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Cardiovascular diseases have become the leading cause of death in urban and
rural areas. Myocardial fibrosis is a common pathological manifestation at the
adaptive and repair stage of cardiovascular diseases, easily predisposing to
cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding
potential, can regulate gene expression in the occurrence and development
of myocardial fibrosis. Recent studies have suggested that Chinese herbal
medicine can relieve myocardial fibrosis through targeting various ncRNAs,
mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal
medicine. Herein, we summarized the current understanding of ncRNAs in the
pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs
to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis.
Further, we discussed the future directions regarding the potential applications of
ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
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1 Introduction

The main pathological features of myocardial fibrosis (MF) are excessive deposition of
extracellular matrix in myocardial interstitium (Espeland et al., 2018). MF is a pathological
manifestation of many cardiovascular diseases, like myocardial infarction (Talman and
Ruskoaho, 2016), myocarditis (Tymińska et al., 2021), coronary heart disease (He et al.,
2020) and hypertension (Rai et al., 2019). For example, following myocardial infarction, a
large number of cardiac fibroblasts (CFs) are activated and transdifferentiate into
myofibroblasts, which has stronger contraction function and extracellular matrix
synthesis ability. Then increased collagen can deposit and form scar tissue in the
infarcted area to provide support for the heart (González et al., 2018). Besides
myocardial infarction, pressure overload due to hypertension or aortic stenosis (Verjans
et al., 2018), volume overload induced by mitral valve (Dit Beaufils et al., 2021) or aortic
valve insufficiency (Fragasso et al., 2022), and the release of inflammatory factors caused by
oxidative stress (Lu et al., 2022) can also result in MF. MF is the end-stage pathological
manifestation of most cardiovascular diseases and is closely related to cardiac death. It
affects cardiac function in various ways. On one hand, perivascular fibrosis can impact
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coronary blood supply, leading to myocardial ischemia, hypoxia,
and even necrosis (Ytrehus et al., 2018). On the other hand, the
deposition of a large number of collagen fibers results in an increase
in ventricular wall hardness and a decrease in compliance, leading to
reduced myocardial contraction, synchronization, and overall
cardiac function (Sutton and Sharpe, 2000; Prabhu, 2005).
Additionally, the deposition of collagen fibers in the matrix
affects the conduction of myocardial electrical signals, easily
forming reentrant rings and conduction blocks, which can result
in arrhythmia (Francis Stuart et al., 2016). Therefore, studying the
theraputic strategies of MF is helpful to slow down the progression
of cardiovascular diseases and reduce the mortality rate of patients.

At present, the treatment of MF mainly involves two
approaches: medication and surgery. Medication methods are
more commonly used at the early stage of cardiovascular diseases
to prevent the development of MF. These drug mainly include
angiotensin-converting enzyme inhibitors (Francis Stuart et al.,
2016), diuretics (Liu and Yu, 2022), β-blockers (Kobayashi et al.,
2004), and anticoagulants (Oh et al., 2022). Surgical methods are
used at the late stage of cardiovascular diseases, mainly including
endocardial resection, atrioventricular valve repair/replacement,
and heart transplantation. Endocardial resection can achieve the
purpose of treatment by removing endocardial fibrous hyperplasia
and calcification (Eckardt et al., 2000). Atrioventricular valve repair/
replacement can repair/replace the fibrotic valve and restore its
normal function (Mbanze et al., 2020). The heart transplantation

can be performed when other treatments for heart problems have
not worked, leading to heart failure (Srivastava and Kittleson, 2024).
The aforementioned Western medicine methods offer the
advantages of quick and potent effects, but their associated risks
and side effects cannot be ignored. For instance, some medications
may cause varying degrees of side effects, such as nausea, headaches,
and liver function impairment; different patients may exhibit varied
responses to the same treatment methods, leading to inconsistent
treatment outcomes; some treatment methods may be relatively
expensive, posing an economic burden on patients.

Chinese herbal medicine is an important historical treasure.
Unlike Western medicine, Chinese herbal medicine offers the
advantages of having minimal side effects in clinical applications.
Prescriptions are tailored to individual patients, considering factors
such as time and condition. From the perspectives of “blood stasis”
and “phlegm turbidity”, Chinese herbal medicine is utilized in the
treatment of MF, often in combination with compounds that
promote blood circulation, remove blood stasis, and address
phlegm and turbidity. Clinically, widely used formulations
include Qishen Yiqi pill (Lv et al., 2021), Tongxinluo Capsule
(Yin et al., 2019), Baoxin Decoction (Sun et al., 2017), Ginseng
Dingzhi Decoction (Wanget al., 2022a), Huoxue Anxin Recipe
(Wang et al., 2016), and others.

Non-coding RNAs (ncRNAs) are identified as RNA molecules
with no coding potential (Yan and Bu, 2021). With the development
of RNA sequencing technology, a large number of ncRNAs have
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been identified in different species and tissues. For a long time, it is
generally believed that most genetic information is processed by
protein-coding genes, while ncRNAs were regarded as junk nucleic
acid sequences (Palazzo and Lee, 2015). In recent years, systematic
analysis of cardiovascular genome and transcriptome has
profoundly changed people’s understanding of ncRNAs.
Numerous studies have confirmed that ncRNAs are important
regulatory factors in heart development and have an inseparable
relationship with the occurrence and development of most
cardiovascular diseases (Qu et al., 2016). By forming complexes
with RNA, DNA, or proteins, ncRNAs modulate numerous pivotal
signaling pathways implicated in MF (Chen et al., 2018b;
Dilmaghnai et al., 2021). Moreover, the expression changes of
ncRNAs in plasma and tissues can be regarded as biomarkers for
early warning and predicting prognosis of MF (Jiang et al., 2020;

Ghafouri-Fard et al., 2021). As such, they represent promising future
clinical targets for modulating both MF and its associated
cardiovascular conditions. In recent years, studies have shown
that ncRNAs are the targets of Chinese herbal medicine in the
treatment of MF. In this study, we have discussed recent progress in
the modulation of ncRNAs through Chinese herbal medicine for
managing MF, with a focus on herbal monomers and compounds.

