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Cardiac fibrosis is a serious health problem because it is a common pathological
change in almost all forms of cardiovascular diseases. Cardiac fibrosis is
characterized by the transdifferentiation of cardiac fibroblasts (CFs) into
cardiac myofibroblasts and the excessive deposition of extracellular matrix
(ECM) components produced by activated myofibroblasts, which leads to
fibrotic scar formation and subsequent cardiac dysfunction. However, there
are currently few effective therapeutic strategies protecting against
fibrogenesis. This lack is largely because the molecular mechanisms of cardiac
fibrosis remain unclear despite extensive research. The Janus kinase/signal
transducer and activator of transcription (JAK/STAT) signaling cascade is an
extensively present intracellular signal transduction pathway and can regulate
a wide range of biological processes, including cell proliferation, migration,
differentiation, apoptosis, and immune response. Various upstream mediators
such as cytokines, growth factors and hormones can initiate signal transmission
via this pathway and play corresponding regulatory roles. STAT3 is a crucial player
of the JAK/STAT pathway and its activation is related to inflammation, malignant
tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in
the spotlight for its role in the occurrence and development of cardiac fibrosis
and its activation can promote the proliferation and activation of CFs and the
production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript,
we discuss the structure, transactivation and regulation of the JAK/
STAT3 signaling pathway and review recent progress on the role of this
pathway in cardiac fibrosis. Moreover, we summarize the current challenges
and opportunities of targeting the JAK/STAT3 signaling for the treatment of
fibrosis. In summary, the information presented in this article is critical for
comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and
will also contribute to future research aimed at the development of effective
anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
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1 Introduction

Cardiovascular disease is still the major cause of global death
despite great progress in treatment methods. Myocardial fibrosis is a
common pathology of most cardiovascular diseases at the end stage
(Rockey et al., 2015). It can destroy the cardiac structure, impair
cardiac excitation-contraction coupling, and impede cardiac
function of both contraction and relaxation, thereby promoting
the development of cardiovascular disease into heart failure
(Gyöngyösi et al., 2017; Nguyen et al., 2017). The order of
severity of cardiac fibrosis is related to higher long-term
mortality of cardiovascular disease, particularly heart failure
(Azevedo et al., 2010; Aoki et al., 2011). Due to the complex and
incompletely elucidated mechanisms of fibrosis, there is currently no
specific antifibrotic treatment available for cardiac fibrosis.

The Janus kinase/signal transducer and activator of
transcription (JAK/STAT) signaling pathway, as a central
communication node within cells, plays an essential role in a
variety of pathophysiological activities like cell division,
differentiation, immune regulation and tumorigenesis (Zhang
J. Q. et al., 2022). It has been reported that many upstream
mediators can activate this pathway to exert their biological
functions, comprising growth factors, hormones, and cytokines
(Darnell et al., 1994; Liu J. et al., 2023). The JAK/STAT pathway
consists of three parts: ligand-receptor complexes, JAKs, along with
transcription factors STATs. Among the STAT protein family,
STAT3 is the most well-studied member and its activation can
play beneficial or detrimental roles in various diseases. On the one
hand, STAT3 shows highly activated in most cancers and cardiac
injuries (Xian et al., 2021; Zhuang et al., 2022) and is demonstrated
to be a pathogenic regulator (Yu and Jove, 2004). On the other hand,
STAT3 is also recognized as a protective molecule, and its activation
may confer cardioprotection against several cardiovascular diseases
including ischemia and ischemia-reperfusion injury (Negoro et al.,
2000; Fuglesteg et al., 2008; Harhous et al., 2019) and cardiac
hypertrophy (Enomoto et al., 2015). Recently, accumulating
evidence has confirmed a novel profibrotic role of the JAK/
STAT3 signaling activation in multiple tissues and organs,
including the heart (Bao et al., 2020), liver (Ogata et al., 2006),
kidney (Zheng et al., 2019), lung (Celada et al., 2018), and skin (Dees
et al., 2020). In this regard, the JAK/STAT3 pathway may emerge as
a potential therapeutic target for treating fibrotic diseases (Barry
et al., 2007). However, there is a lack of a comprehensive summary
on the role of the JAK/STAT3 signaling in mediating cardiac
fibrosis. In this review, we discuss the structure, transactivation
and regulation of the JAK/STAT3 signaling pathway and review
current progress on the role of this pathway in cardiac fibrosis and
challenges and opportunities of targeting the JAK/STAT3 signaling
for the treatment of fibrosis.

2 The cellular and molecular
mechanisms of cardiac fibrosis

Cardiac fibrosis usually occurs when myocardial tissue is
suffering from a pathological stimulus such as ischemia, hypoxia,
overload, inflammation or other pathogenic factors. It serves a dual
role: it protects myocardial tissue integrity as a normal reparative

response during injury, yet persistent and excessive scar formation
greatly impairs the heart’s systolic and diastolic functions (Leask,
2015). Cardiac fibrosis not only increases ventricular stiffness but
also induces the secretion of growth factors and cytokines to
promote cardiomyocyte hypertrophy, ultimately leading to a
decline in myocardial compliance, heart failure, and even sudden
death (Mohammed et al., 2015; Francis Stuart et al., 2016).

Cardiac fibrosis is a common pathological feature manifested by
multiple cardiovascular diseases, such as heart failure, hypertension,
arrhythmia, cardiomyopathy, and myocardial infarction, and also
plays a significant role in their onset and progression (Tao et al.,
2014; Chen et al., 2015; Chung et al., 2021; Qi et al., 2022). Cardiac
fibrosis manifests as the over-proliferation and differentiation of CFs
and massive accumulation of extracellular matrix (ECM)
components in the myocardium, like fibronectin, type I collagen,
and type III collagen (Schafer et al., 2017). Myofibroblasts
differentiated from CFs can synthesize contractile proteins like α-
smooth muscle actin (α-SMA), leading to the distortion of tissue and
cell structure (Hinz, 2007; Hinz, 2010). On the other hand,
myofibroblasts can express excessive amounts of ECM proteins,
thus leading to the substitution of permanent fibrotic scars for
normal tissues, increased cardiac stiffness, and varying degrees of
cardiac diastolic and systolic dysfunction (Weber, 1989; Cleutjens
et al., 1995; Dobaczewski et al., 2006; Liu et al., 2017; Wang
et al., 2022b).

