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Background: Depression is a severe mental disorder that poses a significant
threat to both the physical and mental wellbeing of individuals. Currently, there
are various methods for treating depression, including traditional Chinese herbal
formulations like Chaihu-Shugan-San (CSS), which have shown effective
antidepressant effects in both clinical and animal research.

Objective: This review aims to provide a comprehensive synthesis of evidence
related to CSS, considering both preclinical and clinical studies, to uncover its
potential multi-level, multi-pathway, and multi-target mechanisms for treating
depression and identify its active ingredients.

Methods: A thorough search was conducted in electronic databases, including
PubMed, MEDLINE, Web of Science, Google Scholar, CNKI, and Wanfang, using
keywords such as “Chaihu Shugan” and “depression” to retrieve relevant literature
on CSS and its active ingredients. The review process adhered to the PRISMA
guidelines.

Results: This review consolidates the mechanisms underlying antidepressant
effects of CSS and its active ingredients. It emphasizes its involvement in the
regulation of monoaminergic neurotransmitter systems, synaptic plasticity, and
the hypothalamic-pituitary-adrenal axis, among other aspects.

Conclusion: CSS exerts a pivotal role in treating depression through various
pathways, including the monoaminergic neurotransmitter system, the
hypothalamic-pituitary-adrenal axis, synaptic plasticity, inflammation, brain-
derived neurotrophic factor levels, and the brain-gut axis. This review
facilitates a comprehensive understanding of the current state of CSS
research, fostering an in-depth exploration of the etiological mechanisms of
depression and the potential discovery of novel antidepressant drugs.
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1 Introduction

Depression has emerged as one of the most prevalent global public
health issues, with its incidence steadily rising year by year. Depression
patients commonly exhibit persistent low mood, insomnia, extreme
fatigue, lack of energy, self-doubt, and excessive self-blame. They may
experience unexplained physical symptoms, and in some cases,
thoughts of self-harm or suicide may be present. Both the
recurrence rate and the disability rate associated with depression are
substantial (GBD, 2019 Mental Disorders Collaborators, 2022). This
debilitating condition affects a staggering 350 million individuals
worldwide, which continues to grow.

The economic burden of depression is substantial, with annual
cost estimates reaching as high as 200 billion dollars. This accounts
for the expenses associated with depression treatment and the
productivity impact related to work, such as absenteeism and
missed deadlines. Consequently, the societal impact of depression
is becoming increasingly severe (Greenberg et al., 2015).

Projections from a study indicate that by 2030, depression is
poised to become the second-largest contributor to the global disease
burden (Mathers and Loncar, 2006). The likelihood of severe
depression is significantly higher among individuals with
common physical illnesses such as cardiovascular diseases,
cancer, and neurodegenerative diseases compared to the general
population. Conversely, individuals with depression are at a greater
risk of developing various physical illnesses like cardiovascular
diseases (Basiri et al., 2023), stroke (Ji et al., 2023), and diabetes
(Qi et al., 2023). This high level of comorbidity is associated with
worse outcomes, reduced treatment compliance, increased mortality
rates, higher healthcare utilization, and costs. Comorbidities can also
lead to a range of clinical challenges, including more complex
treatment regimens, issues related to adaptive health behaviors,
drug interactions, and adverse events caused by medications used
for both physical and mental disorders (Berk et al., 2023). There are
numerous risk factors associated with the onset of depression,
including stress, pain, physical illnesses, and cognitive decline.
Currently, scholars are primarily focusing on the pathophysiology
of depression, particularly in relation to the monoaminergic system,
the glutamatergic system, the hypothalamic-pituitary-adrenal axis,
inflammation, gut microbiota, and neurogenesis (Emiko Tsugiyama
et al., 2023; Reyes-Lizaola et al., 2023). Since the 1950s, commonly
used clinical antidepressant medications have primarily targeted the
increase of serotonin or acted directly on serotonin receptors
(Murrough and Charney, 2012; Undurraga and Baldessarini,
2012). Although 35%–50% of patients do not respond to these
medications, selective serotonin reuptake inhibitors (SSRIs)
continue to be the mainstay of antidepressant therapy.
Additionally, drowsiness and gastrointestinal reactions are
common adverse effects of these drugs. Improvement in
depressive symptoms typically takes at least 2 weeks or more
after starting treatment (Trivedi et al., 2006; Trivedi et al., 2008).
Reportedly, traditional Chinese medicine has demonstrated high
efficacy in the treatment of depression with minimal side effects,
making it considered a favorable approach for managing depressive
symptoms. A substantial body of research indicates that traditional
Chinese medicine may significantly alleviate the symptoms of
depression and other disorders characterized by depressive
behaviors (Moreira et al., 2023).

Chaihu-Shugan-San (CSS) is a traditional Chinese herbal formula
that was originally documented in the Ming Dynasty’s “Yi Xue Tong
Zhi.” It comprises seven botanical drugs, including Bupleurum
chinense DC. [Apiaceae; Bupleuri radix], Citrus reticulata Blanco
[Rutaceae; Citri reticulatae pericarpium], Paeonia lactiflora Pall.
[Paeoniaceae; Paeoniae radix alba], Cirtus aurantium L. [Rutaceae;
Aurantii fructus], Cyperus rotundus L. [Cyperaceae; Cyperi rhizoma],
Ligusticum chuanxiong Hort. [Apiaceae; Chuanxiong rhizoma], and
Glycyrrhiza uralensis Fisch. [Fabaceae; Glycyrrhizae radix et
rhizoma], and the ratio is 4:4:3:3:3:3:1 (Li et al., 2022). The specific
preparation method involves mixing 7 types of botanical drugs in the
respective proportions, soaking them in water at 25°C for 0.5 h, and
then heating to 100°C and boiling for 30 min. The first filtrate is
collected in a beaker. The botanical drug residues are refluxed and
heated in the same volume of water for 30 min, and then the second
filtrate is collected. The two filtrates are integrated and filtered through
5 layers of cotton gauze (Yan et al., 2020; Zhu et al., 2021). All plant
names or species were validated using http://mpns.kew.org/mpns-
portal/ and Chinese Pharmacopoeia, as depicted in Figure 1. CSS has
been long used in clinical practice for the treatment of liver qi
stagnation combined with depression. Clinical research has shown
that CSS exhibits significant efficacy and safety in alleviating
depressive symptoms in patients, leading to improvements in
depression symptomatology, increased response rates (Wang et al.,
2012), and enhanced HAMD scores (Ding et al., 2018). Moreover,
CSS has demonstrated positive antidepressant effects in various
populations, such as postpartum depression, perimenopausal
depression (Cai and Bao, 2023), post-stroke depression (Fan et al.,
2023), and geriatric depression (Xiong, 2021).

Additionally, research suggests that CSS not only displays
antidepressant effects in common rodent models of depression,
including chronic unpredictable mild stress (CUMS) (Liu et al.,
2018) or combined social isolation (Zhang et al., 2011a), chronic
restraint stress (CRS) (Qian et al., 2020) or combined social isolation
(Lijuan et al., 2012), and LPS-induced depression model (Xuesong
et al., 2023).

FIGURE 1
The seven botanical drugs used in Chaihu-Shugan-San.
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Prior research has identified several potential antidepressant
mechanisms of CSS. These mechanisms include the regulation of
monoaminergic neurotransmitters (Hwang et al., 2020), effects on
the HPA axis, anti-inflammatory and neuroplasticity actions (Li
et al., 2019), primarily affecting regions such as the hippocampus
(Zhu et al., 2021), prefrontal cortex (Zhang et al., 2021a) and
amygdala (Ying et al., 2011). Extensive research employing
various techniques and methods has been conducted to
investigate the antidepressant mechanisms of CSS and its active
ingredients. However, due to certain limitations, including its
complex composition, the exact antidepressant mechanisms of
CSS remain to be fully elucidated. Therefore, this paper provides
a comprehensive review of its antidepressant mechanisms and active
ingredients, with the hope that our findings will contribute to further
research on CSS in the context of depression.

2 Methods

2.1 Search strategy

We searched for CSS about depressive disorders using the terms
described below to obtain data from several electronic databases
from the inception of each database to October 2023. Specifically, we
searched using PubMed, Web of Science, Google Scholar, Cochrane
Library, Chinese National Knowledge Infrastructure, VIP
Information, and Wanfang Database. We used the search
strategy of combining words (“Depression” OR “Depressive
Symptoms” OR “Symptom, Depressive”) AND
(“Chaihushugansan” OR “Chai Hu Shu Gan San” OR “Chai-Hu-
Shu-Gan-San” OR “Chaihu Shugan San” OR “Chai Hu Shu Gan
formula” OR “Chai Hu Shu Gan powder”).

2.2 Inclusion and exclusion criteria

The inclusion criteria were defined as follows: 1) Studies, both in
vivo and in vitro, that evaluated the effects of CSS in the treatment of
depression; 2) Any intervention in the experimental group that
involved the use of an CSS prescription for depression, comprising
the seven botanical drugs mentioned earlier, at any dosage,
frequency, or administration method; 3) No restrictions on the
species, sex, age, or weight of animals, and the species of cells under
investigation; and 4) Studies that focused on depression. The
exclusion criteria were as follows: 1) The use of CSS as an
adjuvant drug in the intervention group; 2) Duplicate studies; 3)
Inadequate outcome measures or incomplete data in the studies.

