that destroy
insulin-producing beta cells in the pancreatic islets (Marfil-Garza
et al., 2021). It is associated with an imbalance between T helper 1
(Th1) and T helper 2 (Th2) subpopulations of helper
T-lymphocytes and their cytokines. Th1 cytokines, such as
interferon-gamma (IFN-γ), promote islet inflammation and
DM, whereas Th2 cytokines, such as IL-4, protect pancreatic
islet β-cells from damage (Roep, 2003).
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FIGURE 1
Mechanism of APS to improve insulin resistance in adipose tissue, liver and skeletal muscle.

FIGURE 2
Mechanisms of APS to improve islet cell function.

Frontiers in Pharmacology frontiersin.org04

Liu et al. 10.3389/fphar.2024.1339406

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1339406


Research has demonstrated that intervention with APS
(2.0 mg/kg p. o.) in NOD mice for 10 weeks resulted in reduced
infiltration of pancreatic islets with CD4+ T-lymphocytes, lower
spleen T-lymphocyte CD4+/CD8+ ratios, and decreased gene
expression of Th1-type cytokines in the pancreas compared to
control NOD mice. This led to a decrease in the conversion of
Th1-type cytokines to Th2 cytokines, including IL-4, IL-5, IL-10,
transforming growth factor (TGF), B-cell lymphoma-2 (Bcl-2), and
superoxide dismutase (SOD), thereby altering the autoimmune
response and delaying or preventing the development of T1DM
in NOD mice (Chen et al., 2008). Furthermore, another study using
APS (2 g/kg p. o.) to intervene in NODmice for 2 months found that
early application of APS pre-immunization significantly
downregulated the expression levels of Fas and iNOS genes in
the pancreatic islets of NOD mice. Simultaneously, it upregulated
the expression levels of Bcl-2 and SOD genes in the pancreatic islets,
correcting the immune imbalance of oxidative or apoptotic death in
NOD mice (Chen et al., 2007). In multiple low-dose streptozotocin
(MLD-streptozotocin)-induced diabetic mice treated with APS (100,
200, and 400 mg/kg i. p.) for 15 or 30 days, serum insulin
concentration was upregulated, the β-cell mass increased, the
percentage of apoptotic β-cells decreased, the Th1/Th2 cytokine
ratio was downregulated, and peroxisome proliferator-activated
receptor γ gene expression was upregulated, suggesting that APS
could act through immunomodulation of the Th1/Th2 cytokine
ratio (Li et al., 2007). Zhou et al. (2011) demonstrated that APS
(100 mg/kg, 400 mg/kg p. o.) intervention in streptozotocin-induced
diabetic mice for 15 days reduced pancreatic islet β-cell damage by
modulating galactoglucan-1 (gal-1) and down-regulating the
Th1 response, leading to apoptosis of CD8 T cells. Overall, APS

increased total β-cell mass in T1DM mice by reducing apoptosis of
pancreatic β-cells and protecting regenerating β-cells from damage
through immunomodulation (Figure 3).

3.4 Effects of APS in gut microorganisms

The gut microbiota plays a significant role in metabolism and
immune regulation, acting as an endocrine organ. Dysbiosis of the
gut microbiota and disruption of the intestinal barrier can lead to
organ damage in patients with diabetes (Yang G. et al., 2021).

Chen et al. (2022) demonstrated that in HFD combined with
streptozotocin-induced diabetic mice, APS intervention
(400 mg/kg/day, orally) for 6 weeks strongly inhibited the
potential pathogen Shigella and promoted the growth of
beneficial bacteria such as Eubacterium rectale and Lactobacillus
species. Additionally, APS repaired intestinal microbiota, remodeled
specific intestinal barrier damage, reduced lipopolysaccharide and
systemic inflammation, and improved metabolic parameters in
T2DM mice (Chen et al., 2022). Yang B. et al. (2023) treated
streptozotocin-induced type 1 diabetes mice with APS-1
(200 mg/kg, orally) for 8 weeks, showing that APS-1 modulated
the expression of zona occludens 1, occludin, and claudin-1,
improving intestinal barrier function. APS-1 also restored the
relative abundance of Trichoderma reesei, Lactobacillus reesei, and
Faecalibaculum, inhibiting inflammatory responses, protecting
pancreatic islet cells, reducing blood glucose, and improving
insulin resistance by increasing the relative abundance of
intestinal flora (Yang B. et al., 2023). The effects of APS on gut
microbes were further demonstrated in db/db mice, where APS