The source of myofibroblasts in fibrotic hearts remains a
disputed matter. Although some studies indicate that a significant
proportion of myofibroblasts may originate from endothelial cells,
epithelial cells or hematopoietic fibroblast progenitors (Möllmann
et al., 2006; Zeisberg et al., 2007; Aisagbonhi et al., 2011), prevailing
evidence confirms that the primary source of myofibroblasts in
fibrotic heart tissue could be the activation of resident CFs (Ali et al.,
2014; Moore-Morris et al., 2014; Kanisicak et al., 2016; Shinde and
Frangogiannis, 2017; Moore-Morris et al., 2018). Furthermore, it has
been suggested that pericytes could potentially serve as a reservoir of
myofibroblasts, but the precise mechanism by which they operate
remains uncertain, and there may be an overlap between pericytes
and resident fibroblast subsets (Humphreys et al., 2010).

Although the molecular mechanisms involved in cardiac fibrosis
are complex and variable, the transformation of CFs to
myofibroblasts plays a central role in the process of cardiac
fibrosis. Acute cardiac injury initiates a robust inflammatory
response. This process involves the infiltration of immune cells
into the cardiac tissue, which subsequently release inflammatory
cytokines such as transforming growth factor (TGF)-β1, tumor
necrosis factor-α (TNF-α) and interleukins (ILs) (Bujak and
Frangogiannis, 2007; Christia et al., 2013). These cytokines
activate CFs and instigate ECM remodeling through diverse
signaling cascades. Concurrently, neurohormones within the
renin-angiotensin-aldosterone system (RAAS) and the
sympathetic nervous system, particularly Angiotensin II (Ang II),
aldosterone, and catecholamines, are upregulated (Zou et al., 2004;
Ferreira et al., 2016; Azushima et al., 2020). Their activation compels
myofibroblasts to ramp up collagen production, culminating in the
deposition of fibrotic tissue in the heart, which is a hallmark of
cardiac remodeling. Additionally, mechanical stress, often a
consequence of increased cardiac afterload in conditions like
hypertension or valvular disease, prompts cardiomyocytes and

Frontiers in Pharmacology frontiersin.org02

Jiang et al. 10.3389/fphar.2024.1336102

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1336102


fibroblasts to adapt by modifying their ECM, which alters their size,
shape, and function (Li et al., 2018). Moreover, oxidative stress in the
cardiac environment, primarily characterized by the overproduction
of reactive oxygen species (ROS), inflicts direct cellular damage and
fosters inflammation and apoptosis. These effects collectively trigger
signaling pathways that exacerbate myocardial fibrosis (Grosche
et al., 2018). Lastly, metabolic imbalances, including the production
of advanced glycation end-products (AGEs) and lipotoxicity in
cardiomyocytes, along with vascular implications like endothelial
dysfunction, significantly contribute to the progression of cardiac
fibrosis (Huby et al., 2015; Chen et al., 2016; Marciniec et al., 2017).

Among the aforementioned mediators, TGF-β1 is regarded as a
central and potent profibrotic factor and evokes cardiac fibrosis
mainly through activation of downstream classic small mother
against decapentaplegic (Smad) signaling pathway. This process
involves the binding of extracellular TGF-β1 ligand to TGF-β
type II receptor (TGF-βRII), which phosphorylates TGF-β type I
receptor (TGF-βRI). Activated TGF-βRI then phosphorylates and
activates R-Smads (mainly Smad2 and Smad3), which further form a
complex with Smad4. The complex moves to the nucleus and
interacts with other co-activators to induce the transcription of
fibrosis-related genes such as fibronectin, α-SMA and collagens (Shi
and Massagué, 2003; Działo et al., 2018; Hu et al., 2018).
Additionally, TGF-β1 also leads to cardiac fibrosis through
activating several noncanonical (also called Smad-independent)
signaling pathways, like phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt), mitogen-activated protein kinase [MAPK,
mainly comprising p38, c-Jun NH2-terminal kinase (JNK) and
extracellular signal-regulated kinase (ERK)] or Rho-like GTPases
signaling pathways. In addition to the most common TGF-β
signaling, the pathogenesis of cardiac fibrosis also involves a
variety of other intracellular molecular pathways, including the
JAK/STAT3 signaling (Zhang et al., 2019b), Wnt/β-Catenin
signaling (Mizutani et al., 2016), integrin/focal adhesion kinase
(FAK) signaling (Zhao et al., 2016; Molkentin et al., 2017),
Hippo signaling (Singh et al., 2016), and myocardial related
transcription factor (MRTF)/serum response factor (SRF)
signaling (Tomasek et al., 2005; Lighthouse and Small, 2016).
Therefore, targeting these fibrotic mediators or cascades could
provide promising therapeutic approaches for treating
fibrotic diseases.

3 Structure, function, transcriptional
activity and regulation of the JAK/
STAT3 signaling pathway

3.1 Molecular structure of STAT3

In mammals, there are seven proteins belonging to the STAT
family, which consists of cytoplasmic transcription factors named
STAT1-STAT4, STAT5a, STAT5b, and STAT6 (Hu et al., 2020b).
Among these, STAT3 is the most extensively studied and plays pivotal
roles in controlling various cellular biological processes. STAT3 was
originally discovered in 1994 through a series of studies on cytokine-
induced acute responses of target genes. Unlike other familymembers,
global deletion of STAT3 can cause embryonic death. The
STAT3 protein consists of 770 amino acid residues and, similar to

other members of the STAT family, it can be divided into six distinct
functional domains (Figure 1): an NH2-terminal domain (NTD), a
coiled-coil domain (CCD), a DNA binding domain (DBD), a linker
domain (LD), an Src homology 2 (SH2) domain, and a COOH-
terminal transactivation domain (TAD). Each domain has a specific
function (Hu et al., 2021) (Table 1).

STAT3 is expressed widely in different cell types within the heart,
such as cardiomyocytes, fibroblasts, immune cells, and endothelial
cells. Two isoforms of the STAT3 protein, STAT3α (92 kDa) and
STAT3β (83 kDa), are produced through alternative splicing of the
identical gene. STAT3β is missing the COOH-terminal 55 amino
acids, which are correspondingly replaced by seven distinct amino
acid residues (Schaefer et al., 1995; Caldenhoven et al., 1996). Research
has shown that while STAT3β is not vital for survival, mice deficient in
STAT3α do not survive past birth (Maritano et al., 2004). STAT3α
possesses two phosphorylation sites, namely, Tyr705 and Ser727,
whereas STAT3β only possesses one phosphorylation site,
specifically Tyr705. When either Tyr705 or Ser727 is
phosphorylated, STAT3 is activated and exerts its function. STAT3
can be activated by more than 50 extracellular ligands, which are
commonly some cytokines, hormones, growth factors, and
chemokines, such as ILs, interferons, colony-stimulating factors,
epidermal growth factor (EGF), and platelet-derived growth factor
(PDGF) (Darnell, 1997; Hu et al., 2021). STAT3’s biological functions
are complicated and diverse and its main physiological roles under
normal conditions are summarized in the following section.