3 Clinical studies on Chaihu-
Shugan-San

3.1 Clinical research and safety of CSS for
depression

Multiple meta-analyses have demonstrated that when CSS is
used in conjunction with antidepressant drugs such as fluoxetine,
venlafaxine, paroxetine, etc., the efficacy in treating depression

significantly surpasses that of using antidepressants alone,
indicating that the combination of CSS with antidepressants
effectively enhances the treatment outcomes (Zeng et al., 2017;
Sun et al., 2020). In a study involving 40 postpartum depression
patients who received 4 weeks of CSS treatment, it was found that
the patients experienced a reduction in their postpartum depression
scores, as measured by the Edinburgh Postartum Depression Scale
(EPDS) and the Hamilton Depression Scale (HAMD).
Simultaneously, their hormone levels, including luteotropic
hormone (LH), estradiol (E2), and follicular stimulating hormone
(FSH), increased. This suggests that CSS can effectively ameliorate
clinical symptoms of depression and regulate hormone levels. In a
clinical study involving 120 geriatric depression patients, after CSS
treatment, it was observed that HAMD scores, Pittsburgh Sleep
Quality Index (PSQI) scores, and Quality of Life (QOL) scores all
improved. This indicates that CSS can effectively reduce the severity
of depression, improve sleep quality and life quality of patients
(Xiong et al., 2019).

When CSS was used as the primary treatment, a network meta-
analysis of seven traditional Chinese medicines as adjunctive
therapy for post-stroke depression revealed that CSS has unique
advantages in enhancing clinical efficacy compared to some other
traditional Chinese medicines (Yu et al., 2022). In a clinical
randomized controlled trial involving 86 patients, CSS
demonstrated a significantly higher clinical effectiveness rate
compared to the control group (97.67% vs. 81.40%) and
substantially alleviated depression levels of patients (Zhang,
2016). Results from a clinical study indicated that, when used as
an adjunctive medication, clinical effectiveness of CSS (overall
efficacy rate of 97.20%) was significantly better than the control
group receiving only psychotherapy (overall efficacy rate of 91.42%)
(Chen et al., 2021).

3.2 Clinical application of CSS in the
treatment of depression

In a systematic review andmeta-analysis assessing the safety and
efficacy of CSS in treating depression, it was observed that the
adverse reaction rate of CSS combined with antidepressants was
lower than that of the group receiving antidepressants alone (Zeng
et al., 2017; Sun et al., 2020). An analysis of a randomized controlled
trial involving 66 patients treated with CSS for post-stroke
depression showed that CSS significantly improved scores on
related scales, including the Hamilton Anxiety Rating Scale, and
that CSS in combination with antidepressants effectively treated
post-stroke depression with lower side effects compared to the
control group (6.06% vs. 27.27%) (Tao et al., 2023). These
studies suggest that the likelihood of CSS interacting with other
medications is quite low.

However, further investigation is needed to assess the safety of
using CSS alone. In a meta-analysis involving CSS for Parkinson’s
disease patients, data from 11 trials showed no adverse reactions,
indicating that CSS could be a potential treatment option for
patients with comorbid depression (Huber et al., 2023). A meta-
analysis of 24 studies using CSS or its modified formulas for treating
depression reported neurological symptoms such as dizziness,
headache, sleep disturbances, hyperactivity, blurred vision, and
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fatigue, as well as gastrointestinal symptoms including dry mouth,
diarrhea, anorexia, nausea, vomiting, and constipation. However,
the incidence of adverse reactions was lower than in the control
group (Zhao et al., 2023b).

4 The antidepressant mechanisms
of CSS

4.1 Regulation of monoaminergic
neurotransmitter systems

Damage to the monoaminergic neurotransmission and the
accompanying decrease in 5-HT and NE concentrations are
major factors in the pathogenesis of depression and are the
targets of most antidepressants (Perez-Caballero et al., 2019).
Currently, most antidepressants work by inhibiting the reuptake
of monoamines, thereby increasing monoamine levels in the
synaptic cleft (Lee et al., 2010). However, selective serotonin
reuptake inhibitors may lead to withdrawal symptoms such as
nausea, vomiting, and diarrhea, limiting their clinical use (Lee
et al., 2010). As shown in Figure 2, After treatment with CSS, the
content of 5-HT, 5-HIAA, and DA in the hippocampus and
hypothalamus of rats increased, while the NE content
decreased. This suggests that CSS exerts its antidepressant
effects by regulating levels of monoaminergic neurotransmitters
like 5-HT and DA in the rat brain (Yufeng et al., 2016).
Furthermore, earlier research has also yielded the same
conclusion (Wang et al., 2014). MAO-A is involved in the
metabolism of 5-HT and NE, and some antidepressants can
exert their effects by inhibiting MAO activity (Jahanabadi et al.,
2023). Studies have shown that CSS effectively reduces the activity
of MAO enzymes, regulating the expression of 5-HT and NE,
thereby achieving its antidepressant effects (Haiying et al., 2011).

Tryptophan (Trp) is an essential amino acid taken in by the
human body from external sources. It serves as the primary
metabolic precursor for the production of serotonin (5-HT) and
kynurenine (KYN), which regulate various metabolic activities
(Zádori et al., 2018). Under normal physiological conditions, the
activity of indoleamine-2,3-dioxygenase (IDO) is low, and Trp is
primarily metabolized by tryptophan-2,3-dioxygenase (TDO) in the
liver. However, in the presence of inflammation or stress,
proinflammatory cytokines can induce a significant increase in
IDO activity, and elevated glucocorticoids further activate TDO,
directing Trp toward the kynurenine pathway (KP), resulting in a
decrease in central and peripheral 5-HT levels (Murakami et al.,
2016). In normal mammals, approximately 40% of brain KYN
comes from central metabolism, while the remaining 60%
originates from the periphery. Therefore, peripheral KYN levels
may to some extent represent the levels of central KP metabolites (Li
et al., 2020a). In 72 untreated depressive patients, it was found that
the levels of KP metabolites in cerebrospinal fluid were closely
correlated with those in plasma, with the KYN/Trp ratio being
the most correlated indicator (Haroon et al., 2020). In mice after
treatment with CSS, the ratio of 5-HT/TRP in the liver significantly
increased, while the ratio of KYN/TRP in tissues such as the liver,
colon, and brain significantly decreased (Mengyu et al., 2021).
Additionally, CSS reduced the activity and expression levels of
TDO in the liver, leading to an increase in mouse 5-HT
expression levels and the alleviation of depression-like behavior.

4.2Maintaining homeostasis in the regulated
HPA axis

One prominent feature of depression is the dysfunction of the
hypothalamic-pituitary-adrenal (HPA) axis (Menke, 2023). HPA
axis hyperactivity is particularly common in individuals with
depression and can affect their cognitive functions (Cherian
et al., 2019). Excessive stress stimuli to the brain result in cortical
impact, triggering the release of signals from the hypothalamus. This
leads to increased secretion of corticotropin-releasing factor (CRF)
in the HPA axis. Excess CRF is transported through the portal
venous system to the pituitary, where it stimulates the synthesis of
adrenocorticotropic hormone (ACTH). This, in turn, promotes the
production of cortisol (CORT) by the adrenal cortex (Dwyer et al.,
2020). CRF is a key regulator of the body’s stress response and is
closely associated with various psychiatric disorders, including
depression. Overproduction of CRF is a mechanism that activates
the HPA axis (Montgomery et al., 2023). Furthermore, cortisol
(CORT), which acts downstream of the HPA axis, plays a
significant role in the pathogenesis of depression. The CORT
levels in individuals with depression are closely related to their
clinical symptoms (Holloway et al., 2023). In a study involving
perimenopausal depression rats treated with CSS for 21 days, both
CRH and CORT levels significantly increased, indicating that CSS
can regulate CRH and CORT levels to restore HPA axis function
(Shengqiang et al., 2015). Similarly, in the case of CUMS combined
with social isolation-induced depression in rats, CSS exhibited the
same antidepressant effects (Yunhui et al., 2009).