2 Mechanisms of ncRNAs in regulating
gene expression

In the past few decades, ncRNAs have been proved to regulate
gene expression at multiple levels in the occurrence and
development of MF, and act as new drug targets for MF

FIGURE 1
Mechanisms of controlling gene expression through ncRNAs. (A) LncRNA and circRNA act as miRNA sponges and affect the expression of miRNA
and its target gene. (B) MiRNA binds to mRNA, leading to mRNA degradation or translation inhibition. (C) CirRNA combines with miRNA, RNA binding
protein, U1 small ribonucleoprotein particles, and RNA polymerase II to affect the function of miRNA, interfere with the splicing or stability of mRNA, and
enhance the transcription of parent genes. (D) LncRNA regulats gene expression from the transcriptional level, post-transcriptional level, and other
level. Transcriptional level: lncRNA interferes with the transcription or chromatin remodeling of coding genes. Post-transcriptional level: lncRNA acts as
miRNA sponges; lncRNA forms RNA double strand with mRNA, affecting mRNA splicing, editing, degradation, and translation. Other level: lncRNA binds
to specific proteins, changing the location or activity of the protein.
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treatment. These ncRNAs mainly include microRNA (miRNA),
long non-coding RNA (lncRNA), and circular RNA (circRNA),
of which miRNA-mediated regulation have mostly been studied and
documented (Dong et al., 2019b). Intrestingly, there is also an
interaction between the three ncRNAs, called competitive
endogenous RNA (ceRNA) mechanism, which complicates gene
regulation. The mechanisms of ncRNAs in regulating gene
expression and their inter-regulations are shown in Figure 1.

2.1 MiRNA in regulating gene expression

MiRNA is a highly conserved gene family with a length of about
22–25 nucleotides (Davoodvandi et al., 2021). MiRNA binds to the
untranslated region at the 3’ end of mRNA to inhibit mRNA
transcription or translation (Mohr and Mott, 2015). Studies have
shown that pri-miRNA, the primary transcription product of
miRNA, is cut into hairpin precursor miRNA (pre-miRNA) by
Drosha enzyme of ribonuclease 3 family. After preliminary cutting,
pre-miRNA is transported from the nucleus to the cytoplasm by
transporter. Then, the pre-miRNA is further cut by the combined
action of Dicer enzyme of ribonuclease 3 family and dsRNA binding
protein (dsRBP). Finally, the mature miRNA binds to argonaute
(AGO) protein to form RNA-inducing silencing complex (RISC),
leading to the interaction between the complex and the target
mRNA (Leitão and Enguita, 2022). There are two ways in which
miRNA regulates gene expression: when miRNA is completely
complementary to mRNA, the mRNA can be directly cut; when
miRNA binds with mRNA incompletely, the translation of mRNA is
prevented but the stability of mRNA is not affected (Fabian
et al., 2010).

Through regulating fibrosis-related factors, miRNA plays
various roles in MF. For example, mir-338-3p acts as a
therapeutic target in MF through fibroblast growth factor
receptor 2 (FGFR2) suppression (Huang et al., 2022a). MiR-125b
is critical for induction of MF by targeting p53 and Apelin mRNA
(Nagpal et al., 2016). The matrix metalloproteinases (MMPs) and
tissue inhibitors of MMPs (TIMPs) play crucial roles as regulators of
extracellular matrix turnover and tissue remodeling, significantly
influencing MF (Serraino et al., 2023). A previous study has shown
that miR-146b-5p can bind to TIMP4mRNA, regulating the balance
between TIMP4 and MMP9, which is associated with atrial fibrosis
(Ye et al., 2021). Additionally, MMP2 and MMP9 have been
identified as potential targets for miR-29a and miR-133a
(Jones et al., 2011). Connective tissue growth factor (CTGF)
exerts chemotactic and mitogenic effects on fibroblasts, closely
related to the occurrence and development of fibrosis in various
tissues and organs (Ramazani et al., 2018). MiR-30a attenuates
MF in rats by targeting CTGF (Chen et al., 2018a). Furthermore,
Galectin-3 promotes the proliferation and collagen synthesis of
CFs, while miR-335 inhibits MF by directly targeting
this gene Sun.

2.2 LncRNA in regulating gene expression

Compared with miRNA, the length of lncRNA is usually longer,
generally more than 200 nt, which has the similar structure with

mRNA (Jha et al., 2023). Firstly, ceRNA mechanism is one of the
important ways for lncRNA to regulate genes (Huang, 2018). As a
natural miRNA sponge, lncRNA competes with mRNA to bind with
miRNA, which affects gene silencing induced by miRNA. For
example, lncRNA PFL acts as a ceRNA of let-7d to promote
fibrogenesis (Liang et al., 2018), Besides ceRNA mechanism,
lncRNA can also directly bind to DNA, mRNA and protein. This
modulation can be categorized into three levels: transcription level,
post-transcription level and other level (Li et al., 2023b).
Transcriptional level means lncRNA can interfere with the
transcription or chromatin remodeling of coding genes (Dykes
and Emanueli, 2017). For example, lncTCF7 recruit switch/
sucrose non-fermentable (SWI/SNF) complex to transcription
factor 7 (TCF7) promoter region, leading to transcription of
TCF7 gene (Wang et al., 2015b). Post-transcriptional level means
lncRNA can influence mRNA splicing or translation (Ma et al.,
2013). For example, IncRNA Safe can complementarily combine
with secreted frizzled-related protein 2 (Sfrp2) mRNA to form a
Safe-Sfrp2 RNA duplex to stabilize each other (Hao et al., 2019).
Moreover, lncRNA can also bind to specific proteins, changing the
location of the protein or regulating its activity (Guttman and Rinn,
2012). For example, lncRNA HOX transcript antisense RNA
(HOTAIR) could bind with polypyrimidine tract-binding protein
1 (PTBP1) to increase the stability of Wnt5a (Tan et al., 2022).