STAT3 is an important intracellular signaling molecule that has
multiple functions under normal physiological conditions. These
functions include: (1) Regulating the proliferation and
differentiation of various cell types by binding to specific DNA
sequences and affecting gene expression. For example,
STAT3 promotes the proliferation of corneal limbal keratinocytes
via aΔNp63-dependent mechanism, and inhibiting this pathway can
increase cell differentiation (Hsueh et al., 2011). STAT3 also
mediates megakaryocyte differentiation induced by RAD001 (Su
et al., 2013). (2) Regulating the activation, proliferation, and
secretion of cytokines by immune cells, which can modulate
immune responses and inflammation. For instance,
STAT3 inhibition can induce apoptosis and/or activate effective
immune responses in colon cancer cells, overcoming cancer-induced
immune tolerance (Jahangiri et al., 2020). Likewise, systemic
injection of penetrating c-Myc and gp130 peptides can inhibit
pancreatic tumor growth and induce anti-tumor immunity
(Aftabizadeh et al., 2021). (3) Mediating the expression of
inflammation-related genes in response to various cytokines and
growth factors. One of the most prominent examples is IL-6, which
we will discuss in detail later. (4) Maintaining the self-renewal and
differentiation of stem cells by regulating the transcription of target
genes. Phosphorylated STAT3 is functionally associated with the
expression of self-renewal genes in embryonic stem cells (Bourillot
et al., 2009). Moreover, constitutively activated STAT3 can sustain
the self-renewal process in the absence of leukemia inhibitory factor
(LIF) (Matsuda et al., 1999). (5) Participating in tissue repair and
regeneration processes by modulating cell survival and growth. For
instance, Transmembrane and ubiquitin like domain containing 1
(Tmub1) inhibits the phosphorylation and activation of STAT3,
impairing liver regeneration in mice after partial hepatectomy (Fu
et al., 2019). Conversely, Krüppel-like factor 4 (KLF4) deletion in
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vivo induces axonal regeneration in adult retinal ganglion cells
(RGCs) through the JAK/STAT3 signaling pathway. This
regeneration can be further enhanced by removing the endogenous
JAK/STAT3 pathway inhibitor SOCS3 (Qin et al., 2013). (6)
Regulating the energy metabolism of cells by influencing the
expression of mitochondrial oxidative phosphorylation-related
genes. For example, icaritin inhibits the survival and glycolysis of
glioblastoma (GBM) cells through the IL-6/STAT3 pathway (Li et al.,
2019a). Additionally, STAT3 promotes mitochondrial respiration and
reduces the production of ROS in neural precursor cells (Su et al.,
2020). (7) Playing an essential role in early embryonic development, as
embryos with STAT3 gene defects will die in the early stages of
development. In humans, LIF and STAT3 are expressed in decidual
tissue during early pregnancy. LIF can induce
STAT3 phosphorylation in non-decidualized and decidualized
human endometrial stromal cells in vitro, suggesting that LIF/
STAT3 signaling is involved in human embryo implantation and
decidualization (Shuya et al., 2011). Furthermore, conditional ablation
of STAT3 in the uterus can result in embryo implantation failure (Lee
et al., 2013).

3.2 Molecular structure of JAK

In mammals, the JAK family consists of four mainmembers (JAK1-
JAK3 and Tyk2), which are non-receptor tyrosine protein kinases
(Schindler and Darnell, 1995). JAK1, JAK2, and Tyk2 have broad
expression, whereas JAK3 is mainly present in cells of the
hematopoietic lineage (Speirs et al., 2018). Upon interaction of

cytokines or growth factors with their corresponding receptors, JAK
tyrosine kinases are activated, thereby facilitating intracellular signal
transduction.

The JAK protein is made up of seven similar regions (JH1-JH7)
and includes four functional domains: a domain for tyrosine kinase,
a domain for pseudokinase, an SH2 domain, and an NH2-terminal
FERM domain (Four-point-one protein, Ezrin, Radixin, Moesin)
(Figure 2) (Banerjee et al., 2017). The carboxy-terminal portion of
each JAK includes the catalytic kinase domain (JH1) and the
pseudokinase domain (JH2). JH1, containing nearly 250 amino
acid residues, is the active phosphotransferase domain needed for
phosphorylation of cytokine receptors and downstream STAT
proteins. JH2 is similar to JH1 in structure, but it is generally
considered to have no catalytic activity and can regulate the
kinase activity of JH1 (Zhao et al., 2018; Xin et al., 2020).
According to reports, the JAK2 protein’s JH2 exhibits a minimal
level of kinase activity as stated by Ungureanu et al. (2011). The
N-terminal region of each JAK contains the SH2 (JH3 with half of
JH4) and FERM (JH5-JH7 and one-half of JH4) domains, which
collectively facilitate the interaction between JAK proteins and the
box1/2 regions of cytokine receptors located near the cell membrane
(Saharinen et al., 2000; Wallweber et al., 2014; Hubbard, 2017;
Morris et al., 2018; Xin et al., 2020; Raivola et al., 2021).

3.3 Canonical JAK/STAT3 signaling pathway

The JAK/STAT signaling pathway is activated by more than
50 cytokines and growth factors, including hormones, interferons

FIGURE 1
The domain structure and phosphorylation sites of STAT3 protein. STAT3 has two splicing isoforms, STAT3α and STAT3β, and they are comprised of
770 and 722 amino acids, respectively. STAT3 contains six different functional domains, including the NH2-terminal domain, coiled-coil domain, DNA
binding domain, linker domain, SH2 domain, and COOH-terminal transactivation domain (TAD). “Y”means a tyrosine phosphorylation site, and “S”means
a serine phosphorylation site [adapted from ref. (Hu et al., 2021).

TABLE 1 Function of STAT3 domains.