During stress, corticotropin-releasing hormone (CRH) secreted
by the paraventricular nucleus (PVN) of the hypothalamus

FIGURE 2
CSS Increases Monoaminergic Neurotransmitter Levels. CSS
facilitates the synthesis of monoaminergic neurotransmitters, leading
to an increase in the concentration of these neurotransmitters.
Inhibiting the reuptake of monoaminergic neurotransmitters
enhances their respective signaling pathways, elevates
monoaminergic neurotransmitter levels, and alleviates
depressive symptoms.
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stimulates the secretion of ACTH and glucocorticoids (GC);
corticosterone in rodents (Kim et al., 2019). Receptors for
glucocorticoids primarily include mineralocorticoid receptors
(MR) and glucocorticoid receptors (GR). During stress, the
expression of GC increases dramatically. After crossing the
blood-brain barrier, GC acts on hippocampal GR. The GC-GR
complex formed in response to high GC concentrations inhibits
CRH transcription in the hypothalamus, providing negative
feedback regulation on the HPA axis, thus suppressing HPA axis
hyperactivity (de Kloet and Joëls, 2023). GC levels are crucial
indicators for evaluating HPA axis function. The hippocampus,
as the central regulator of the HPA axis, is rich in GR and
mineralocorticoid receptors (MR). It is highly susceptible to the
influence of high concentrations of glucocorticoids during stress
(Gong et al., 2023). As illustrated in Figure 3, when CSS was orally
administered to CUMS rats continuously for 21 days, it was found
that CRH levels increased and GR levels decreased in the
hippocampus compared to the depression model group. This
indicates that CSS can effectively weaken the negative feedback
effect of GC on the HPA axis, alleviating HPA axis hyperactivity.
Thus, CSS may regulate HPA axis hyperactivity by acting on the
hippocampus to achieve its antidepressant effect (Fan et al., 2015).

4.3 Upregulation of BDNF levels

Brain-derived neurotrophic factor (BDNF) is a crucial member
of the neurotrophic factor family, initially discovered in pig brain in
the 1980s (Leibrock et al., 1989). BDNF is primarily synthesized in
neurons and is distributed throughout the central nervous system
(CNS). It plays a role in synaptic plasticity recovery, 5-HT signal
transduction, and regulating the levels of 5-HT in the brain
(Bhattarai et al., 2020; Costa et al., 2022). Numerous studies have
shown that BDNF is closely associated with the occurrence,
development, and treatment of depression. In the field of

neurobiology, BDNF is one of the most studied neurotrophic
factors (Amagase et al., 2023; Wang et al., 2023a). Changes in
BDNF activity and levels in the brain are closely related to the
development of depression. Autopsy results have revealed that the
expression levels of BDNF in the plasma of depressed patients are
lower than in the control group (Gadad et al., 2021). Furthermore,
research suggests that developing antidepressants targeting BDNF
might be one of the most effective strategies for future
antidepressant drug development (Deltheil et al., 2009; Furukawa
et al., 2019).

In a study involving CUMS rats subjected to 28 days of CSS oral
administration, it was observed that compared to the depression
model group, the expression of BDNF in the prefrontal cortex of rats
significantly increased. This indicates that CSS can exert effects
similar to the antidepressant venlafaxine by regulating BDNF
expression levels (Zhang and Liu, 2020). Tropomyosin receptor
kinase B (TrkB) is a specific receptor for BDNF, and it has been
confirmed that activating BDNF-TrkB signaling can have an
antidepressant effect (Ma et al., 2020). Figure 4 After intervening
with CSS in depressionmodel rats, it was found that compared to the
model group, rats in the CSS group exhibited significantly increased
expression of BDNF and its receptor TrkB in the hippocampus,
prefrontal cortex, and amygdala, suggesting that the mechanism
through which CSS alleviates depressive states might be related to
the increased expression of BDNF and its receptor TrkB in these
brain regions (Ying et al., 2011).

4.4 Promoting synaptic plasticity

Synapses are the fundamental structural units responsible for
transmitting information in neurons. Changes in their morphology,
quantity, density, and signal transmission efficiency are collectively
referred to as synaptic plasticity (Suvrathan et al., 2016; Sweatt,
2016). Synaptic plasticity serves as the neurobiological foundation
for the growth and development of the nervous system, repair after
injury, and the processes of learning and memory (Sehgal et al.,
2013). Figure 5 When examining synaptic structural changes under
electron microscopy, it is observed that in comparison to the model
group, synaptic improvements occur in the hippocampal region of
CUMS-depressed rats following CSS intervention, with an increase
in synaptic quantity. This suggests that CSS can effectively enhance
synaptic plasticity in the hippocampal region of depressed rats (Fan
et al., 2018).

Two specific protein markers, PSD95 and SYN, are used to
measure synaptic plasticity. PSD95 is abundantly expressed in the
postsynaptic density region and interacts with membrane receptors,
ion channels, and cell adhesion molecules, thereby participating in
the regulation of synaptic plasticity and learning and memory
abilities. SYN is a crucial presynaptic vesicle membrane protein,
and its expression accurately reflects synaptic distribution, quantity,
and density, making it the most direct indicator of changes in
synaptic plasticity. Research indicates that the continuous
administration of CSS through oral gavage to depressed rats for
2 weeks results in a significant increase in the deposition of Syn-
positive substances in the CSS group compared to the model
group. This suggests that CSS can effectively inhibit hippocampal
neuronal apoptosis, impact the expression of SYN and PSD95,

FIGURE 3
CSS Regulates HPA Axis Homeostasis. CSS maintains HPA axis
homeostasis by inhibiting ACTH, CRH, and CORT.
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promote the recovery of damaged synaptic structure and function,
and consequently ameliorate depressive-like behaviors in rats (Lan
et al., 2023).

NMDAR (N-methyl-D-aspartate receptor) is a glutamate-gated
ion channel that regulates neuronal survival, dendritic and axonal
development in neurons, excitatory synaptic plasticity, and the
formation of neuronal circuits (Tashiro et al., 2006). NMDAR is
considered a necessary condition for dendritic spine structural
remodeling and is believed to be the cellular basis of learning
and memory (Matsuzaki et al., 2004). Downregulation of
hippocampal NR2A/NR2B has been associated with cognitive
impairment (Luciano-Jaramillo et al., 2019). According to the
NMDAR signaling pathway, TrkB is rapidly and persistently
activated, serving as a crucial binding partner for BDNF in
various forms of synaptic plasticity. Studies indicate that the
increase in BDNF exerts neuroprotective effects by transducing
the NR2A-CaMKIV-TORC1 pathway (Xu et al., 2015). CSS
enhances the expression of BDNF, NR2A, and NR2B in the
hippocampus, suggesting that the antidepressant effects of CSS
may be mediated through the transduction of the NR2A-
CaMKIV-TORC1 pathway, impacting hippocampal neuronal
development and thus restoring the neural function of damaged
synapses (Xu et al., 2021).

4.5 Alleviating neuroinflammation

Neuroinflammation is an innate immune response of the
nervous system (Meseguer et al., 2014), and it plays a role in the
pathological processes of various neurological and psychiatric
disorders. Patients with severe depression and animal models of
depression often exhibit elevated levels of pro-inflammatory
cytokines such as IL-1β, IL-6, and TNF-α (Yang et al., 2023).
Cytokines are secreted proteins with growth, differentiation, and
activation functions. They regulate and determine the nature of
immune responses, control immune cell trafficking, and organize
the cellular arrangement of immune organs (Borish and Steinke,
2003). In the context of neurodevelopment, the role of cytokines is
reflected in pro-inflammatory cytokines impairing neurogenesis,
while anti-inflammatory cytokines protect or promote
neurogenesis (Soares et al., 2023).

Neuroglial cells play a significant role in the normal
physiological processes of the central nervous system, including
synaptic transmission, neural plasticity, regulation of neurons, and
the local microenvironment (Fang et al., 2023). Microglial cells are
the resident immune cells of the CNS, constituting approximately
5%–10% of CNS cells in mice and 0.5%–16.6% in human CNS cells.
They participate in pathogen clearance, phagocytosis of dead or

FIGURE 4
CSS alleviates neuroinflammation. Microglia can differentiate into M1 and M2 phenotypes. CSS is capable of exerting neuroprotective effects by
modulating the immune response through the regulation of pro-inflammatory and anti-inflammatory cytokines in microglial activation.
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apoptotic cells, and the promotion or inhibition of inflammation to
maintain brain health. Under normal physiological conditions,
microglial cell bodies have elongated processes and continually
monitor changes in the brain environment. However, in response
to pathological stimuli, microglia are rapidly activated, their
numbers increase, and their cell bodies enlarge while their
processes become shorter (Zhu et al., 2023). Under pathological
conditions, microglia transition from a resting state to an activated
state, adopting two polarization phenotypes, M1 and M2.
M1 microglial cells secrete many inflammatory mediators to
engulf pathogens, while M2 microglial cells secrete protective cell
regulators and participate in repairing local tissues and the
microenvironment, thus protecting neural tissue (Smith et al.,
2012; Pozzo et al., 2019). In an in vitro post-stroke depression
model, microglial cell polarization shifts toward the M1 phenotype.
However, treatment with GSK3β overexpression virus, CSS, or JAK-
STAT3 inhibitors can reverse this polarization. Analysis of
inflammation-related protein levels and expression of the JAK/
STAT3-GSK3β/PTEN/Akt pathway reveals that the
antidepressant effects of CSS may be achieved through the
activation of the JAK/STAT3-GSK3β/PTEN/Akt pathway,
regulating microglial cell polarization and suggesting that CSS
exerts its antidepressant effects by inhibiting neuroinflammation
(Fan et al., 2023). CSS can inhibit neuroinflammation in the brain by
activating the important SIRT1/NF-κB inflammation signaling
pathway in the prefrontal cortex of rats, thus exhibiting its
antidepressant effects (Di and Liu, 2021). CSS can reduce the
levels of serum TNF-α and IL-6 in depressed rats. It can also
effectively inhibit the activation of hippocampal p38 mitogen-
activated protein kinase (p38MAPK) and activate the

extracellular signal-regulated kinase 5 (ERK5) signaling pathway
to achieve its antidepressant effects (Qiu, 2014).