FIGURE 3
Effects of APS in immunomodulation.
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treatment (600 mg/kg, orally) for 16 days increased the production
of fecal short-chain fatty acids. This improvement in short-chain
fatty acids production enhanced the expression of G-protein-
coupled receptors 41/43 and tight junction proteins (occudin and
zona occludens 1) restored the diabetic community, improved gut
integrity, and alleviated diabetes symptoms in db/db mice (Song
et al., 2022).

Butyrate-producing bacteria are crucial for human health,
providing energy to the intestinal epithelium, maintaining
intestinal bacterial balance, and regulating host cellular responses
(Louis et al., 2010). However, a clinical study involving in vitro
fermentation of fresh feces from healthy donors and patients with
T2DM found that after 48 h of fermentation with APS, the organic
acid profile of APS fermentation was more influenced by individual
differences in gut microbiota than in the healthy and T2DM groups
(Xu et al., 2023). Animal studies have indicated that APS improves
the profile of intestinal flora and restores the intestinal barrier in
diabetic mice. However, the role of APS in regulating the intestinal
flora of individuals with diabetes remains controversial and requires
further research (Figure 4).

4 Effects of APS on diabetes
complications

Hyperglycemia is a primary cause of diabetes-related morbidity
and mortality, leading to various vascular complications. Oxidative

stress and inflammation are key factors in these complications. APS
has shown promise in ameliorating these complications through
various pathways (Figure 5; Supplementary Table S1).

4.1 APS and DN

DN is characterized by persistent albuminuria and progressive
decline in renal function, affecting up to 50% of patients with
diabetes, and is a leading cause of end-stage renal disease
(ESRD), associated with increased cardiovascular morbidity and
mortality (Selby and Taal, 2020). APS has a protective effect on DN,
delaying its development through podocyte repair, reduction of
tumor necrosis factor, inhibition of renal tubular epithelial cell
apoptosis, and improvement of oxidative stress (Li et al., 2011;
2018; Guo et al., 2018; Meng et al., 2020).

TGF-β1, a key member of the TGF-β family, plays a central role in
the TGF-β/Smad signaling pathway, promoting fibrosis. Its
overexpression stimulates the growth of renal fibroblasts, increases
extracellular matrix content, and leads to renal sclerosis. Controlling
TGF-β1 expression is beneficial for ameliorating diabetic-induced renal
damage, making it a significant target in the treatment of DN (Voelker
et al., 2017). APS attenuates renal lesions by down-regulating TGF-β1
protein content and mRNA overexpression in the kidneys of diabetic
rats (Lai et al., 2002). Li et al. (2018) demonstrated that APS (200 and
400 mg/kg, orally) inhibited the renal TGF-β1/Smads signaling pathway
in diabetic rats after 8 weeks of intervention, significantly reducing

FIGURE 4
Effects of APS in gut microorganisms.
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fasting glucose, blood creatinine, and urea nitrogen. Meng et al. (2020)
also showed that different doses of APS (25, 50, and 100 mg/kg, orally)
reduced kidney weight, 24-h urinary microalbumin, blood urea
nitrogen, creatinine, collagens III and IV, transforming growth
factor-β3, α smooth muscle actin, and Smad3 levels in HFD
combined with streptozotocin-induced diabetic rats after 8 weeks of
intervention. APS protects the kidney from interstitial fibrosis by
suppressing the TGF-β/Smad signaling pathway and reducing
extracellular matrix formation.