Domain Function Kishore and Verma (2012), Haghikia et al. (2014), Harhous et al. (2019), Hu et al. (2021)

NTD Promoting the formation of STAT3 dimers and regulating nuclear translocation

CCD Providing binding sites for regulatory factors and participating in regulating nuclear import and export

DBD Recognizing and binding to specific DNA elements of target genes

LD Affecting DNA binding stability

SH2 Recognizing phosphotyrosine sites of receptors and contributing to form STAT3 dimers

TAD Recruiting co-activators and regulating target gene transcription

Abbreviation:NTD, NH2-terminal domain; CCD, coiled-coiled domain; DBD, DNA-binding domain; LD, linker domain; SH2, Src homology 2 domain; TAD, COOH-terminal transactivation

domain.
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(IFN), ILs, and colony stimulating factors (Darnell, 1997). These
molecules regulate various cellular events, such as hematopoiesis,
immune adaptability, tissue repair, inflammation, cell apoptosis, and
adipogenesis (Owen et al., 2019). The JAK/STAT3 pathway is
activated when these extracellular ligands bind to their dedicated
transmembrane receptors (Figure 3). The cytosolic domains of these
receptors are constitutively interacting with receptor-related JAK
tyrosine kinases. These JAK kinases are nonactivated before the
ligand stimulation, while the coupling of the ligand with its receptor
results in auto-phosphorylation of JAK kinases (Feng et al., 1997).
Upon activation, the JAK molecules phosphorylate the cytoplasmic
segment of the receptors at particular tyrosine residues,
subsequently serving as binding sites for cytoplasmic
STAT3 protein and attracting the recruitment of the
STAT3 protein. After docking, STAT3 is phosphorylated by JAK
kinase and subsequently associates with itself or other
phosphorylated STAT monomers to create homodimers or
heterodimers upon separation from the receptor. Ultimately,
these dynamic molecular pairs migrate from the cytoplasm to the
nucleus, where they attach to target gene promoters and stimulate
the expression of target genes (O’Shea et al., 2015; Durham et al.,
2019), often causing proliferation, differentiation, and apoptosis.

3.4 Noncanonical JAK/
STAT3 signaling pathway

The function of STAT3 is influenced by different post-translational
modifications, including phosphorylation, methylation, acetylation,

and ubiquitination, occurring at various amino acid sites. In
addition to classical signal transduction, JAK/STAT3 may also
play a role in nonclassical signal transduction. Research has
indicated that STAT3, which is not phosphorylated on Tyr705,
has the ability to move from cytoplasm to the nucleus and can
activate various STAT3 target genes in the absence of Ser727
phosphorylation (Bharadwaj et al., 2020). Additionally, the
process can be facilitated by Lys685 acetylation and NF-kB
signaling activation, as suggested by previous studies (Yang
et al., 2007; Dasgupta et al., 2014). Besides being activated in
the cytosol, all STAT proteins (excluding STAT4) have the ability
to localize to the mitochondrion, leading to an enhancement in
oxidative phosphorylation and membrane polarization. For
example, STAT3 monomers phosphorylated on Ser727 can
translocate into the mitochondrion without dimerization to
increase membrane polarization and ATP synthesis, and inhibit
ROS production and mitochondrial permeability transition pore
(MPTP) opening, thus exerting a protective role (Boengler et al.,
2010; Garama et al., 2016; Avalle and Poli, 2018). Besides,
STAT3 has also been reported to translocate to the endoplasmic
reticulum and contribute to reduce oxidative stress-induced
apoptosis (Avalle et al., 2019). In the nucleus, certain STAT
molecules that are not phosphorylated interact with
heterochromatin protein 1 (HP1) located on heterochromatin.
Phosphorylation of STAT by JAK or other kinases can cause
the detachment of HP1 from heterochromatin, leading to its
destabilization. Subsequently, phospho-STAT can interact with
particular regions on autosomes and regulate the expression of
target genes (Shi et al., 2006; Shi et al., 2008b; Li, 2008). This
noncanonical JAK/STAT signaling is critical for sustaining
heterochromatin stability. Moreover, increasing evidence has
shown that activation of JAK/STAT signaling can cause
chromatin remodeling in mammals (Christova et al., 2007; Shi
et al., 2008a). Besides being triggered by JAK, STAT3 can also be
activated by alternative non-receptor tyrosine kinases or JAK-
independent receptors. As an example, the c-Src enzyme is capable
of phosphorylating STAT3, which then can promote the
expression of oncogenes (Yu et al., 1995). EGF receptor and
PDGF receptor can directly activate STAT3 (Ruff-Jamison et al.,
1994; Liu et al., 2023a).

3.5 Cross-talk between the STAT3 signaling
and other pathways

Besides the prevalent JAK/STAT3 signaling pathway, STAT3 also
engages in alternative signaling pathways or establishes
communication with these pathways, thereby producing biological
impacts. STAT3 is involved in the classic TGF-β/Smad signaling
pathway (Pedroza et al., 2018; Chen et al., 2019b; Sun et al., 2022)
and Smad-independent TGF-β signaling pathways, such as the ERK-
mediated MAPK (Park et al., 2020; Shen et al., 2021), JNK (Park et al.,
2020), and PI3K/Akt signaling pathways (Zhu et al., 2018; Lee et al.,
2019). In addition to TGF-β-related signaling pathways, STAT3 also
participates in many other signaling cascades, such as Fyn (a member
of the Src kinase family) (Seo et al., 2016; Zhu et al., 2018; Zhu et al.,
2023), peroxisome proliferator-activated receptor (PPAR) (Lo et al.,
2017b; Németh et al., 2019), and Notch signaling (Chen et al., 2019c).

FIGURE 2
Structure of JAK. (A). Domains and conserved phosphorylation
sites of the JAK protein. The JAK protein family contains four
members, JAK1-3, and TYK2. Each is composed of seven homologous
regions, labeled JH1-JH7. These regions make up four distinct
functional domains, of which, JH1 corresponds to the kinase domain;
JH2 is the pseudokinase domain; JH3 and a portion of JH4 together
form the SH2 domain; and the combination of JH5, JH6, JH7, and the
rest of JH4 constitutes the FERM domain. “P” represents conserved
tyrosine phosphorylation sites of the JAK protein. (B). Three-
dimensional spatial structure of JAK in cells [adapted from ref. (Hu
et al., 2021).
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3.6 Negative regulation of canonical JAK/
STAT3 signaling

The inhibition of canonical JAK/STAT3 signaling involves three
primary categories of negative regulators (Figure 3): protein
inhibitor of activated STAT (PIAS), protein tyrosine
phosphatases (PTPs), and suppressor of cytokine signaling
(SOCS/CIS). These regulators, as described by Liongue et al., play
a crucial role in preventing the excessive phosphorylation of STAT3
(Liongue et al., 2016; Villarino et al., 2017; Yang et al., 2017).