4.6 Regulation of biological activities
within gut

Research has shown that the composition of the gut microbiota
is altered in individuals with depression compared to healthy
individuals, particularly in terms of microbial diversity and the
relative abundance of specific bacterial taxa. This suggests a
connection between gut dysbiosis and depression. In depression,
the phyla Firmicutes, Actinobacteria, and Bacteroidetes are the most
affected (Nikolova et al., 2021). After 28 days of gastric gavage
treatment with CSS in CUMS, fresh fecal samples were collected and
analyzed. It was observed that in the CSS group, the abundance of
Firmicutes significantly increased, and the abundance of
Actinobacteria decreased markedly compared to the model
group. This indicates that CSS can regulate gut microbiota at the
phylum level, mitigating the dysbiosis caused by chronic stress
(Meng et al., 2020). In CRS mice, CSS intervention led to an
increase in the relative abundance of Actinobacteria. While the
results differ, a study that performed 16s rRNA sequencing of gut
microbiota in patients with depression found a significant
disruption in gut microbiota composition (Han et al., 2021).
Differences in bacterial strain abundance led to a reduced ability
of MDD patients to produce short-chain fatty acids (SCFA). The
lack of SCFAs may weaken gut barrier function (Zheng et al., 2016).
Metabolites from the gut, microbial cell components, and even the
gut microbiota itself translocate systemically through a

FIGURE 5
CSS restores dysbiosis of the gut microbiota. CSS exerts a protective effect on neuronal cells by regulating the gut microbiota through the brain-gut
axis, activating the systemic immune response, and crossing the blood-brain barrier.
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compromised gut barrier, often referred to as “leaky gut.” This
exacerbates systemic inflammation, such as Th17/Treg imbalance,
IL-6, IL-1β, and TNF-α, all of which are closely related to the
pathogenesis of depression. Further induced immune responses may
be related to the onset and development of depression (Młynarska
et al., 2022). Therefore, the antidepressant effect of CSS may be
achieved through the regulation of gut microbiota, reshaping the
structure and composition of the gut microbiota, and exerting its
effects through the microbiota-gut-brain axis (Ma et al., 2022).

4.7 System biology research

Traditional Chinese botanical drug formulations are
characterized by complex compositions, making it challenging to
characterize functional biomarker ingredients and understand the
intricate compatibility rules of multiple ingredients. Research
indicates that employing multi-omics approaches is more
advantageous for identifying critical ingredients in traditional
Chinese medicine (TCM), which is approach helps identify
systemic targets for diseases and facilitate a deeper exploration of
the mechanisms behind TCM formulations (Wang et al., 2021c).
Commonly used methods in this context include network
pharmacology, proteomics, and metabolomics.

Network pharmacology analysis has revealed 24 potential
targets for the treatment of depression by CSS. Functional
enrichment analysis indicates that the PI3K/AKT signaling
pathway may be significantly influenced by CSS in MDD
treatment. In vivo experiments demonstrate that CSS can
ameliorate depressive-like behaviors in CUMS mice and promote
neurogenesis. Additionally, CSS can increase the phosphorylation of
PI3K/PI3K and AKT/AKT levels while reducing GSK3β/GSK3β
levels in the hippocampus of CUMS mice (Zhang et al., 2021b).
Research utilizing combined network pharmacology and
bioinformatics analysis has identified that the mechanism of CSS
primarily focuses on two main cascading signal modules. The first
module involves a cascade reaction through ADCYAP1-
ADCYAP2R3-GNAS-ADCY3-cAMP-PRKACA, controlling
downstream genes like GRIA2, GRIN8A, GSK1A, CREB1, BDNF,
FOS, ATF1, MAPK1, and JUND, which play a role in treating
depression. The second module targets FOS for depression
treatment through the DRD1/5-GNAQ-PLC B1-DAG-PRKCA
cascade signal (Wang et al., 2021b).

Using quantitative proteomics and bioinformatics analysis
methods to identify and analyze CSS, it appears that CSS may
exert its antidepressant effects by influencing the synthesis, release,
reuptake, and degradation pathways of GABA. Proteins such as
Gad2, Vamp2, and Pde2a may be associated with the alleviation of
depression by CSS. Therefore, these proteins may serve as potential
antidepressant targets for CSS. Previous studies have demonstrated
that CSS exerts its antidepressant effects by modulating the HPA
axis and inhibiting neurotransmitter reuptake, such as
norepinephrine, serotonin, and dopamine (Zhang et al., 2011b).
Hence, it is hypothesized that CSS affects the glutamate and GABA
signaling pathways via the HPA axis for depression treatment (Zhu
et al., 2021) Table 1.

Serum metabolomics results indicate that 16 proteins and
63 genes are regulated by CSS. Sphingolipid metabolism and

arachidonic acid metabolism appear to be the most significantly
affected metabolic pathways related to depression induced by
CUMS. Multiple studies have demonstrated that depression often
accompanies sphingolipid metabolism disturbances (Li et al., 2022),
and clinically, low levels of arachidonic acid in blood are associated
with adult depression (Tsuchimine et al., 2015). Metabolomic
studies of the hippocampus and serum in chronic variable stress
(CVS)-induced rats reveal 10 metabolites from the hippocampus
and 11 from serum that are considered potential biomarkers
involved in the development of depression. CSS collaboratively
regulates metabolic network abnormalities, including energy
metabolism, neurotransmitter synthesis, tryptophan,
phospholipids, fatty acids, bile acid metabolism, bone loss, and
liver detoxification. CSS reverses the decrease in BDNF, ERK2/1,
and pERK2 in CVS rats, suggesting that the ERK signaling system
may be one of the targets for antidepressant effects of CSS (Su
et al., 2014).

In summary, antidepressant effects of CSS are believed to be
primarily related to monoamine neurotransmitters, the HPA axis,
BDNF, synaptic plasticity, gut microbiota, and inflammatory
responses (Figure 6; Table 2). It is thought to directly regulate
these factors or indirectly act on various related proteins, receptors,
or signaling pathways, which are primarily concentrated in the
brain, the main targeted organ in current depression research.

5 Research on the antidepressant-like
effects of the active ingredients of CSS

The ingredients detected in CSS using UPLC-QTOF-MS include
ferulic acid, naringin, hesperidin, meranzin hydrate, glycyrrhizic
acid, saikosaponin A, nobiletin, and hesperetin (Liu et al., 2020b).
Additional ingredients such as ferulic acid, naringin, hesperidin,
meranzin hydrate, glycyrrhizic acid, saikosaponin A, nobiletin, and
hesperetin have also been identified in CSS.

HPLC analysis of CSS primarily identifies ingredients like
naringin, neohesperidin, hesperidin, paeoniflorin, and
glycyrrhetinic acid (Zhu et al., 2020b). LC-MS/MS analysis has
revealed the presence of ingredients like paeoniflorin, ferulic acid,
naringin, glycyrrhizic acid, saikosaponin A, chenpi flavonoid, and
nobiletin in the water extract of CSS (Lei et al., 2021). These
ingredients are considered the active ingredients responsible for
the antidepressant-like effects of CSS.

In accordance with the 2020 edition of the Chinese
Pharmacopoeia, the content of active ingredients in traditional
Chinese medicine is regulated. For CSS, the minimum content of
certain active ingredients is specified: Bupleuri radix should contain
a total of not less than 0.30% of saikosaponin A (C42H68O13) and
saikosaponin D (C42H68O13). Paeonia radix alba should contain
not less than 1.2% of paeoniflorin (C23H28O11). Chuanxiong
rhizoma should contain not less than 0.10% of ferulic acid
(C10H10O4). Aurantii fructus should contain not less than 4.0%
of naringin (C27H32O14). Citri reticulatae pericarpium should
contain not less than 3.5% of hesperidin (C28H34O15). Cyperi
rhizoma should contain not less than 1.0% of volatile oil, with
Nootkatone as the characteristic ingredients. Glycyrrhizae radix et
rhizome should contain not less than 0.50% of glycyrrhizin
(C21H22O9) and not less than 2.0% of glycyrrhizic acid
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(C42H62O16). These standards ensure the quality and potency of
CSS in traditional Chinese medicine. (They are listed in
Table 3; Table 4).

5.1 Research on the antidepressant-like
effects of saikosaponin

Saikosaponin possess a wide range of anti-inflammatory and
immune-regulatory properties, making them effective
ingredients in the treatment of depression with botanical drug
medicine (Liu et al., 2020a; Wang et al., 2023b). The
antidepressant effect of saikosaponin A may be associated with
the modulation of DA levels and the transmembrane protein
2 rich in proline (PRRT2) in the hippocampus of depressive rats
induced by CUMS (Guo et al., 2020). Saikosaponin A have been
demonstrated to increase the expression of BDNF. In the MCAO
+ CUMS model, the administration of Chaihu Saponins
significantly upregulated the protein levels of p-CREB, BDNF,
Bax, and Caspase-3, promoting BDNF and Bcl-2 expression,
consequently preventing hippocampal neuronal apoptosis and
improving depressive-like behavior in post-stroke depression rats
(Wang et al., 2021a).