The mechanism of regulating MF by lncRNA is complicated,
with numerous lncRNAs involved in the ceRNA network to exert
their functions. For example, lncRNA DANCR targets miR-758-3p
to regulate proteoglycan 4 (PRG4) and the downstream Smad
pathway, influencing the progression of cardiac dysfunction and
fibrosis (Huang andHuang, 2023). LncRNACFAR promotesMF via
targeting miR-449a-5p to regulate the lysyl oxidase-like protein-3
(LOXL3)/mammalian target of rapamycin (mTOR) axis (Zhang
et al., 2023). LncRNA TUG1 exacerbates MF in diabetic
cardiomyopathy by modulating the miR-145a-5p/cofilin-2 (Cfl2)
axis (Wang et al., 2023). Unlike the above mechanism, some
lncRNAs regulate MF by directly decoying proteins. For example,
the regulatory role of lncRNA Wisper in CFs proliferation,
migration, and survival depends on its association with TIA1-
related protein (Micheletti et al., 2017). LncRNA MetBil directly
binds to methyltransferase like 3 (METTL3) protien to regulate its
expression in ubiquitin-proteasome pathway, thereby regulating the
expression of the methylated fibrosis-associated genes in ischemia-
induced MF (Zhuang et al., 2023).

2.3 CircRNA in regulating gene expression

CircRNA has a closed loop structure without 5′cap and 3′polyA
tail, and the average length of circRNA in human body is about
500 nt (Dragomir and Calin, 2018). CircRNA contains abundant
miRNA binding sites and can be used as a sponge of miRNA
(Salmena et al., 2011). For example, circRNA-005647 has a
binding site with miR-27b-3p and inhibits the binding of miR-
27b-3p with fibrosis-related genes (Yuan et al., 2019). In addition to
ceRNA mechanism, circRNA can affect the splicing and stability of
mRNA by binding to RNA binding protein (RBP). For example,
circFndc3b enhances the expression and signal transduction of
vascular endothelial growth factor-A (VEGF-A) by interacting
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with RBP fused in sarcoma (FUS) (Garikipati et al., 2019). What’s
more, circRNA can also bind to the promoter region and enhance
the transcription of its parent gene by interacting with U1 small
ribonucleoprotein particles and RNA polymerase II (Lun
et al., 2023).

The mechanisms currently reported for circRNA in regulating
MFmainly involve acting as a ceRNA, interacting with proteins, and
encoding proteins. For example, circSMAD4 promotes MF by acting
as a sponge against miR-671-5p (Jeong et al., 2023). CircYap directly
binds to tropomyosin-4 (TMP4) and gamma-actin (ACTG) to make
the interaction between the two proteins more stable, resulting in the
inhibition of actin polymerization and subsequent MF (Wu et al.,
2021). Circ_0036176 has the ability to encode a protein containing
208 amino acids named Myo9a-208, which mediates the inhibitory
effect of circ_0036176 on the proliferation of CFs (Guo et al., 2022).

3 Chinese herbal medicine relieves MF
through regulating ncRNAs

Chinese herbal medicine has the characteristics of wide sources
and small side effects, thus having a unique advantage in treating
human diseases including MF. Recent studies have suggested that
Chinese herbal medicine can exert anti-MF effects by regulating
ncRNAs. 12 kinds of Chinese herbal monomers and 5 kinds of
Chinese herbal compounds have been shown to treat MF by
interfering with ncRNAs. The herbal monomers include
tripterine, α-linolenic acid, leonurine, astragaloside IV,

notoginsenoside R1, tanshinone IIA, salvianolic acid B,
resveratrol, quercetin, berberine, bufalin, and lycorine. The
pharmacological action and mechanisms of these Chinese herbal
monomers are summarized below in Figure 2. The chemical
structural formulas of Chinese herbal monomers are shown in
Figure 3. The Chinese herbal compounds include trafiltration
extract of radix angelica sinensis and radix hedysari,
Longshengzhi capsule, Fuzheng Huayu Recipe, Shenzhu Xinkang
Decoction, and Huoxue Anxin Recipe. The pharmacological action
and mechanisms of these Chinese herbal compounds are
summarized below in Figure 4.

3.1 Chinese herbal monomers and their
targeting ncRNAs in treating MF

3.1.1 Tripterine
Chinese herb Tripterygium wilfordii Hook. F. has the effects of

dispelling dampness, relieving swelling and pain, and resisting
inflammation (Zeng et al., 2024). Triptolide and tripterine are the
two most active components in the extract of Tripterygium wilfordii
Hook. F. In recent years, it has been found that tripterine can inhibit
CFs viability and collagen production by down-regulating the
expression of miR-21, the activator of ERK signaling pathway,
leading to relieved MF and cardiac dysfunction (Cheng et al.,
2016). In fact, miR-21 has been found to be a pro-fibrotic factor
in various animal models, targeting multiple fibrotic pathways and
promoting MF. For example, in a mouse model of myocardial

FIGURE 2
The signaling pathways of Chinese herbal monomers in treating MF by interfering with ncRNAs. Chinese herbal monomers regulate ncRNAs to
inhibit the viability, differentiation, migration, inflammation, and collagen production of cardiac fibroblasts while triggering apoptosis and autophagy in
these cells. Furthermore, these herbal monomers can also inhibit inflammation, oxidative stress, and apoptosis in cardiomyocytes and enhance their
viability through ncRNA regulation. Additionally, EndMT can also be inhibited by Chinese herbal monomers in a ncRNAs-dependent way. These
mechanisms collectively contribute to the ultimate inhibition of myocardial fibrosis. The blank arrow indicates promotion, the blue T-shaped arrow
indicates inhibition, and the black dotted arrow indicates the presumed regulatory function.
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infarction, miR-21 promotes CF activation and MF via TGF-β/
Smad7 signaling pathway (Yuan et al., 2017). In another diabetes-
induced MF mouse model, silencing miR-21 inhibits high glucose-
induced endothelial to mesenchymal transition (EndMT) (Li et al.,
2020). These results suggest that the anti-fibrotic effect of tripterine
is mediated by miR-21 and the downstream ERK, TGF-β, and
EndMT signaling pathways.