Epithelial cell, or podocyte, injury in the glomerular basement
membrane is a critical factor in the formation of DN proteinuria
(Barutta et al., 2022). Li et al. (2011) administered APS (400 mg/kg/
day, orally) to streptozotocin-induced diabetic rats for 8 weeks. The
results showed significant reductions in blood glucose, blood urea
nitrogen, blood creatinine, and total 24-h urinary protein. Renal
pathological changes were attenuated, and the expression of the
major podocyte-specific proteins nephrin and podocin was
increased in the rats with APS intervention, suggesting that
APS’s preventive effect on DN may be related to the
maintenance of podocyte integrity (Li et al., 2011).

Early in the development of DN, renal tubular cells undergo
apoptosis and oxidative damage. Apoptosis of renal tubular
epithelial cells further promotes interstitial fibrosis and atrophy,
while the overproduction of ROS is a primary initiator of diabetic
complications and a key factor in cellular damage (De Nicola et al.,
2014). Guo et al. (2018) demonstrated that human renal tubular
epithelial cells (HK-2) treated with APS showed increased survival,
decreased apoptosis, and reduced ROS content. This indicates that
APS could promote HG-induced proliferation and inhibit apoptosis
and transdifferentiation of HK-2 cells (Guo et al., 2018).

In clinical use, APS has been developed as APS injection and
APS fFlush, with clinical studies confirming that APS flush can treat
DN, with lipid-lowering effects and a reduction in the urinary
albumin excretion rate (Cao and Zhang, 2007). APS injection can
reduce early activated T-lymphocytes, improve cellular immune
function, and enhance the body’s immune level in older patients
with DN after 3 weeks of treatment (Deng et al., 2014). However,
further research via controlled, large-scale clinical trials is
still required.

4.2 APS and DR

DR is a significant ocular complication of diabetes and is the
leading cause of blindness and visual impairment in individuals with
diabetes worldwide. The prevalence of DR is expected to increase
annually (Teo et al., 2021; Tan and Wong, 2023). Li et al. (2008)
demonstrated that administering APS (700 mg/kg p. o.) to
streptozotocin combined with HFD-induced diabetic rats for
8 weeks led to a decrease in the expression of Kir2.1 protein in
retinal Muller cells at an early stage, thereby protecting the Muller
cells and reducing the incidence of DR. Ke et al. (2010) cultured
second-generation glial fibrillary acid protein-positive Müller cells
for 3 days using 400 μg/mL APS and 20 mmol/L glucose in a normal
medium, resulting in a significant reduction in the expression of
vascular endothelial growth factor inMüller cells in the high-glucose
APS group. This suggests that APS prevents and treats DR by
reducing the expression of vascular endothelial growth factor in
Müller cells (Ke et al., 2010). Additionally, a study demonstrated that
administering APS solution (700 mg/kg p. o.) for 8 weeks to high-

FIGURE 5
Mechanism of action of APS in the treatment of multiple diabetic complications.
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fat-fed KKAy mice reduced blood glucose levels, enhanced insulin
sensitivity, and attenuated the expression of TNF-α, thereby
ameliorating retinopathy in diabetic KKAy mice (Wu et al., 2007).

The retinal pigment epithelium is a crucial target for DR
initiation after hyperglycemia, and microRNAs can inhibit the
expression of target genes by directly targeting the 3′
untranslated regions of genes at the post-transcriptional level
(Shukla et al., 2011). Cellular experiments demonstrated that APS
could increase cleaved-ATF6; Bax; p-PERK; p-IRE-1; Bcl-2; cleaved
caspase-12, -9, -3; and unleaved SOD and PARP levels; it could also
decrease malondialdehyde and mitochondrial Cyt-c levels,
ameliorate HG-induced oxidative stress, mitochondrial damage,
endoplasmic reticulum stress and apoptosis, and alleviate the
metabolic memory of HG-treated retinal pigment epithelium
cells. These findings suggest that APS has a potential therapeutic
role in the development of DR (Liu et al., 2019; Peng et al., 2020).

4.3 APS and diabetic cardiomyopathy (DCM)

Cardiovascular events are the leading cause of death in patients,
and DCM is a pathological condition caused by DM. DCM is
initially characterized by myocardial fibrosis and associated
diastolic dysfunction, followed by the manifestation of systolic
dysfunction and ultimately clinical heart failure (HF) (Jia et al.,
2018). DCM results from the interaction of several factors, including
hyperinsulinemia, hyperglycemia, oxidative stress, abnormal fatty
acid metabolism, and cardiac autonomic neuropathy (Acar et al.,
2011; Dillmann, 2019).