As a critical regulator of the pro-inflammatory cytokine
signaling pathway, NF-κB plays a pivotal role in immune
responses, including stress, and has been associated with
cognitive and memory impairments as well as depressive
symptoms (Singh and Singh, 2020). Saikosaponin D can
negatively regulate NF-κB, which, in turn, downregulates
FGF2 expression through miR-155 downregulation. FGF2, as a
key growth factor in synaptic plasticity and neuron growth,
enhances synaptic plasticity and protects neurons, contributing to
the antidepressant effect (Chao et al., 2020).

Saikosaponin A exhibits an antidepressant-like effect on peri-
menopausal depressive rats induced by CUMS, and Saikosaponin
A restores the hyperactivity of the HPA axis and pro-inflammatory
cytokines while promoting BDNF-TrkB signaling in the
hippocampus. SSA plays an antidepressant-like role in peri-
menopausal rats by restoring hippocampal neuroendocrine,
neuroinflammatory, and neurotrophic systems (Chen et al.,
2018). Microglial cells serve as the first line of immune defense
in the central nervous system, responding rapidly to external
threats and secreting a substantial amount of oxidative stress
substances and inflammatory cytokines, such as nitric oxide,
reactive oxygen species, and IL-1β (Arioz et al., 2019).
Activated microglial cells aim to remove antigens and restore

TABLE 1 Clinical research of CSS.

Treatment Dosage
form

Control Treatment
time

Sample
(T/C)

Diagnostic
criteria

Outcome
index

References

Citalopram (20 mg/d) +CSS
(Bupleuri radix 15g, Citri reticulatae
pericarpium 6g, Paeoniae radix alba
15g, Aurantii fructus 10g, Cyperi
rhizome 10g, Chuanxiong rhizome
10 g, Glycyrrhizae radix et rhizome
6g, 1dose/d)

decoction Citalopram
(20 mg/d)

8 weeks 40/39 CCMD-3 HAMD, PSQI,
SF-36

Li et al. (2022)

Sertraline (50–100 mg/d) +CSS
(Bupleuri radix 15g, Citri reticulatae
pericarpium 15g, Paeoniae radix alba
15g, Aurantii fructus 12g, Cyperi
rhizome 10g, Chuanxiong rhizome
10 g, Glycyrrhizae radix et rhizome
12g, 1dose/d)

decoction Sertraline
(50–100 mg/d)

4 weeks 68/68 ICD-10 HAMD, HAMA Zhang et al.
(2021a)

Fluoxetine (20 mg/d)+CSS
(Bupleuri radix 8g, Citri reticulatae
pericarpium 10g, Paeoniae radix alba
5g, Aurantii fructus 10g, Cyperi
rhizome 5g, Chuanxiong rhizome
10 g, Glycyrrhizae radix et rhizome
10g, 1dose/d)

decoction Fluoxetine
(20 mg/d)

8 weeks 41/42 CCMD-3 HAMD, HAMA Zhao et al.
(2023a)

Venlafaxine (5 mg/d) +CSS
(Bupleuri radix 9g, Citri reticulatae
pericarpium 12g, Paeoniae radix alba
12g, Aurantii fructus 6g, Cyperi
rhizome 6g, Chuanxiong rhizome
6 g, Glycyrrhizae radix et rhizome
3g, 1dose/d)

decoction Venlafaxine
(5 mg/d)

4 weeks 30/30 ICD-10 HAMD Zhu et al. (2021)

Amitriptyline (25 mg/d)+ CSS
(Bupleuri radix 15g, Citri reticulatae
pericarpium 15g, Paeoniae radix alba
15g, Aurantii fructus 12g, Cyperi
rhizome 15g, Chuanxiong rhizome
15 g, Glycyrrhizae radix et rhizome
3g, 1dose/d)

decoction Amitriptyline
(25 mg/d)

12 weeks (35/34) CCMD-3 HAMD,
SDS,SAS

Liu et al. (2017)
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brain homeostasis, but excessive activation can lead to neuronal
damage. Saikosaponin D pretreatment effectively inhibits the
release of inflammation-related cytokines (IL-1β, IL-6, and
TNFα) mediated by activated microglial cells in vitro and in
vivo. Saikosaponin D exerts its anti-inflammatory action by
inhibiting the translocation and extracellular release of HMGB1,
and inhibiting downstream TLR4/NF-κB signaling (Su et al.,
2020). The elevated levels of glutamate induced by CUMS can
lead to synaptic damage, which can be reversed through treatment
with SSD. The amelioration of glutamate-induced synaptic injury
appears to be mediated through the regulation of the Homer1-
mGluR5 pathway and downstream mTOR signaling. It was
observed that SSD treatment attenuated the increase in
glutamate levels in the hippocampal CA1 region induced by
chronic stress, which is known to contribute to synaptic
damage and enhance the expression of synaptic proteins.
Therefore, SSD may alleviate depressive-like behavior in
CUMS-exposed rats by modulating the Homer1-mGluR5 and
mTOR signaling pathways. These findings suggest that SSD can
serve as a natural neuroprotective agent for the prevention of
depression (Liu et al., 2022b). Therefore, saikosaponin A and
saikosaponin D are promising ingredients in inhibiting the
inflammatory response, which might be a potential mechanism
underlying their antidepressant effects.

5.2 Research on the antidepressant-like
effects of paeoniflorin

Paeoniflorin is a monoterpenoid glycoside obtained from the
roots of peony or moutan, typically extracted from Bai Shao, a
traditional low-toxicity Chinese botanical drug medicine widely
used in the treatment of depression. Regardless of the type of
stress animals are exposed to, reduced BDNF levels can
potentially impact various brain functions, such as neurogenesis,
neuron survival, and plasticity, promoting depressive-like behavior
in stressed animals. Paeoniflorin exerts neuroprotective effects
through the ERK-CREB signaling pathway, ameliorating
depressive-like behavior in CUMS rats (Zhong et al., 2018). In an
acute depression animal model induced by forced swimming,
paeoniflorin significantly increases the serum and hippocampal
BDNF levels in rats, offering protection against hippocampal
pathological changes (Mu et al., 2020).

Oxidative stress is defined as an imbalance between the
generation of reactive oxygen species (ROS) and the antioxidant
capacity of cells, which is a major contributor to depression (Liu
et al., 2023). Paeoniflorin can exhibit antidepressant effects through
a multitarget pharmacological approach. For example, rats subjected
to the forced swim test (FST) exhibit decreased plasma and
hippocampal levels of serotonin, norepinephrine, and dopamine,

FIGURE 6
Multi-mechanistic effects of CSS in antidepressant therapy.

Frontiers in Pharmacology frontiersin.org10

Guo et al. 10.3389/fphar.2024.1337876

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1337876


TABLE 2 Research on the potential antidepressant-like effect of CSS.

Content Dosage
(kg/d)

Pharmaceutical
manufacturing
method

Model Species Treatment
regimen

Positive
control

Antidepression
mechanisms

References

Bupleuri radix
(19.05%), Citri
reticulatae
pericarpium
(14.29%),
Paeoniae radix
alba (14.29%),
Aurantii fructus
(14.30%), Cyperi
rhizoma
(9.05%),
Chuanxiong
rhizoma
(19.05%),
Glycyrrhizae
radix et
rhizome (4.74%)

1.8 mg Water extract CUMS SD rats 3w Fluoxetine Downregulate miR-124
expression and by
releasing the inhibition of
the MAPK14 and
Gria3 signaling pathways

(Liu et al.,.2018)

Bupleuri radix
(19.05%), Citri
reticulatae
pericarpium
(19.05%),
Paeoniae radix
alba (14.29%),
Aurantii fructus
(14.29%), Cyperi
rhizoma
(14.29%),
Chuanxiong
rhizoma
(14.29%),
Glycyrrhizae
radix et
rhizome (4.76%)

20 mg Water extract CUMS C57BL/6J
mice

8w Not
Mentioned

Modulate BA
metabolism by the gut
microbiota-brain axis

Ma et al. (2022)

Bupleuri radix
(19.05%), Citri
reticulatae
pericarpium
(19.05%),
Paeoniae radix
alba (14.29%),
Aurantii fructus
(14.29%), Cyperi
rhizoma
(14.29%),
Chuanxiong
rhizoma
(14.29%),
Glycyrrhizae
radix et
rhizome (4.76%)

6 g Water extract CUMS SD rats 2w Escitalopram Multiple targets and
pathways, which may
include regulations of
110 DEPs and some
neurotransmitter’s
transmission cycle

Zhu et al. (2023)

Bupleuri radix
(13.85%), Citri
reticulatae
pericarpium
(13.85%),
Paeoniae radix
alba (23.08%),
Aurantii fructus
(13.85%), Cyperi
rhizoma
(13.85%),
Chuanxiong
rhizoma
(13.85%),
Glycyrrhizae
radix et
rhizome (7.69%)

4 g Freeze-drying CRS C57BL/
6 mice

5 d Buspirone Induce NF-κB-involved
BDNF expression
through the regulation of
gut inflammation and
microbiota

Han et al. (2021)

(Continued on following page)
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TABLE 2 (Continued) Research on the potential antidepressant-like effect of CSS.