3.1.2 α-Linolenic acid (ALA)
Flaxseed oil is extracted from Linum usitatissimum L., and is

rich in omega-3 fatty acids such as ALA. It is usually used to lower
cholesterol, resist atherosclerosis, and reduce heart load (Prasad
et al., 2020). A study has shown that in a rat model of myocardial
infarction, flaxseed oil exerts cardioprotective effect and decreases
collagen deposition via selectively up-regulaing the expression of
miR-133a, miR-135a, and miR-29b. The author speculated this
effect may be attributed to ALA component in the flaxseed oil
(Parikh et al., 2020). Previous studies have shown that the three
miRNAs are all anti-fibrotic miRNAs. MiR-133a reduces MF by
suppressing transforming growth factor-β1 (TGF-β1) signaling in
an acute myocardial infarction model (Yu et al., 2019). MiR-135a
could target transient receptor potential melastatin 7 (TRPM7) to

inhibit the activation of TGF-β/Smads pathway, thus relieving MF
(Wei et al., 2020). MiR-29b inhibits many genes involved in
extracellular matrix formation and fibrosis, such as Col1a1,
Col1a2, Col3a1, fibrillin 1, Elastin, and TGF-β1 (Rooij et al.,
2008; Zhang et al., 2014).

3.1.3 Leonurine
Leonurine, an alkaloid extracted from leonurus japonicus

Houtt., has been shown to have various pharmacological effects
including protecting myocardial ischemia-reperfusion injury,
resisting blood platelet aggregation, reducing blood viscosity,
promoting angiogenesis, lowering blood pressure, and inducing
diuresis (Huang et al., 2021). Recent studies have shown that
leonurine can treat MF induced by isoproterenol by
upregulating miR-1, which could directly target Fibullin-2
(Fbln2) to reverse cardiac remodeling (Karakikes et al., 2013;
Lu et al., 2018). In addition, evidence has shown that all mature
miR-29 family members in post-myocardial infarction tissues are
downregulated (Wang et al., 2021). Leonurine treatment can
significantly upregulate the expression of miR-29a-3p and
downregulate its target proteins including TGF-β, Col3a1, and
Col1a1, to attenuate fibrosis and cardiac remodeling (Wang et al.,

FIGURE 3
Structural formula of Chinese herbal monomers that exhibit anti-MF activity by interfering with ncRNAs.
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2021). What’s more, a study confirmed that leonurine can also
promote apoptosis of CFs through regualting miR-29a-3p (Xi
et al., 2023). These evidences suggest that the anti-fibrotic effect
of leonurine may be mediated by miR-1 and miR-29a-3p.

3.1.4 Astragaloside IV
Astragaloside IV is one of the best bioactive components from

the root of Astragalus membranaceus (Fisch.) Bunge (Jing et al.,
2021). Studies have shown that astragaloside IV inhibits MF by up-
regulating the expression of miR-135a which targets transient
receptor potential melastatin 7 (TRPM7) (Wei et al., 2020).
Moreover, in an experiment of high glucose-induced injury of
cardiomyocytes, it was found that astragaloside IV could reduce
the expression of miR-34a (Zhu et al., 2019). According to previous
studies, inhibition of miR-34a can treat MF by inhibiting
cardiomyocytes apoptosis (Dong F. et al., 2019a). Therefore, it
can be speculated that astragaloside IV may play an anti-fibrotic
role through repressing cardiomyocytes apoptosis by decreasing
miR-34a.

3.1.5 Notoginsenoside R1
Panax notoginseng saponins are the main component of the

roots of Panax notoginseng (Burk.) F. H. Chen. Panax
notoginseng saponins have the effects of promoting blood
circulation, removing blood stasis, and dredging collaterals,
which are commonly used to treat coronary heart disease and
blood stasis syndrome (Jiao et al., 2021; Yang et al., 2022).
Notoginsenoside R1 is the primary active component of Panax
notoginseng saponins. It was found that notoginsenoside
R1 inhibits isoproterenol-induced MF through the
intervention of miRNA-mRNA regulatory network, among
which the expression level of miR-21 decreased, while miR-
29c, miR-30c and miR-133b increased (Ning, 2016). These
miRNAs have all been proven to be fibrosis-related miRNAs.
It has been shown that miR-21 activates ERK signaling pathway,

EndMT and TGF-β signaling pathway to promots MF (Cheng
et al., 2016; Yuan et al., 2017; Li et al., 2020). MiR-29c has been
proved to target multiple fibroisis-related genes including
Col1a1, Col1a2, Col3a1 and Col5a1, fibrllin 1 and TGF-β1
(Liu et al., 2017) MiR-30c inhibits the proliferation,
differentiation, migration and collagen production of CFs by
targeting TGF-βRII (Xu et al., 2018); MiR-133b has also been
reported to alleviate doxorubicin-induced cardiomyocyte
apoptosis and MF by targeting PTBP1 and transgelin 2
(TAGLN2) (Li et al., 2021). Therefore, notoginsenoside R1 can
target multiple fibrosis-related miRNA and can be regarded as
attractive anti-fibrotic candidate medicine.

3.1.6 Tanshinone IIA
Tanshinone IIA is extracted from the dried root and rhizome

of Salvia miltiorrhiza Bunge, which exerts a wide range of
cardioprotective effects in the diseases like myocardial
infarction, myocardial ischemia-reperfusion injury, myocardial
hypertrophy, atherosclerosis, and cardiomyopathy (Zhang et al.,
2019; Yang et al., 2020). Recent studies have shown that
tanshinone IIA can relieve MF through up-regulating miR-29b
(Yang et al., 2015), miR-205-3p (Qiao et al., 2021), and miR-618
(Yan et al., 2022) expressions. MiR-29b and miR-205-3p could
downregulate the expression of TGF-β1, Col1a1, and Col3a1, so
as to resist MF following myocardial infarction (Yang et al., 2015;
Qiao et al., 2021). MiR-618 could inhibit the expression of
TIMP1 and TIMP4 to mediate the anti-fobrotic effects of
tanshinone IIA on CFs (Yan et al., 2022). In addition, it has
been found that tanshinone IIA can inhibit fibroblast
proliferation by down-regulating lncRNA human-specific
regulatory loci (HSRL) in skin hypertrophic scar tissue. HSRL
could promote the expression of sorting connexin 9 (SNX9) and
strengthen its interaction with p-Smad3, thus activating TGF-β
signaling (Shi et al., 2020). Therefore, inhibiting HSRL may also
mediate the anti-fibrotic effect of tanshinone IIA.