The process of JAK/STAT signal transduction contains a series
of intracellular tyrosine phosphorylation, so PTPs have a key role in
regulating this pathway. PTPs can directly dephosphorylate and
inactivate the STAT dimers, and block the JAK/STAT cascade. For
instance, a receptor tyrosine phosphatase PTPRTR can bind to and
dephosphorylate the tyrosine residue at site 705 in STAT3 (Zhang
et al., 2007). SHP-2, a significant member of the PTP family and also
a target gene for activated STAT3, can decrease the phosphorylation
level of STAT3 (Schmitz et al., 2000). In addition, PTPs can
dephosphorylate JAK and prevent the JAK/STAT signaling.

The PIAS family comprises four transcription regulatory factors,
namely, PIAS1-PIAS4. PIAS was originally identified to be a
suppressor of STAT, and PIAS3 can combine with STAT3. PIAS
only binds to phosphorylated STAT dimers rather than STAT
monomers (Hu et al., 2021). PIAS mainly suppresses the
transcriptional activity of STAT by means of three mechanisms.

(1) Preventing the DNA-binding activity of STAT and blocking
STAT-DNA interactions (Sonnenblick et al., 2004). (2) Recruiting
transcriptional co-inhibitory factor such as histone deacetylase
(Tussié-Luna et al., 2002). (3) Promoting STAT SUMOylation
(Yuan et al., 2015).

SOCS family proteins are considered as major triggers of the
JAK/STAT signaling attenuation, and there are eight members in
this family: SOCS1-7 and cytokine-inducible SH2 protein (CIS)
(Minamoto et al., 1997; Piessevaux et al., 2008; Kazi et al., 2014).
Cytokine-stimulated JAK/STAT signaling activation induces the
SOCS proteins, which act as negative feedback suppressors to
regulate this pathway (Naka et al., 1997; Kershaw et al., 2013b).
For example, SOCS3 gene is quickly induced by phosphorylated
STAT3 dimers in the nucleus, and in turn SOCS3 protein interacts
with activated JAK and its receptor to suppress JAK activity, thus
preventing further JAK/STAT3 signaling activation (Babon et al.,
2012; Kershaw et al., 2013a). SOCS primarily inhibits the JAK/STAT
cascade in the following ways. (1) It competes with STAT for
binding to the phosphorylated receptor and prevents STAT
recruitment. (2) It forms an E3 ubiquitin ligase complex via the
COOH-terminal SOCS box and degrades JAK or STAT that binds to
SOCS (Kamran et al., 2013). (3) The SOCS protein has the ability to
directly and specifically interact with either JAK or its receptor in
order to inhibit the activity of JAK kinase. An example is the
presence of a distinct brief pattern known as the kinase
inhibitory region (KIR) in SOCS1 and SOCS3. This pattern

FIGURE 3
Signal transduction and negative regulation of the canonical JAK/STAT3 pathway. The JAK/STAT3 cascade is initiated by the interaction between a
ligand and its corresponding receptor. This interaction leads to the auto-phosphorylation of the JAK kinase bound to the receptor. Once activated, JAK
phosphorylates a tyrosine residue on the receptor, creating a docking site for cytoplasmic STAT3 and recruiting STAT3. At this docking site, JAK
phosphorylates STAT3. The phosphorylated STAT3 then dissociates from the receptor and forms dimers. These STAT3 dimers move to the nucleus,
where they bind to promoters and regulate transcription. The JAK/STAT3 cascade is controlled by three primary types of negative regulators: PTPs
(protein tyrosine phosphatases), PIAS (protein inhibitor of activated STAT), and CIS/SOCS (suppressor of cytokine signaling). PTPs block the JAK/
STAT3 signalingmainly by interacting directly with the STAT3 dimers and JAK to dephosphorylate them. PIAS prevents the JAK/STAT3 signaling principally
by inhibiting the binding of STAT3 to DNA. As a common objective caused by the activation of JAK/STAT3, CIS/SOCS mainly hinders the JAK/
STAT3 cascade through the followingmethods: (1) obstructing the recruitment of STAT3 to the phosphorylated receptor; (2) directly interacting with JAK
to suppress its kinase function; (3) prompting the creation of an E3 ubiquitin ligase complex that breaks down JAK or prevents STAT3 from binding to the
SOCS protein [adapted from refs. (Gurzov et al., 2016; Hu et al., 2021).
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enables these two proteins to hinder the catalytic activity of JAK by
directly binding to JAK or its receptor (Sasaki et al., 1999; Yasukawa
et al., 1999; Alexander, 2002).

3.7 The JAK/STAT3 pathway induces fibrosis

Studies have indicated that the JAK/STAT3 pathway plays a key
role in the process of fibrosis. It can be activated by various pro-
fibrotic mediators, such as TGF-β1, PDGF, vascular endothelial
growth factor (VEGF), IL-6, Ang II, serotonin (5-HT), and
endothelin (ET-1), and then leads to fibrogenesis (Rane and
Reddy, 2000; Zhang et al., 2015; Roskoski, 2016) (Figure 4A).
The JAK/STAT3 pathway is also demonstrated to be a central
integrator of multiple pro-fibrotic pathways and its activation can
promote the activation of fibroblasts and the expression of fibrosis-
related genes, such as α-SMA, collagens, and fibronectin (Zhang
et al., 2015; Chakraborty et al., 2017; Dees et al., 2020). In addition,
once activated, STAT3 can induce the expression of hypoxia-
inducible factor-1α (HIF-1α), a transcription factor that responds
to hypoxic conditions and stimulates the production of ECM (Yang
et al., 2021) (Figure 4A). Activated STAT3 can also trigger epithelial
to mesenchymal transition (EMT), a cellular process that allows
epithelial cells to transform into mesenchymal cells with more
power in migration and invasion, and facilitates the progression
of fibrosis (Montero et al., 2021; Yang et al., 2021) (Figure 4B).