Content Dosage
(kg/d)

Pharmaceutical
manufacturing
method

Model Species Treatment
regimen

Positive
control

Antidepression
mechanisms

References

Bupleuri radix
(19.05%), Citri
reticulatae
pericarpium
(19.05%),
Paeoniae radix
alba (14.29%),
Aurantii fructus
(14.29%), Cyperi
rhizoma
(14.29%),
Chuanxiong
rhizoma
(14.29%),
Glycyrrhizae
radix et
rhizome (4.75%)

1 g Water extract UCMS SD rats 8w Fluoxetine Increase in the
hippocampal ERα/ERβ
mRNA ratio

Chen et al.
(2020)

Bupleuri radix
(13.85%), Citri
reticulatae
pericarpium
(13.85%),
Paeoniae radix
alba (23.08%),
Aurantii fructus
(13.85%), Cyperi
rhizoma
(13.85%,
Chuanxiong
rhizoma
(13.85%),
Glycyrrhizae
radix et
rhizome (7.69%)

19.5 g Water extract CUMS C57BL/
6 mice

1w Not
Mentioned

Promote angiogenesis
and neurogenesis in the
hippocampus, targeting
the SIRT1/FOXO1 axis
and subsequent
regulation of VEGFA
and BDNF.

Zhang et al.
(2023)

Bupleuri radix
(19.05%), Citri
reticulatae
pericarpium
(19.05%),
Paeoniae radix
alba (14.29%),
Aurantii fructus
(14.29%), Cyperi
rhizoma
(14.29%),
Chuanxiong
rhizoma
(14.29%),
Glycyrrhizae
radix et
rhizome (4.76%)

10 g Water extract OVX SD rats Not Mentioned Not
Mentioned

Regulate PI3k/AKT
signaling pathway, liver
and brain
communication

Chen et al.
(2021)

Radix Bupleuri
(19.04%),
Pericarpium
Citri Reticulatae
(19.04%),
Rhizoma Chuan
Xiong (14.29%),
Rhizoma Cyperi
(14.29%),
Fructus Aurantii
(14.29%), Radix
Paeoniae
Alba(14.29%),
and Radix
Glycyrrhizae
(4.76%)

2.835 Water extract CUMS SD rats 4w Fluoxetine Suppress CHOP and
caspase-12 mediated
apoptosis in the rat
hippocampus

Sun et al. (2020)

(Continued on following page)
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as well as reduced plasma BDNF and superoxide dismutase (SOD)
levels (Mu et al., 2020).

The HPA axis is associated with the pathophysiology of
depression. Experimental evidence indicates that paeoniflorin can
reverse depressive-like behavior. Neurogranin (Ng), a recently
discovered postsynaptic protein widely distributed in the
hippocampus, is found to be significantly lower in the
hippocampus of depressive rats (Xiang et al., 2020). Paeoniflorin
significantly increases the expression of Ng protein in the
hippocampus. Furthermore, paeoniflorin decreases hippocampal
glutamate (Glu) levels by inhibiting the expression of SNAP25,
VAMP2, Syntaxin1a, and related proteins, as well as EAAT2/3, NR1,
and NR2A proteins. These findings suggest that paeoniflorin can
improve depressive-like behavior through modulation of the HPA
axis, GR function, and Glu transporters (Li et al., 2020c).

Growing evidence suggests a close relationship between
neuroinflammation and depression, making the inhibition of
neuroinflammation a crucial treatment strategy for depression
(Wei et al., 2023). Paeoniflorin can inhibit the TLR4/NF-κB/
NLRP3 signaling pathway in the mouse hippocampus induced by
LPS, reducing the levels of pro-inflammatory cytokines and
microglial activation. Fibroblast growth factor-2 (FGF-2) plays a
role in regulating neuron proliferation and differentiation (Koizumi,
2021). Paeoniflorin can increase FGF-2 levels and dendritic spine

density. Therefore, paeoniflorin may exert its neuroprotective and
antidepressant effects by inhibiting hippocampal microglial
activation and activating the FGF-2/FGFR1 signaling pathway in
neurons (Cheng et al., 2021).

5.3 Research on the antidepressant-like
effects of ferulic acid

Ferulic acid (FA) is an aromatic acid originating from
Chuanxiong (Szechuan lovage rhizome) and has shown
antidepressant effects in clinical or animal studies (Zhang et al.,
2018b). Among the various pharmacological actions of FA, its
potential antidepressant effects have gained increasing attention.
FA is a potent antioxidant that can scavenge hydrogen peroxide,
hydroxyl radicals, superoxide radicals, and peroxynitrite (Xie et al.,
2020a). Additionally, FA possesses characteristics of anti-apoptosis,
anti-tumor, and anti-thrombotic properties. It can also inhibit
neuroinflammatory responses and promote neurogenesis in the
hippocampus (Kaur et al., 2022).

Hippocampal SIRT6 is involved in the in vivo lentivirus-mediated
knockdown of depression induced by chronic unpredictable stress
(CUS). Knockdown of hippocampal SIRT6 can prevent CUS-induced
depressive-like phenotypes (Li et al., 2018). The PI3K/AKT signaling

TABLE 2 (Continued) Research on the potential antidepressant-like effect of CSS.

Content Dosage
(kg/d)

Pharmaceutical
manufacturing
method

Model Species Treatment
regimen

Positive
control

Antidepression
mechanisms

References

Bupleuri radix
(19.05%), Citri
reticulatae
pericarpium
(19.05%),
Paeoniae radix
alba (14.29%),
Aurantii fructus
(14.29%), Cyperi
rhizoma
(14.29%),
Chuanxiong
rhizoma
(14.29%),
Glycyrrhizae
radix et
rhizome (4.76%)

2.1 Water extract CUMS SD rats 4w Fluoxetine Regulate BDNF/ERK/
CREB signaling pathway
in the hippocampus and
frontal cortex

Yan et al. (2020)

Bupleuri radix
(19.05%), Citri
reticulatae
pericarpium
(19.05%),
Paeoniae radix
alba (14.29%),
Aurantii fructus
(14.29%), Cyperi
rhizoma
(14.29%),
Chuanxiong
rhizoma
(14.29%),
Glycyrrhizae
radix et
rhizome (4.76%)

9.25/18.5 Water extract CUMS Wistar rats 6w Fluoxetine Regulate miR-155
expression in liver and
brain, inhibiting liver-
brain inflammation axis
and TLR4/MyD88/NF-
κB pathways

Ji et al. (2023)
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pathway is implicated in mediating antidepressant effects. The
hippocampal SIRT6/AKT/CRMP2 signaling pathway is involved in
the mechanism of antidepressant action of FA. CRMP2 is well-
characterized as a target for neuronal plasticity and behavior
regulation, regulating various aspects of neuron development,
including axon guidance, dendritic morphology, and synaptic
plasticity. Overexpression of CRMP2 effectively prevents acute
axonal degeneration (Zhang et al., 2018a). CRMP2 activity is
regulated by the SIRT6/AKT signaling pathway. Therefore, FA
effectively activates the AKT/CRMP2 signaling pathway, improving
CUS-induced depressive-like behavior and exerting neuroprotective
effects through the SIRT6/AKT/CRMP2 pathway (Li et al., 2020b).

Ferulic acid can ameliorate depression in mice through
antioxidative pathways. Studies have shown that ferulic acid
increases the activities of SOD, catalase (CAT), and glutathione
peroxidase (GSH-Px) in the blood, hippocampus, and cerebral
cortex, while reducing levels of thiobarbituric acid reactive

substances (TBA-RS). When the antioxidant defense system is
modulated, ferulic acid can exert its antidepressant effects (Lenzi
et al., 2015). In CUMS mice, FA improves depressive-like behavior
in the tail suspension test (TST) and sucrose preference test (SPT).
FA inhibits the activation of the NLRP3 inflammasome, the NF-κB
signaling pathway, and the expression of IL-1β, IL-6, and TNF-α,
suggesting that anti-inflammatory mechanisms are involved in
antidepressant effects of ferulic acid in stressed mice (Liu
et al., 2017).

Mitochondrial energy homeostasis mediated by ferulic acid is
another potential mechanism of its antidepressant action.
Dysfunction of mitochondria can lead to abnormal energy
metabolism, triggering depressive episodes. Ferulic acid can
promote glycogen metabolism in the brain, increase ATP levels,
and activate neural function. FA also upregulates the gene
expression of Ddc and Ppp1r1b, which are involved in dopamine
signaling. FA treatment increases brain dopamine and

TABLE 3 The active ingredients of CSS.