Cardiac hypertrophy is a major feature of DCM, with HG
inducing cardiac hypertrophy, and multiple signaling pathways
involved in this process. Bone morphogenetic protein 10, a
cardiac peptide growth factor, plays a specific role in cardiac
hypertrophy and is considered an influential target for its
treatment (Sun et al., 2023). Sun et al. (2023) demonstrated that
APS had a potent anti-hypertrophic effect on HG-stimulated
H9c2 cardiomyocytes and streptozotocin-induced DCM rats. In
animal experiments, APS (0.5, 1, 2 g/kg p. o.) administered to
streptozotocin-induced diabetic rats for 16 weeks reduced the
expression of BMPRII, ALK3, and p-Smad1/5/8, alleviated
cardiac hypertrophy, and improved cardiac function by inhibiting
the activation of the bone morphogenetic protein 10 pathway in a
dose-dependent manner (Sun et al., 2023).

Apoptosis is considered an important contributor to DCM,
leading to cardiac cell loss, reduced cardiac contractility, and
ultimately cardiac remodeling (Cai et al., 2006). Sun et al. showed
that in vivo, APS (1 g/kg p. o.) intervention in streptozotocin-
induced T1DM rats for 16 weeks downregulated the protein
expression of activating transcription factor 6 and protein
kinase RNA-like ER kinase. In vitro, APS inhibited HG-
induced apoptosis in H9C2 cells and reduced the expression
of ATF6 and PERK-related proteins in the endoplasmic
reticulum stress pathway. These findings confirmed that APS
enhanced cardiac function and alleviated myocardial apoptosis in
diabetic conditions through ex vivo and in vivo studies (Sun et al.,
2017; Sun et al., 2019 S.). In conclusion, APS can protect the
myocardium via its anti-hypertrophic and anti-apoptotic effects
on cardiomyocytes.

4.4 APS and cognitive dysfunction

Cognitive impairment and dementia, including Alzheimer’s
disease, are increasingly recognized as common complications and
comorbidities of both T1DMandT2DM,with individuals with diabetes
having a 2.4–1.25 times higher risk of cognitive impairment compared
to the general population (Biessels et al., 2020). Mechanistic studies
provide various pathophysiological clues, including dysmetabolic
disorders, brain insulin resistance, vascular endothelial dysfunction,
accumulation of glycosylation end products, neurodegeneration, and
inflammation (Ehtewish et al., 2022). Several studies have demonstrated
that APS can significantly reduce the latency period of locomotion
navigation experiments, decrease the dwell time of space exploration
experiments, and improve performance in water maze experiments in
diabetic rats (Dun et al., 2016; Li et al., 2017; Yang, 2017). Yang (2017)
administered APS (60 mg/kg p. o.) to rats fed a high-fat and high-sugar
diet and observed potential improvement in hippocampal synaptic
plasticity through increased expression of brain-derived neurotrophic
factor in the hippocampus, thus enhancing learning and memory
functions. In interventions by Dun et al. (2016); Li et al. (2017) in
streptozotocin-induced Wistar rats for 8 weeks using varying doses of
APS (200, 400, and 800 mg/kg p. o.), APS was found to enhance
glucose-lipidmetabolism, insulin resistance, and antioxidant capacity in
diabetic rats. Moreover, APS elevated hippocampal tissue SOD activity
and reduced malondialdehyde content, suggesting potential protection
against diabetic-induced brain damage via anti-oxidative stress and
anti-apoptotic effects on hippocampal tissue (Dun et al., 2016; Li
et al., 2017).