FIGURE 4
The signaling pathways of Chinese herbal compounds in treating MF by interfering with ncRNAs. Chinese herbal compounds regulate ncRNAs to
inhibit the viability, differentiation, migration, and collagen production of cardiac fibroblasts while triggering apoptosis in these cells. Moreover, these
herbal compounds can also inhibit EndMT and promote myocardium angiogenesis through ncRNAs regulation. These mechanisms collectively
contribute to the ultimate inhibition of myocardial fibrosis. The blank arrow indicates promotion, the blue T-shaped arrow indicates inhibition.
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3.1.7 Salvianolic acid B
Salvianolic acid B is also derived from the root and rhizome of

Salvia miltiorrhiza Bunge. A study showed that lncRNA maternally
expressed gene 3 (Meg3), mainly expressed in CFs, is a new
promotor of MF. Silencing Meg3 prevents MMP2 production,
leading to the decreased MF and improved cardiac function
(Piccoli et al., 2017). In cardiomyocytes of oxygen and glucose
deprivation (OGD), salvianolic acid B was reported to represses
Meg3 expression, which influences murine double minute 2
(MDM2)/p53 and AMP-activated Protein Kinase (AMPK)
signalling pathways, leading to incresed viability and reduced
apoptosis of cardiomyocytes (Yang et al., 2019a). Therefore, it is
speculated that salvianolic acid B may have the cardioprotective
effect of inhibiting MF by down-regulating Meg3, but more
researches are needed to test this hypothesis.

3.1.8 Resveratrol
Resveratrol is an active polyphenol, derived from many herbal

medicines, such as Morus alba L., Polygonum cuspidatum Sieb. et
Zucc., and Rubus idaeus L. Resveratrol is proved to have anti-
bacterial, anti-inflammatory and immunomodulatory effects
(Malaguarnera, 2019). In cardiovascular system, it exerts
protective effects on atherosclerosis, myocardial infarction, and
heart failure (Raj et al., 2021). Recent studies showed that
resveratrol can inhibit proliferation and induce cell death of
CFs (Lieben Louis et al., 2019). A study assessed the impact of
resveratrol on microRNAs linked to MF, and found resveratrol
inhibits the expressions of miR-17, miR-34a and miR-181a in
TGF-β1-induced CFs (Zhang et al., 2018). Overexpression of miR-
17 decreases Smad7 expression level, indirectly promotes TGF-β1
signaling (Zhang et al., 2018). MiR-34a activates TGF-β1 signaling
through increasing Smad4 expression (Huang et al., 2014). MiR-
181a suppresses the expression of PH domain leucine-rich repeat
protein phosphatase 2 (PHLPP2) and subsequently activates AKT
signaling, leading to enhanced proliferation of keloid fibroblast
cells (Rang et al., 2016). In addition, resveratrol was reported to
inhibit the expression of lncRNA metastasis associated lung
adenocarcinoma transcript 1 (MALAT1), which could act as a
ceRNA of miR-145 and promote MF progression (Yang et al.,
2019b; Huang et al., 2019). Therefore, downregulation of
MALAT1 may be one of the potential mechanisms of
resveratrol in treating MF. It is evident that resveratrol, with its
multiple ncRNA targets, holds significant promise for the
management of MF.

3.1.9 Quercetin
Quercetin is a kind of flavonol that widely exists in flowers,

leaves and fruits of many plants, such as Sophora japonica L,
Asparagus officinalis L., and Acanthopanax senticosus (Rupr.et
Maxim.) Harms. Previous studies have shown that quercetin
restrains the level of fibrotic proteins including TGF-β1, α-SMA,
Col1a1, and Col3a1 in heart tissue of myocardial infarction model
(Albadrani et al., 2021). Studies are progressively uncovering that
the promotion of CFs autophagy can effectively inhibit MF and
enhance cardiac function (Wang et al., 2015a). Quercetin was found
to prevent isoprenaline-induced MF by increasing autophagy of CFs
via decreasing miR-223-3p and increasing forkhead Box O3
(FOXO3) (Hu et al., 2021).

3.1.10 Berberine
Berberine is a quaternary ammonium alkaloid contained in the

rhizome of Coptis chinensis Franch. and has various cardiovascular
protective effects, such as anti-heart failure, anti-arrhythmia, and
lowering cholesterol effects (Pagliaro et al., 2015; Zhao et al., 2020).
It was found that berberine relieves hypertension-induced MF by
increasing the expression of miR-29b and decreasing its targets
Col1a1 and Col3a1 (Zheng et al., 2020). Moreover, in a myocardial
ischemia-reperfusion mouse model, the protective effect of
berberine is exerted by inducing miR-26b-5p and inhibiting its
downstream PTGS2 and MAPK members, which results in the
increased viability, and decresed apoptosis, inflammatory, and
oxidative stress in cardiomyocytes (Jia et al., 2022). Since the
injury of the cardiomyocytes is the major causes of MF, it is
speculated that miR-26b-5p may be a potential target of
berberine in the treatment of MF. In addition, berberine was also
proved to inhibit lncRNA myocardial infarction-associated
transcript (MIAT) to improve myocardial hypertrophy (Zeng
et al., 2019). Since MIAT is a pro-fibrotic lncRNA governing MF
by down-regulating miR-24 and up-regulating Furin and TGF-β1
(Qu et al., 2017), we can infer that berberine may have the effect to
improve MF by inhibiting MIAT.