Source Ingredients Molecular formula Structure References

Bupleuri radix Saikosaponin C42H68O13 Liu et al. (2020b)

Paeonia lactiflora Paeoniflorin C23H28O11 Lei et al. (2021)

Chuanxiong rhizoma Ferulic acid C10H10O4 Liu et al. (2020b)

Aurantii fructus Naringin C27H32O14 Su et al. (2014)

Citri reticulatae pericarpium Hesperidin C28H34O15 Liu et al. (2020b)

Cyperi rhizoma Nootkatone C15H22O Wang et al. (2022)

Glycyrrhizae radix et rhizoma Liquiritin C21H22O9 Zhu et al. (2020b)
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TABLE 4 The antidepressant mechanisms of active ingredients of CSS.

Ingredient Model Species Dose
(mg/kg)

Positive
control

Treatment
regimen

Dissolving
agent

Antidepressant
mechanisms

References

Saikosaponin A CSDS C57BL/
6 mice

25/50/100 Flu Not Mentioned Not Mentioned Activate Tet1/DLL3/Notch
signaling pathways

Tong et al.
(2023)

CUMS SD rats 50 — 4w NaCl Increase levels of the
hippocampal monoamine
neurotransmitter DA

Guo et al. (2020)

CUMS Wistar rats 25/50/100 Flu 4w NaCl Rebalance the
neuroendocrine system by
alleviating
neuroinflammation and
restoring the neurotrophic
system

Chen et al.
(2018)

Saikosaponin D CUMS SD rats 0.75/1.5 Flu 3w 0.1% DMSO Regulate Homer1-mGluR5
and mTOR pathway

Liu et al. (2022b)

LPS ICR mice 1 — 1w 0.1% DMSO Inhibit neuroinflammation
by downregulating HMGB1/
TLR4/NF-κB signaling
pathway

Su et al. (2020)

CUMS SD rats 0.75/1.5 Flu 3w Not Mentioned Negative regulation of NF-
κB and thus downregulation
of FGF2 expression by
positive targeting of miR-155

Chao et al.
(2020)

Paeoniflorin CUMS SD rats 30 U0126 5w NaCl Activate neuroprotection
regulated by the ERK-CREB
signaling pathway

Zhong et al.
(2018)

FST SD rats 1 Flu 3 d Not Mentioned Regulating monoamine
neurotransmitters, inhibit
HPA axis hyperfunction and
increase BDNF

Mu et al. (2020)

LPS SD rats 20/40/80 Flu 1w Not Mentioned Inhibit the activation of
hippocampal microglia,
activate FGF-2/
FGFR1 signaling in neurons

Cheng et al.
(2021)

Ferulic acid TST ICR mice 20/40/60 Flu 1w 0.1% methanol
water

Enhance cell survival and
proliferation, energy
metabolism, and dopamine
synthesis in mouse brain

Sasaki et al.
(2019)

CUS C57BL/
6 mice

40/80 Not
Mentioned

3w Not Mentioned Regulate SIRT6/AKT/
CRMP2 signaling pathway

Li et al. (2020b)

PS C57BL/
6 mice

12.5/25/50 Flu 4w 0.5% CMC-Na Inhibit proinflammatory
cytokines and reorganize gut
microbiome and microbial
metabolism

Zheng et al.
(2019)

Hesperidin CUMS SD rats 20/50/100 Flu 4w Not Mentioned Inhibit
NLRP3 inflammasome and
microglia activation

Xie et al. (2020b)

CUMS SD rats 50/98 Not
Mentioned

70 d 1% Activate Nrf2/ARE pathways
for neuroprotection

Zhu et al.
(2020a)

CMC-Na

Nootkatone CUMS C57BL/
6 mice

6/12 Not
Mentioned

4w Not Mentioned Inhibit NF-κB/
NLRP3 pathways to mediate
neuroinflammation

Yan et al. (2021)

CUS C57BL/
6 mice

10 Not
Mentioned

2w 0.9% Increase neural regeneration
in the hippocampal dentate
gyrus, activate PKA/CREB
pathways, and increase
BDNF expression

Wang et al.
(2022)

NaCl

(Continued on following page)
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norepinephrine levels, and thus, FA exerts its antidepressant effect
by promoting dopamine synthesis (Sasaki et al., 2019).

Dysbiosis of the gutmicrobiota is closely associated with the onset
of depression. FA effectively reduces the levels of pro-inflammatory
cytokines, such as IL-6, IL-1β, TNF-α, while increasing the anti-
inflammatory cytokine IL-10 in serum. This suggests that FA reduces
systemic inflammation. 16S rRNA sequencing reveals that FA
intervention reduces the abundance of the Proteobacteria phylum
and significantly increases the abundance of Lactobacillus spp.,
Allobaculum spp., and Unspecified_S24_7. FA may exert its
antidepressant effects by upregulating short-chain fatty acids.
Furthermore, UHPLC-QTOF-MS/MS detection reveals that FA
affects 459 microbial metabolites, primarily involved in tryptophan
or thiamine metabolism. Tryptophan is an amino acid clinically used
to alleviate depression, and a causal relationship exists between
disrupted thiamine metabolism and depression (Wilson et al.,
2023). Therefore, FA may exert its antidepressant effects by
inhibiting pro-inflammatory cytokines, remodeling the gut
microbiota, and modulating microbial metabolism (Hao et al., 2021).

5.4 Research on the antidepressant-like
effects of naringin

Naringin is an active ingredient derived from the pericarp of
citrus fruits, exhibiting a wide range of biological activities, such as
anti-inflammatory and antioxidative properties (Kim and Kim,
2017), and has been employed in alleviating various neurological
disorders (Emran et al., 2022). Adult hippocampal neurogenesis is
crucial in the establishment of circuitry networks involving
emotion-regulating regions like the amygdala and hypothalamus.
Naringin promotes neuronal differentiation in normal mice, induces
neural stem/progenitor cell (NSPC) migration to the subventricular
zone-olfactory bulb (SVZ-OB) system, accelerates neuronal
maturation in CORT-induced depressed mice, and enhances
dendritic arborization, thereby exerting its antidepressant and
anxiolytic effects via the promotion of neuronal differentiation
target CREB (Gao et al., 2022). Moreover, naringin enhances
BDNF through the cAMP-CREB-BDNF signaling pathway while
suppressing neuroinflammation and neuronal apoptosis,
ameliorating depressive behaviors in CORT-induced depressed
mice (Zhang et al., 2023). Neurobehavioral characteristics of
naringin are also accompanied by increased neuro-antioxidative
and cholinergic activities. Furthermore, it significantly reduces the
levels of malondialdehyde and nitrites, indicating involvement in the

oxidative/nitrosative pathways, suggesting that naringin treatment
may contribute to functional behavioral effects throughmechanisms
associated with enhanced cholinergic transmission, antioxidant
defense systems, and the inhibition of lipid peroxidation and
nitrosative processes (Ben-Azu et al., 2019). Rutin increases the
levels of GAD67 in the striatum, prefrontal cortex, and
hippocampus while reducing AChE activity. Additionally, Rutin
region-dependently decreases TNF-α, IL-6, malondialdehyde, and
nitrite concentrations while increasing glutathione levels. Our study
suggests that Naringin attenuates SDS-induced depressive-like
behaviors by increasing GAD67 synthesis, inhibiting AChE
activity, oxidative and nitrosative stress, and neuroinflammation
processes in stress-sensitive brain regions (Oladapo et al., 2021).

5.5 Research on the antidepressant-like
effects of hesperidin

Hesperidin, an active ingredient derived from tangerine peel,
possesses antioxidative, anti-inflammatory, and antiviral properties,
while also promoting neurogenesis and enhancing memory function
(Li et al., 2023). Studies have indicated that hesperidin exhibits
antidepressant effects (Li et al., 2016). Hesperidin has been found to
decrease the expression of the NLRP3 inflammasome (NLRP3,
caspase-1, and ASC) in the prefrontal cortex (PFC) of rats
induced with CUMS. It reduces the number of activated
microglia in the PFC and levels of pro-inflammatory cytokines
(IL-1β, IL-6, and TNF-α). Elevated levels of pro-inflammatory
cytokines released by activated microglia contribute to
neuroinflammatory responses, and hesperidin can inhibit the
activation of pro-inflammatory cytokines in microglia induced by
LPS and the NLRP3 signaling pathway (Xie et al., 2020b). In a
comorbid diabetic depression rat model, hesperidin also exerts
antidepressant effects. Hesperidin reduces depressive behaviors in
diabetic rats by enhancing the function of Glo-1 in the amygdala and
hippocampus, thereby reducing the formation of advanced glycation
end products (AGEs) and oxidative stress-induced damage.
Furthermore, the upregulation of Glo-1 by hesperidin is
associated with the activation of the Nrf2/ARE signaling
pathway, further elucidating the molecular mechanisms through
which hesperidin inhibits the formation of brain AGEs and
oxidative stress in diabetic rats. In vitro studies suggest that
hesperidin treatment can reverse the reduced expression of
Nrf2 induced by high glucose (HG). Therefore, the
antidepressant-like effects of hesperidin are primarily mediated

TABLE 4 (Continued) The antidepressant mechanisms of active ingredients of CSS.