Alzheimer’s disease is considered a metabolic disorder, with
metabolic disturbances contributing directly to Alzheimer’s disease
through various pathways, including synaptic disconnection,
neuronal loss, accumulation of amyloid-β, and hyperphosphorylation
of tau protein (de la Monte, 2014). Epidemiological data strongly
suggest an association between type 2 diabetes and an increased risk
of dementia (Hamzé et al., 2022). After administration of APS
(700 mg/kg p. o.) for 4 weeks to intervene in HFD combined with
streptozotocin-injected APP/PS1 double transgenic mice, Huang et al.
(2017) observed reduced insulin resistance and hepatic triglyceride
levels induced bymetabolic stress, decreased astrocytosis andmicroglial
activation in the vicinity of plaques, and alleviation of metabolic stress-
induced diabetes and subsequent neuroinflammation, thereby
improving behavior in these transgenic mice.

4.5 APS and wound healing in diabetic

Diabetic foot ulcers are a significant concern, affecting 15% of
individuals with diabetes and posing a serious threat to their quality of
life, often leading to lower limb amputations (Okonkwo and DiPietro,
2017; Yue et al., 2022; McDermott et al., 2023). The complex
pathogenesis of these ulcers involves inflammation, angiogenesis,
and extracellular matrix remodeling, which impede proper wound
healing in patients with diabetes (Chang and Nguyen, 2021). The
literature highlights the crucial role of APS in managing diabetic
wound healing.

Phosphatase and tensin homolog (PTEN) are variably expressed
in diabetic patients, and their downregulation can delay wound
healing in those with diabetic foot ulcers (Xu et al., 2020). Ma’s study
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used APS (50, 100, or 200 mg/kg p. o.) in streptozotocin-induced
diabetic rats with skin wounds. The results demonstrated that APS
reduced endothelial damage by inhibiting the release of
inflammatory mediators such as ET-1, ICAM-1, IL-6, and TNF-
alpha levels. Moreover, APS upregulated PTEN and suppressed the
mTOR pathway activation, facilitating wound healing in diabetic
rats (Ma, 2022). Additionally, the combination of APS with different
drug carriers for novel wound management materials is a promising
avenue of research. In a diabetic rat model, APS-loaded tissue-
engineered scaffolds enhanced periwound cutaneous blood flow,
increased endocrine expression, and boosted microvessel density in
regenerating skin tissues, leading to improved wound healing in a
dose-dependent manner (Yang et al., 2015; Ma, 2022). Another in
vivo animal experiment reported that nanofibrous membranes
loaded with APS and astragaloside IV curbed wound
inflammation, promoted collagen fiber deposition, regenerative
epithelial repair, and significantly accelerated wound healing in
diabetic rats (Yue et al., 2022). These studies underscore the
potential of APS as a therapeutic agent in promoting diabetic
wound healing. However, clinical trials investigating the efficacy
of APS in treating diabetic foot ulcers are currently lacking.

5 Conclusion and directions

DM and its complications are major chronic non-communicable
diseases that significantly impact quality of life. While current clinical
treatments can effectively control symptoms and slow disease
progression, they often fail to prevent multi-organ damage and
functional failure. Therefore, developing new effective treatments for
diabetes is crucial for improving patients’ quality of life, leading to a
focus on novel molecular drugs targeting diabetic complications.

APS, a natural plant extract, shows promise in hypoglycemia and
treating diabetic complications. In vitro studies and animal models have
demonstrated APS’s effectiveness in treating DM and its complications,
including DR, DN, DCM, diabetic cognitive dysfunction, and diabetic
wound healing. However, these studies often focus on initial
assessments of pharmacodynamic effects, necessitating further
investigation into dose-effect relationships and toxic side effects.
While studies indicate that polysaccharides from Chinese herbal
medicine, like APS, have significant hypoglycemic activity without
toxic side effects or adverse reactions, there is a lack of research
specifically on APS’s toxic side effects and adverse reactions.
Therefore, studies on its safety and toxicity are necessary before
considering it for human studies. The complex chemical structure of
polysaccharides, including APS, limits our understanding of their exact
composition and structure, hindering clinical studies and resulting in a
lack of high-quality clinical trials. Thus, future research should focus on
conducting more clinical studies based on thorough structural
characterization, along with pharmacokinetic and pharmacotoxicity
studies. Furthermore, exploring the exact mechanism, potential
molecular targets, pharmacokinetics, pharmacodynamics, and side

effects of APS on diabetes mellitus and its complications through
clinical trials is crucial.
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