3.1.11 Bufalin and lycorine
Bufalin comes from dried toad, while lycorine is an alkaloid

found in the bulb of Lycoris radiata (L’Hér.) Herb. Recently, high-
throughput natural compound library screening identified bufalin
and lycorine to be effective anti-fibrotic molecules in hypertension-
induced MF mouse model (Schimmel et al., 2020). The study found
the level of miR-671-5p is reduced after treatment of CFs with
bufalin and lycorine, which leads to the increased expression of anti-
fibrotic protein selenoprotein P1 (SEPP1) (Schimmel et al., 2020).
Another study discovered that bufalin and lycorine can reduce the
expression of miR-29 while increasing the expression of circRNA
CDR1as. This, in turn, leads to a decrease in the infarction area and
fibrotic area in a heart failure pig model (Mester-Tonczar et al.,
2020). Consequently, the anti-fibrotic impact of bufalin and lycorine
can be ascribed to the reduction of miR-671-5p and miR-29 levels
and the elevation of CDR1as levels.

3.2 Chinese herbal compounds and their
targeting ncRNAs in treating MF

3.2.1 Ultrafiltration extract of radix angelica
sinensis and radix hedysari

Radix Angelica Sinensis is usually used in combination with
other drugs to treat cardiovascular diseases such as radiation-
induced heart disease, atherosclerosis, and ischemic heart disease
(Huang et al., 2022b; Li et al., 2023a; Yuan et al., 2023), while
Radix Hedysari has been proved to have significant effects in
treating non-alcoholic fatty liver disease (Sun et al., 2014). In a rat
model of X-irradiation-induced MF, ultrafiltration extract
derived from dried root of Radix Angelica Sinensis and Radix
Hedysari downregulates miR-21-3p and miR-21-5p, inducing the
apoptosis of CFs and alleviating MF (Ma et al., 2019). It has been
shown that miR-21 activates ERK signaling pathway, EndMT,
and TGF-β signaling pathway to promote MF (Cheng et al., 2016;

Frontiers in Pharmacology frontiersin.org08

Wang et al. 10.3389/fphar.2024.1337623

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1337623


TABLE 1 Mechanisms of Chinese herbal medicine in treating MF by regulating ncRNAs.

Herbal medicine ncRNAs Direct ncRNAs'
targets

Biological function Refrences

Tripterine miR-21↓ Smad7 ↓CFs viability, differentiation,
migration, and collagen production

Cheng et al. (2016), Yuan et al. (2017), Li
et al. (2020)

↓EndMT process

α-Linolenic acid miR-29b↑ TGF-β1 ↓CFs differentiation and collagen
production

Rooij et al. (2008), Zhang et al. (2014),
Parikh et al. (2020)

Col1a1

Col1a2

Col3a1 fibrillin 1

Elastin

miR-133a↑ ? ↓CFs differentiation and collagen
production

Yu et al. (2019), Parikh et al. (2020)

miR-135a↑ TRPM7 ↓CFs viability, differentiation, and
collagen production

Parikh et al. (2020), Wei et al. (2020)

Leonurine miR-1↑ Fbln2 ↓CFs collagen production Karakikes et al. (2013), Lu et al. (2018)

miR-29a-3p↑ TGF-β1 ↓CFs viability, differentiation,
migration, and collagen production

Wang et al. (2021), Xi et al. (2023)

Col3a1 ↑CFs apoptosis

Col1a1

Astragaloside IV miR-135a↑ TRPM7 ↓ CFs viability, differentiation, and
collagen production

Wei et al. (2020)

*miR-34a↓ Sirt1 ↓CMs apoptosis Dong et al. (2019a), Zhu et al. (2019)

Notoginsenoside R1 miR-21↓ Smad7 ↓CFs viability, differentiation,
migration, and collagen production

Cheng et al. (2016); Ning (2016), Yuan
et al. (2017), Li et al. (2020)

↓EndMT process

miR-29c↑ ? ↓CFs differentiation and collagen
production

Ning (2016); Liu et al. (2017)

miR-30c↑ TGF-β RII ↓CFs viability, differentiation,
migration, and collagen production

Ning (2016); Xu et al. (2018)

miR-133b↑ PTBP1 ↓CFs collagen production Ning (2016); Li et al. (2021)

TAGLN2 ↓CMs apoptosis

Tanshinone IIA miR-29b↑ ? ↓CFs differentiation and collagen
production

Yang et al. (2015)

miR-205-3p↑ TGF-β1 ↓CFs collagen production Qiao et al. (2021)

miR-618↑ TIMP1 ↓CFs viability, differentiation, and
collagen production

Yan et al. (2022)

TIMP4

*lncRNA
HSRL↓

SNX9 ↓CFs viability, differentiation, and
collagen production

Shi et al. (2020)

Salvianolic acid B *lncRNA
Meg3↓

p53 ↓CFs collagen production Piccoli et al. (2017), Yang et al. (2019a)

↓CMs apoptosis

↑CMs viability

Resveratrol miR-17↓ Smad7 ↓CFs viability and collagen production Zhang et al. (2018)

miR-34↓ Smad4 ↓ CFs viability, differentiation,
migration, and collagen production

Huang et al. (2014), Zhang et al. (2018)

miR-181a↓ PHLPP2 ↓CFs viability Rang et al. (2016), Zhang et al. (2018)

(Continued on following page)
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Yuan et al., 2017; Li et al., 2020). Therefore, the Radix Angelica
Sinensis and Radix Hedysari ultrafiltration extract may be
developed as a medical countermeasure for the mitigation of
radiation-induced MF.

3.2.2 LongShengZhi capsule
Buyang Huanwu Decoction is a famous herbal prescription that

has been used to treat stroke for centuries (Gao et al., 2021). Previous
studies have shown that Buyang Huanwu Decoction can alleviate MF
(Wang et al., 2022b). The compatible components of LongShengZhi
capsule are similar to those of Buyang Huanwu Decoction, and this is
referred to as the modern application of Buyang Huanwu Decoction.
A study found that LongShengZhi capsule attenuates Angiotensin II-
induced cardiac hypertrophy and fibrosis in rats. Mechanically,

Longshengzhi capsule up-regulats miR-150-5p to target MMP14 in
CFs, leading to reduced cardiac remodeling (Gu et al., 2022).