3.8 The effects of the JAK/STAT3 pathway
on different types of cardiac injury

The JAK/STAT3 pathway plays a pivotal role in various aspects of
cardiac physiology and pathology, exhibiting multifaceted roles in the
heart (Figure 5). It mediates protective effects in different stages of
ischemia, including ischemia pre-, post-, and remote conditioning
(Hattori et al., 2001; You et al., 2011; Gao et al., 2017). Agents such
as N-acetylcysteine (NAC) and allopurinol (Wang et al., 2013), and
insulin (Fuglesteg et al., 2008) are known to protect against myocardial
ischemia-reperfusion injury through activation of the JAK/STAT3
pathway. Their protective mechanism likely involves the reduction
of ROS production, decrease in cardiomyocyte apoptosis, promotion of
angiogenesis, and delay inMPTP opening. In the context of myocardial
infarction, molecular factors like miR-124, IL-10, and growth arrest and
DNA damage-inducible α (GADD45A) exert beneficial effects through
the STAT3 pathway. Specifically, miR-124 offers anti-apoptotic
benefits, IL-10 provides anti-inflammatory effects, and GADD45A
enhances VEGF-mediated angiogenesis, collectively improving
prognosis (He et al., 2018; Wang et al., 2022a; Tesoro et al., 2022).
Conversely, conditional deletion of STAT3 in cardiomyocytes
exacerbates cardiac remodeling during the subacute phase of
myocardial infarction or under chronic β-adrenergic stimulation
(Enomoto et al., 2015; Zhang et al., 2016). Furthermore,
cardiomyocyte-specific transgenic expression of SOCS1 inhibits JAK/
STAT3 activation in enterovirus-induced myocarditis, but this is
associated with increased mortality in mice, highlighting a complex
interplay (Yasukawa et al., 2003).

Despite its protective roles, the JAK/STAT3 pathway also has
detrimental effects. For instance, in myocarditis, IL-6-triggered

increases in liver complement C3 and Th17 cells may exacerbate
inflammation (Camporeale et al., 2013; Wang et al., 2020).
Additionally, inhibiting the JAK/STAT3 signaling with
piceatannol could improve sepsis-induced cardiac dysfunction by
relieving cell apoptosis and inflammation in septic mice and H9C2
cardiomyocytes, suggesting a critical role of the JAK/STAT3
pathway in sepsis-related myocardial injury (Xie et al., 2021).
This pathway also skews macrophage polarization towards
M1 and away from M2, contributing to coxsackievirus B3
(CVB3)-induced myocardial inflammation and injury (Wang
et al., 2023). Chronic activation of JAK/STAT3 can induce
cardiac hypertrophy, as evidenced by Ang II-induced activation
of TLR4 and STAT3, promoting hypertrophy via the IL-6/JAK2/
STAT3 pathway (Han et al., 2018). Other activators like Heat-shock
transcription factor 1 (HSF1), isoproterenol, and Fibronectin type
III domain containing 5 (FNDC5) also trigger this pathway,
resulting in increased cardiac inflammation, oxidative stress, and
pathological hypertrophy (Zhao et al., 2017; Yuan et al., 2018; Geng
et al., 2019). Moreover, JAK/STAT3 is implicated in cardiac
arrhythmias. Inhibiting JAK2/STAT3 phosphorylation reduces
malignant ventricular arrhythmias post-myocardial infarction by
attenuating ventricular remodeling (Gao et al., 2020). Cardiac-
specific SOCS3 gene knockout mice exhibit myocardial
sarcoplasmic reticulum Ca2+ overload and subsequent ventricular
arrhythmias because of the activation of cardiac gp130 signaling
(Yajima et al., 2011). Additionally, IL-6 overexpression, via the
STAT3 pathway, promotes cardiac sympathetic nerve activity,
increasing the incidence of ventricular arrhythmias (Peng
et al., 2023).

4 Multiple mediators regulate cardiac
fibrosis through the
STAT3 signaling pathway

4.1 ILs

ILs are a type of cytokine proteins that various cells, mainly
immune ones, produce. Cytokines modulate cellular functions such
as growth, maturation, movement, adhesion, activation and
differentiation (Zhang and An, 2007; Brocker et al., 2010). ILs are
a large family of cytokines with more than 60 members, which can be
grouped into four categories: IL-1 related, type 1 helical (IL-4 related,
γ chain and IL-6/IL-12 related), type 2 helical (IL-10 related and IL-28
related), and IL-17 related (Brocker et al., 2010). ILs regulate
homeostasis by influencing the cardiovascular, neuroendocrine and
metabolic systems in the human body (Corwin, 2000).

Recent research has demonstrated that ILs contribute to
myocardial fibrosis via the STAT3 pathway. Some ILs play
proinflammatory and fibrotic roles, and IL-6 is the most
representative (Figure 6). In the absence of NF-E2-related factor 2
(Nrf2), IL-6 levels further increase in response to Ang II, thereby
activating the IL-6/STAT3 pathway, which causes cardiomegaly and
inflammation (Chen et al., 2019a). In addition, Ang II can induce Toll-
like receptor phosphorylation of STAT3, increase IL-6 production, and
continuously activate the JAK/STAT pathway, thereby providing
positive feedback and promoting myocardial hypertrophy, fibrosis,
and ventricular remodeling (Chen et al., 2017a; Han et al., 2018; Zhang
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FIGURE 4
(A). Different JAK/STAT3 activators that play important roles in the pathophysiology of myocardial fibrosis. (1) TGF-β interacts with its receptor (TGF-
βR) on the cell surface, initiating receptor kinase activity. This activity leads to JAK phosphorylation and subsequent activation of STAT3. However, the
precise mechanism underlying this process remains to be fully elucidated. (2) IL-6 binds to its specific receptor, IL-6R, forming a complex. This complex
then associates with the membrane protein gp130. Activation of JAKs, which are associated with gp130, is critical for phosphorylating specific
tyrosine residues on gp130. These residues act as anchoring points for STAT3. (3) Ang II and ET-1 engage with the GPCR family, triggering the
phosphorylation of tyrosine in JAK kinase and consequently activating STAT3. (4) PDGF and VEGF each bind to their respective tyrosine kinase receptors.
This binding results in the phosphorylation of tyrosine residues on the receptors, which can indirectly or transactivate JAK, leading to the activation of the
STAT3 pathway. Once phosphorylated, STAT3 dimerizes and moves into the nucleus. In the nucleus, these STAT3 dimers attach to specific DNA
sequences, enhancing the transcription of genes that are pivotal in driving inflammation and fibrosis, including collagen, fibronectin, α-SMA, etc. In
addition, the activation of STAT3 has the capability to stimulate the expression of HIF-1α and enhance the production of ECM in hypoxic environments.
(B). Epithelial to mesenchymal transition (EMT). The activation of JAK/STAT3 signaling by pathological stimuli has the potential to induce a phenotypic
transition of epithelial cells into mesenchymal cells. These mesenchymal cells exhibit enhanced migration and invasion capabilities. (By Figdraw).
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et al., 2019b). IL-6 enhances STAT3 phosphorylation in cultured CFs,
whereas inhibiting STAT3 reduces IL6-induced collagen synthesis and
reverses pressure overload-induced cardiac hypertrophy (Mir et al.,
2012). In a transverse aortic constriction (TAC)-induced mouse heart
failure model, inhibiting IL6/gp130/STAT3 with raloxifene alleviated
TAC-induced myocarditis, cardiac remodeling and dysfunction (Huo
et al., 2021). In mice with CVB3-induced dilated cardiomyopathy
(DCM), IL-6 knockout reduced the phosphorylation level of STAT3 in
myocardial tissue, thereby improving myocardial remodeling induced
by DCM (Li et al., 2019b).