Ingredient Model Species Dose
(mg/kg)

Positive
control

Treatment
regimen

Dissolving
agent

Antidepressant
mechanisms

References

Liquiritin CUMS ICR mice 10/20/40 Flu 1w Not Mentioned Inhibit microglia activation
and release pro-
inflammatory cytokine,
protect hippocampal
dendritic spine morphology

Chen et al.
(2020)

OVX Wistar rats 20/40/80 Gennianan
Tablelet

1w Suspension Influence the
neuroendocrine-immune
network

Lan et al. (2020)
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through the activation of the Nrf2/ARE/Glo-1 pathway (Zhu et al.,
2020a). In a rat model of depression induced by PTSD, hesperidin
can ameliorate depressive-like behavior in rats by inhibiting the
activity of MAO-A and the expression of tryptophan hydroxylase-1
in the hippocampus. This leads to an increase in the release of
serotonin (5-HT) (Lee et al., 2021).

5.6 Research on the antidepressant-like
effects o research on the antidepressant-like
effects of nootkatone

Nootkatone is the primary monomeric ingredient found in lotus
plumule and exhibits various pharmacological properties, including
antimicrobial, antioxidant, and anti-allergic activities. Nootkatone
functions as a neuroprotective agent and improves cognitive
impairments by inhibiting neuroinflammation through the TLR4/
NF-κB/NLRP3 pathway in the hippocampus (Wang et al., 2018).
Recent studies have shown that nootkatone also possesses
antidepressant and anxiolytic effects by activating the Keap1/
Nrf2/HO-1 antioxidant pathway in response to liver injury-
induced depression (Yan et al., 2021). Nootkatone significantly
increases the reduced expression of PKA and p-CREB caused by
CUS, suggesting that the PKA/CREB pathway may be involved in
regulating BDNF expression in response to nootkatone treatment.
Additionally, Nootkatone improves neurogenesis in the
hippocampal dentate gyrus, indicating that it may exert
antidepressant effects by enhancing neurogenesis. Therefore,
nootkatone likely exhibits antidepressant activity through
increasing neurogenesis in the hippocampal dentate gyrus and
activating the PKA/CREB pathway to enhance BDNF expression
(Wang et al., 2022). In a CUMS-induced depression model,
Nootkatone improves depressive symptoms by inhibiting
neuroinflammation mediated by the NF-κB/NLRP3 pathway
(Zhao et al., 2023a).

5.7 Research on the antidepressant-like
effects of glycyrrhizin

Glycyrrhizin, the principal active ingredient in licorice, possesses
pharmacological properties such as anti-inflammatory and
antioxidant effects. A metabolomics analysis of the effects of
Glycyrrhizin on depression in rats was conducted using UHPLC-
Q-TOF MS and UHPLC-TQ MS, revealing the screening of
47 different metabolites in the urine of depressed rats. This
suggests that Glycyrrhizin may exert its antidepressant effects
through metabolic pathways (Yang et al., 2020). Glycyrrhizin can
lower the levels of FGF-2 in the hippocampus of LPS-induced
depressive model mice, increase dendritic spine density, and
significantly reduce the number of Iba-1 positive cells. This
indicates that Glycyrrhizin may exert its antidepressant effects by
inhibiting the activation of microglial cells, suppressing the release of
pro-inflammatory cytokines, and protecting dendritic spine
morphology in the hippocampal region (Chen et al., 2020).
Research also suggests that Glycyrrhizin exerts its antidepressant
effects in part by inhibiting the levels of cytokines triggered by the
NLRP3 inflammasome, highlighting the role of antioxidative stress

and the inhibition of NLRP3 inflammasome activation in
antidepressant properties of Glycyrrhizin (Liu et al., 2022a).
Glycyrrhizin is applicable in various depression models, as it can
reduce the levels of FSH and estradiol E2 in the serum, improve the
decreased 5-HT and NE levels in the hypothalamus, and increase the
levels of monoamine neurotransmitters, thereby ameliorating
depressive-like behavior in perimenopausal rats (Lan et al., 2020).

6 Discussion

Extensive research has confirmed that the antidepressant
mechanisms of CSS are primarily associated with the
monoaminergic neurotransmitter system, the HPA axis, synaptic
plasticity, BDNF, gut microbiota, neuroinflammation, among other
factors. Additionally, the therapeutic effects of CSS extend to various
brain regions, such as the hippocampus, prefrontal cortex,
amygdala, and hypothalamus, as well as regulatory systems
outside the central nervous system, including the liver,
gastrointestinal tract, and endocrine system. Studies on the main
active ingredients of CSS, such as saikosaponin, paeoniflorin, ferulic
acid, and Nootkatone, have demonstrated their antidepressant
effects. This suggests that antidepressant properties of CSS
involve multiple targets, levels, and systems, making it a
promising treatment for depression. However, the safety of the
antidepressant mechanisms of CSS has not been fully elucidated.
Therefore, it is crucial to identify and assess the quality of the
effective ingredients within CSS.

While the efficacy of CSS as a holistic formula is well-
established, the mechanistic explanations remain uncertain due to
the limited comprehensive, systematic, and in-depth exploratory
studies combining clinical trials, animal experiments, and cellular
research. Further investigations using techniques like high-
performance liquid chromatography and metabolomics are
needed to explore which medicinal molecules can effectively
cross the blood-brain barrier. Identifying the key molecules and
understanding whether they exert antidepressant effects through gut
microbiota or metabolic pathways is also an important area of
research. Based on our current understanding and the limited
scope of this paper, we have only discussed the mechanisms by
which a subset of the identified active metabolites in CSS exert their
effects. However, it is important to note that a botanical drug
decoction may contain thousands of compounds, targeting
multiple molecular pathways. Therefore, further identification of
the effective ingredients in the decoction and their antidepressant
effects remains a crucial area for future research (Xu et al., 2023).

7 Limitations and further perspective

While research on the mechanisms underlying the
antidepressant effects of CSS and its active components has made
certain advancements, there are inherent limitations in the existing
studies. Firstly, most traditional Chinese medicine (TCM)
compounds are characterized by intricate active ingredients, and
previous research on the quality control of CSS lacks a standardized
approach. This issue is not unique to CSS but is a common challenge
in the study of various traditional botanical drug formulations.
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Discrepancies in the drug proportions of CSS have been observed in
different studies, stemming from the clinical emphasis in TCM on
individualized treatment based on specific patient conditions.
However, such variations in drug composition adjustments are
challenging to replicate in basic research. Therefore, it is
imperative to establish reasonable research standards for
prescription formulation in the course of basic research. Given
the complexity of Chinese botanical drug ingredients, the
mechanisms of action are not confined to a single component or
target but involve numerous targets. Nevertheless, many
experimental methods, primarily animal studies, tend to focus on
revealing single pathways or individual target effects. Consequently,
comprehensively and adequately exploring and elucidating the
pharmacological mechanisms of CSS’s active components and the
interactions between different mechanisms pose challenging tasks.
In the future, TCM research could benefit from a multi-omics
approach (metabolomics, transcriptomics, and proteomics) to
extensively screen molecular mechanisms and potential targets
for treating depression, leveraging the advantageous synergies of
TCM in targeting multiple pathways, mechanisms, levels,
and factors.

Secondly, studies on Chinese botanical drug medicine often
underscore the absorption of relevant components into the
bloodstream, their distribution in organs, metabolism, and
excretion. However, the chemical composition of Chinese
botanical drug medicine is highly intricate, and not all
components may be absorbed into the bloodstream. Previous
observations have noted that some botanical drug medicine
components exhibit low bioavailability, with very low or
undetectable concentrations in the blood. Enhancing the
bioavailability of these components and focusing on constructing
precise and efficient targeted systems are conducive to significantly
improving treatment efficacy. However, there is limited research on
enhancing the bioavailability of CSS in treating depression.
Therefore, future studies should explore effective strategies for
enhancing drug efficacy to provide clinical assistance, rather than
merely validating its pharmacological mechanisms.

In practical clinical applications, Chinese botanical drug
medicine is often a combination of prescribed herbs. However,
current research predominantly concentrates on verifying the
anti-depressive effects of individual components in the
medication, deviating from traditional efficacy and prescription
rules. Through extensive literature review and summarization, we
propose a new research direction. Ferulic acid is identified as a
crucial active component in CSS, with research indicating that its
antidepressant effects at a dose of 50 mg/kg are similar to the overall
prescription of CSS. Hence, exploring a novel combination approach
by adding 50 mg/kg of ferulic acid to the overall CSS prescription
may enhance the overall efficacy of CSS. This will be a focus of our
future research.

It is essential to acknowledge that CSS lacks high-quality
standardized clinical trials, including large-scale multicenter,
randomized double-blind controlled trials, to validate its clinical
efficacy in treating depression. Recognizing the involvement of
multiple factors in the occurrence and development of diseases is
crucial. For complex disorders like depression, a single etiology

cannot fully explain its onset and progression. Therefore, the
metabolism and transformation of CSS within the human body
should be incorporated into future research. Integrated research
utilizing various technologies and methods is necessary to
comprehensively elucidate the antidepressant mechanisms of CSS,
paving the way for new combination methods to increase drug
effectiveness. This will establish a reliable scientific foundation for
botanical drug antidepressant development and promote
advancements in the field of TCM for treating depression.
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