3.2.3 Fuzheng Huayu Recipe
Fuzheng Huayu Recipe, a traditional Chinese herbal

prescription, is often used in China to treat fibrosis (Wang
et al., 2010; Sun et al., 2022). Recently, a study has suggested
that Fuzheng Huayu Capsule inhibits myocardial infarction-
induced MF by facilitating the expression of miR-29b-3p,
miR-29a-5p, miR-29b-5p, and miR-29c-5p (Qi et al., 2019). It
has been shown that miR-29 family are all anti-fibrotic factors
with the effect of inhibiting TGF-β1 signaling and its downstream
targets, resulting in reduced proliferation and collagen
production of CFs (Rooij et al., 2008; Zhu et al., 2013; Zhang

TABLE 1 (Continued) Mechanisms of Chinese herbal medicine in treating MF by regulating ncRNAs.

Herbal medicine ncRNAs Direct ncRNAs'
targets

Biological function Refrences

*lncRNA
MALAT1↓

miR-145 ↓CFs viability, differentiation, and
collagen production

Yang et al. (2019b), Huang et al. (2019)

Quercetin miR-223-3p↓ FOXO3 ↑CFs autophagy Hu et al. (2021)

↓CFs viability and collagen production

Berberine *miR-26b-5p↑ ? ↑CMs viability Jia et al. (2022)

↓CMs apoptosis, inflammation, and
oxidative stress

miR-29b↑ ? ↓CFs collagen production Zheng et al. (2020)

*lncRNA
MIAT↓

miR-24 ↓CFs viability and collagen production Qu et al. (2017), Zeng et al. (2019)

Bufalin and Lycorine miR-29↓ ? ↓CFs collagen production Mester-Tonczar et al. (2020)

circRNA
CRD1as↑

?

miR-671-5p↓ SEPP1 ↓CFs differentiation, collagen
production, and inflammation

Schimmel et al. (2020)

Ultrafiltration extract of Radix Angelica
Sinensis and Radix Hedysari

miR-21-3p↓ Smad7 ↓CFs viability, differentiation,
migration, and collagen production

Cheng et al. (2016), Yuan et al. (2017), Ma
et al. (2019), Li et al. (2020)

miR-21-5p↓ ↑CFs apoptosis

↓EndMT process

LongShengzhi capsule miR-150-5p↑ MMP14 ↓CFs collagen production Gu et al. (2022)

Fuzheng Huayu Recipe miR-29b-3p↑ ? ↓CFs collagen production Qi et al. (2019)

miR-29a-5p↑

miR-29b-5p↑

miR-29c-5p↑

Shenzhu Xinkang Decoction miR-21↓ ? ↓EndMT process Zhai et al. (2022)

Huoxue Anxin Recipe miR-210↑ ? ↑Myocardium angiogenesis Wang et al. (2016)

(Marked with * is the speculated mechanism).

Abbreviations: CMs, cardiomyocytes; CFs, cardiac fibroblasts; circRNA, circular RNA; EndMT, endothelial to mesenchymal transition; Fbln2, Fibullin-2; FOXO3, forkhead box O3; lncRNA,

long noncoding RNA; MALAT1, metastasis associated lung adenocarcinoma transcript 1; Meg3, maternally expressed gene 3; MF, myocardial fibrosis; miRNA, microRNA; MIAT, myocardial

infarction-associated transcript; MMP14, matrix metalloproteinase 14; PHLPP2, PH, domain leucine-rich repeat protein phosphatase 2; PTBP1, polypyrimidine tract-binding protein 1; SEPP1,

selenoprotein P1; SNX9, sorting connexin 9; TAGLN2, transgelin 2; TIMP1, tissue inhibitors of matrix metalloproteinase 1; TIMP4, tissue inhibitors of matrix metalloproteinase 4; TRPM7,

transient receptor potential melastatin 7.
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et al., 2014). Therefore, miR-29 family are the key mediators for
the anti-fibrotic effect of Fuzheng Huayu Recipe.

3.2.4 Shenzhu Xinkang Decoction
Shenzhu Xinkang Decoction is a representative prescription

for the treatment of chronic heart failure and fibrosis (Zhao et al.,
2023). EndMT has been shown to contribute to cardiac fibrosis
(Zeisberg et al., 2007) and Shenzhu Xinkang Decoction was
proved to inhibit EndMT to play an anti-fibrotic role. The
possible mechanism is related to the downregulation of miR-
21 level and inhibition of PTEN/PI3K/AKT pathway (Zhai
et al., 2022).

3.2.5 Huoxue Anxin Recipe
Huoxue Anxin Recipe is a novel formula of Chinese herbal

medicine that has a good cardioprotective effect, such as promoting
myocardial angiogenesis, exhibiting anti-oxidative stresses activity,
and improving cardiac function during myocardial infarction
(Zhang et al., 2012; Zhang et al., 2013; Wang et al., 2016). A
recent study has demonstrated that Huoxue Anxin Recipe could
reduce the infarction area, alleviate fibrosis, and improve the cardiac
function of myocardial infarction rats, which is mainly attributed to
enhanced angiogenesis by upregulation of miR-210 and VEGF
(Wang et al., 2016).

4 Conclusion and perspective

The targeted relationship between Chinese herbal medicine
and ncRNAs are hot spots in current research, which opens up
a new avenue for exploring the mechanism of Chinese herbal
medicine in prevention and treatment of cardiovascular
diseases. This review discussed 12 kinds of Chinese herbal
monomers and 5 kinds of Chinese herbal compounds which
have been shown to treat MF by interfering with ncRNAs
(Table 1). Through targeting ncRNAs, mainly including
miRNA, lncRNA and circRNA, those herbal medicine
relieves MF by inhibiting the proliferation/activation/
inflammation of CFs, increasing apoptosis/autophagy of CFs,
inhibiting apoptosis/inflammation/oxidative stress of
cardiomyocytes, increasing viability of cardiomyocytes,
repressing EndMT, and promoting myocardium angiogenesis.