4.2 TGF-β

The TGF-β and STAT3 signaling pathways have a feedback loop
that regulates the acute/chronic stress response in the heart. TGF-β
signaling affects STAT3 as an important target in its downstream
pathway (Pedroza et al., 2018; Chen et al., 2019b; Sun et al., 2022).
Several studies have demonstrated the interaction between TGF-β and
STAT3 in cardiac fibrosis. For instance, it has been reported that TGF-
β-induced CD44/STAT3 signaling plays a crucial part in atrial fibrosis

and fibrillation formation. CD44 is a membrane receptor that
modulates fibrosis. Blocking CD44 signaling can reduce TGF-β-
induced STAT3 activation and collagen expression in atrial
fibroblasts, implicating a potential approach for treating atrial
fibrosis and fibrillation (Chang et al., 2017). Moreover, Ephrinb2-
mediated myocardial fibrosis involves the activation of the TGF-β/
Smad3 and STAT3 pathways. Further study revealed that Ephrinb2
could enhance the interaction of TGF-β/Smad3 and STAT3 signaling
to promote cardiac fibrosis (Su et al., 2017). Furthermore, tyrosine
mutation at site 705 to glutamic acid constitutively activated STAT3,
which could further enhance the interaction between Smad3 and
STAT3 (Su et al., 2017). One previous study showed that a high-fat
diet could activate the left ventricular renin–angiotensin system (RAS)
and JAK1/2-STAT1/3 pathways in rats by increasing ROS and IL-6
production, ultimately causing cardiac fibrosis. This creates a positive
feedback loop that activates the TGF-β1/Smad3 fibrotic pathway and
enhances left ventricular collagen synthesis (Eid et al., 2019). In
cultured CFs, TGF-β1 can activate STAT3 phosphorylation,
increasing fibrosis-related protein expression, and relaxin can block
STAT3 phosphorylation and reverse TGF-β1-induced fibrosis (Yuan
et al., 2017). These results suggest that STAT3 either acts as a separate

FIGURE 5
The role of activation of the JAK/STAT3 pathway in different types of cardiac damage. (1) In ischemia-reperfusion injury, agents such as NAC,
allopurinol, and insulin may confer protective effects. They achieve this by reducing ROS production and cardiomyocyte apoptosis, promoting
angiogenesis, and delaying the opening of the MPTP. (2) In the case of myocardial infarction, certain molecular factors likemiR-124, IL-10, and GADD45A
exert beneficial effects through the STAT3 pathway. These include anti-apoptotic (miR-124), anti-inflammatory (IL-10), and VEGF-mediated
angiogenic effects (GADD45A), collectively contributing to improved prognosis. (3) The situation of myocarditis is more complex. The upregulation of
SOCS1 can inhibit inflammation. Meanwhile, the upregulation of complement C3 and Th17 cells, along with the downregulation of Piceatannol, may
exacerbate inflammation. These findings highlight the multifaceted impact on the progression of myocarditis. (4) Cardiac hypertrophy is influenced by
Ang II, HSF1, isoproterenol, and FNDC5, which collaboratively induce hypertrophy through increased oxidative stress and inflammation. (5) Arrhythmias
are closely associated with JAK/STAT3 activity, which contributes to myocardial sarcoplasmic reticulum Ca2+ overload, increased cardiac sympathetic
nerve activity, and ventricular remodeling. “↑” represents activation, upregulation or exacerbation, and “↓” represents inhibition, downregulation or relief.
(By Figdraw).
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FIGURE 6
IL-6 causes myocardial fibrosis through the JAK/STAT3 signaling pathway. IL-6 binds to its receptor, IL-6R, forming a complex that activates the
gp130 receptor. This activation triggers the JAK family of tyrosine kinases. Once activated, these JAKs phosphorylate STAT3, a crucial step in the signaling
pathway. Phosphorylated STAT3 dimerizes and translocates into the nucleus. There, STAT3 dimers bind to specific DNA sequences, promoting the
transcription of genes that are pivotal in mediating inflammation and fibrosis. (By Figdraw).

FIGURE 7
STAT3 influences cardiac fibrosis through multiple pathways. (1) The crosstalk between STAT3 and miR manifests in several ways: STAT3 can form
either a direct feedback or an indirect feedback loop by binding with miR; it can also mediate the transcription of downstreammiR; meanwhile, miR can
influence the translation of STAT3 mRNA. (2) Positioned downstream of the TGF-β/SMAD signaling cascade, STAT3 might collaboratively regulate
myocardial fibrosis with TGF-β. Their synergistic action could potentially be associated with the phosphorylation of STAT3. (By Figdraw).
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signal molecule downstream of TGF-β or interacts with the TGF-β/
Smad pathway to regulate cardiac fibrosis (Figure 7).

4.3 MicroRNAs (miRs)

MiRs are a class of endogenous noncoding single-stranded
RNAs that are about 19–25 nucleotides long. First, within the
nucleus, RNA polymerase II transcribes the gene encoding the
miR into the primary transcript (pri-miR). Then, the pri-miR is
transported to the cytoplasm under the cooperative action of the
Ran-GTP enzyme and transporter Exportin5, and the double-
stranded RNA-specific nuclease Dicer enzyme cleaves the pri-
miR, which is transported to the cytoplasm to form double-
stranded miR of 21–25 nucleotides. The helicase unwinds the
double-stranded miR, leading to degradation of one strand and
the formation of a mature miR with a hydroxyl group at the 3′-end
and a phosphate group at the 5′-end. Finally, the RNA-induced gene
silencing complex binds the mature miR, thereby regulating target
gene silencing post-transcriptionally (Lu and Rothenberg, 2018). In
recent years, the relationship between miRs and pathological fibrosis
has been examined, but the specific mechanisms by which miRs
regulate fibrosis are still worth exploring. During the development of
liver fibrosis induced by viral hepatitis, the levels of miR-16, miR-
146a, miR-221, and miR-222 were markedly increased in the serum
of patients with chronic hepatitis C (Abdel-Al et al., 2018). In the
livers of mice treated with CCl4, miR-30c and miR-193 were
specifically downregulated (Roy et al., 2015). Interestingly, other
studies indicated that miR-29 could promote apoptosis in
cardiomyocytes by downregulating antiapoptotic genes such as
Bcl-2, CDC42 and Tcl-1, while miR-29 could prevent fibrosis by
inhibiting the release of collagen from the ECM (Pekarsky et al.,
2006; Mott et al., 2007; van Rooij et al., 2008). These results indicate
that different miRs may have opposite effects on fibrosis regulation,
and the same miR may have significant differences in fibrosis
regulation.