At present, however, several challenges persist in the
investigation of ncRNAs’ role in the anti-MF effect of Chinese
herbal medicine: (1) The regulatory effect of Chinese herbal
medicine on ncRNAs is primarily validated in animal and cell
models, and it is not yet guaranteed whether these effects still
exist in complex human bodies. (2) The most reported ncRNA
targets of Chinese herbal medicine are miRNAs. Whether
lncRNA, circRNA, and other ncRNAs act as key mediators of
Chinese herbal medicine’s effect has not been explored
sufficiently. (3) We noted that some Chinese herbal medicine
could target ncRNAs known to be associated with MF. However,
there is currently no direct evidence to support the idea that these
herbal medicines can relieve MF by modulating these ncRNAs.
Further experiments are required to validate these scientific
hypotheses.

NcRNAs have been implicated in various diseases and serve
as key targets for disease treatment. However, the clinical
transformation of RNA-based therapies is hindered by
problems related to specificity, delivery and tolerance.
Specificity problems indicate undesirable targeting effects
caused by uptake of cells other than the target cells, and off-
target effects caused by sequence similarity or overdose to a level
much higher than endogenous expectations (Sledz and
Williams, 2004; Yu et al., 2020). In addition, there is a lack of
delivery vectors suitable for delivering ncRNAs to target organs
and cell types (Krieg, 2011). What’s more, natural RNA
molecules are highly susceptible to enzymatic degradation by
serum and cellular RNases. Notably, both single-stranded and
double-stranded RNAs can trigger the body’s viral defense
system via pathogen-associated molecular patter (PAMP)
receptors (Kumar et al., 2011). Due to these reasons, RNA-
based therapies are often lack of efficiency in clinical trials.
Therefore, targeting specific ncRNAs with small molecules
displays potential as a therapeutic approach for disease
treatment. Developing effective tools to screen small
molecules against particular ncRNAs is very important and
urgent. Recently, a study published in Nature has introduced
an innovative technique for screening small molecules that bind
to ncRNAs. They devised an unbiased screen based on affinity-
selection mass spectrometry to identify reversibly binding ability
between lncRNA Xist and 50,000 compounds. They found
20 analogues that has similar structure with the one positive
hit and finally obtained one positive compound X1 that can
effectively reguate the function of Xist (Aguilar et al., 2022). This
research broadens the scope of ncRNA pharmaceutical field,
which will enable the development of RNA-targeting drugs by
high-throughput and large-scale screening methods. Therefore,
by utilizing this screening system with MF-related ncRNAs as
binding targets, it holds the promise of identifying a greater
number of anti-MF drugs, including Chinese herbal medicine.
For example, it has been shown that miR-21 activates the ERK
signaling pathway, EndMT, and the TGF-β signaling pathway to
promote MF (Cheng et al., 2016; Yuan et al., 2017; Li et al., 2020).
Based on the preceding statement, miR-21 has been proven to be
a target for many Chinese herbal medicines in combating MF.
Tripterine, Notoginsenoside R1, Shenzhu Xinkang Decoction,
and the ultrafiltration extract of Radix Angelica Sinensis and
Radix Hedysari can all alleviate MF by inhibiting miR-21.
Therefore, miR-21 may serve as a binding target for screening
anti-MF drugs.

In conclusion, it is clear in this emerging field that ncRNAs
appear to be important players in mediating Chinese herbal
medicine’s effect in various diseases. Indeed, as we have
reviewed, ncRNAs interact with fibrosis-related genes and
signalling pathways, making them a pivotal bridge in
mediating the therapeutic effect of Chinese herbal medicine
on MF. Furthermore, ncRNAs represent promising clinical
drug targets and establishing an anti-MF drug screening
platform based on ncRNAs to screen drugs including
Chinese herbal medicine represents a challenging but
promising field for future drug development in
cardiovascular diseases.
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Glossary

AGO Argonute

ALA α-linolenic acid

AMPK AMP-activated protein kinase

ACTG gamma-actin

ceRNA competitive endogenous RNA

Cfl2 cofilin-2

CFs cardiac fibroblasts

circRNA circular RNA

CTGF connective tissue growth factor

dsRBP dsRNA binding protein

ECM extracellular matrix

EndMT endothelial to mesenchymal transition

FGFR2 fibroblast growth factor receptor 2

FOXO3 forkhead box O3

FUS fused in sarcoma

Fbln2 fibullin-2

HOTAIR HOX transcript antisense RNA

HSRL human-specific regulatory loci

lncRNA long non-coding RNA

LOXL3 lysyl oxidase-like protein-3

MALAT1 metastasis associated lung adenocarcinoma transcript 1

Meg3 maternally expressed gene 3

METTL3 methyltransferase like 3

MIAT myocardial infarction-associated transcript

MF myocardial fibrosis

miRNA microRNA

MMP2 matrix metalloproteinase 2

MMP9 matrix metalloproteinase 9

MMP14 matrix metalloproteinase 14

MDM2 murine double minute 2

mTOR mammalian target of rapamycin

ncRNAs non-coding RNAs

OGD oxygen and glucose deprivation

PAMP pathogen-associated molecular pattern

PHLPP2 PH domain leucine-rich repeat protein phosphatase 2

pre-miRNA precursor miRNA

PTBP1 polypyrimidine tract-binding protein 1

PRG4 proteoglycan 4

RBP RNA binding protein

RISC RNA-inducing silencing complex

SEPP1 selenoprotein P1

Sfrp2 secreted frizzled related protein 2

SNX9 sorting connexin 9

SWI/SNF switch/sucrose non-fermentable

TAGLN2 transgelin 2

TCF7 transcription factor 7

TIMP tissue inhibitors of matrix metalloproteinase

TIMP1 tissue inhibitors of matrix metalloproteinase 1

TIMP4 tissue inhibitors of matrix metalloproteinase 4

TMP4 tropomyosin-4

TRPM7 transient receptor potential melastatin 7

VEGF vascular endothelial growth factor
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