STAT3 and miRs have crosstalk that is crucial for maintaining
cardiac function under normal and pathological conditions. This
STAT3-miR crosstalk can mediate cardiac disease in several ways.
First, STAT3 can directly bind to miRs to mediate a feedback
regulatory relationship or mediate an indirect feedback regulatory
relationship with miRs through a long noncoding RNA (lncRNA)/
protein. As an example, in oxygen-glucose deprivation-induced
cardiomyocyte injury, lncRNA MIAT, which is associated with
myocardial infarction, captures miR-181a-5p and boosts the
expression of JAK2. This, in turn, amplifies myocardial
inflammation and apoptosis through the JAK2/STAT3 signaling
pathway (Tan et al., 2021). In addition, miR-21 activates the STAT3
signaling by targeting tumor suppressor cell adhesion molecule 1
(CADM1) and enhances cardiac fibrosis (Cao et al., 2017). Second,
STAT3 can directly mediate the transcription of downstream miRs,
and phosphorylated STAT3 can cooperate with other transcription
factors to promote or inhibit the transcription of miRs. In diabetic
hearts exposed to ischaemia/reperfusion, STAT3 has the ability to
attach to the miR-17–92 promoter and stimulate the targeted
inhibition of pro-apoptotic prolyl hydroxylase 3 (PHD3) by miR-
17/20a, resulting in a decrease in apoptosis (Samidurai et al., 2020).
Moreover, phosphorylated STAT3 can interact with NF-κB and

inhibit miR-188-3p expression (Kuo et al., 2017; Sp et al., 2018;
Masoumi-Dehghi et al., 2020). Third, miRs specifically recognize the
3′UTR of STAT3 mRNA and form incomplete complementary
pairing, resulting in the inhibition of STAT3 mRNA translation,
thereby blocking STAT3 expression. Following myocardial
infarction, the expression of STAT3 mRNA is reduced by miR-
17-5p and miR-124, which leads to the deterioration of autophagy,
inflammation, myocardial remodeling, and apoptosis. These miRs
bind to the 3′UTR of STAT3 mRNA (He et al., 2018; Chen et al.,
2022). In summary, multiple miRs can interact with STAT3 through
different mechanisms to enhance or inhibit cardiac
fibrosis (Figure 7).

4.4 Other mediators impact cardiac fibrosis
through the STAT3 signaling pathway

In addition to the above mediators that can affect cardiac fibrosis
through the STAT3 signaling pathway, there are other mediators
that can affect myocardial fibrosis caused by ischemia/reperfusion,
atrial fibrillation, diabetic heart disease, DCM, and hypertensive
heart damage through the STAT3 signaling pathway (Table 2).

5 The regulatory role of STAT3 and
autophagy in cardiac fibrosis

Autophagy is widely present in eukaryotic organisms and is a
process that degrades harmful substances in cells and promotes their
recycling through the lysosome pathway. In general, moderate
autophagy can maintain the stability of the internal environment,
while excessive autophagy can induce cell damage (Kuma et al.,
2017). The process is mainly divided into four stages: induction,
initiation, elongation, and mature degradation, which are regulated
by complex molecular mechanisms (Estrada-Navarrete et al., 2016;
Liu et al., 2016; Lin et al., 2019; Kaushal et al., 2020). Autophagy
recovers and removes damaged proteins and organelles, playing an
important role in maintaining the normal function of myocardial
cells (Mialet-Perez and Vindis, 2017). Interestingly, the role of
autophagy in fibrosis may vary with fibrosis progression. Zhang
et al. found that inhibiting autophagy could improve myocardial
fibrosis in mice subjected to TAC surgery (Zhang et al., 2021). At
20 weeks after TAC in mice with endothelial leptin receptor gene
knockout, myocardial fibrosis in these mice was improved by
autophagy activation (Gogiraju et al., 2019). These research
results demonstrate that the activation or inhibition of autophagy
may occur during the process of cardiac fibrosis, and the role of
autophagy in fibrosis has a dual nature.

Autophagy could potentially be linked to numerous signaling
pathways, one of which is the STAT3 signaling pathway that governs
the fate of cells, determining whether they survive or perish. Yuan
et al.’s research indicates that relaxin attenuates TGF-β1-induced
autophagy in primary CFs by suppressing the phosphorylation of
STAT3, thereby reducing cardiac fibrosis (Yuan et al., 2017). In
septic cardiomyopathy, the reduced expression of miR-125b
leads to excessive activation of STAT3/high mobility group box
protein 1 (HMGB1), resulting in elevated ROS generation and
impaired autophagic flow, ultimately leading to myocardial
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dysfunction (Yu et al., 2021). Additionally, the overexpression of
Src-associated in mitosis 68 (Sam68) promotes the osteogenic
differentiation of human valvular interstitial cells (hVICs)
through the STAT3 signaling-mediated autophagy inhibition,
thus inducing aortic valve calcification, while knockdown of
Sam68 reduces the phosphorylation of TNF-α-activated
STAT3 and the expression of downstream genes, thereby
affecting autophagic flow in hVICs (Liu et al., 2023b). The
activation of STAT3 is crucial for reducing cardiac autophagy
and inhibiting cardiac ischemia/reperfusion injury, as
demonstrated by the inhibition of soluble receptor for advanced
glycation end-products on cardiac ischemia/reperfusion injury
(Dang et al., 2019).

6 Challenges and opportunities for
targeting the STAT3 signaling pathway
for the treatment of fibrosis

Targeting STAT3 for heart disease treatment presents significant
challenges. STAT3 is widely recognized for its role in promoting
myocardial fibrosis. However, myocardial fibrosis may not always be
detrimental in certain heart diseases. Excessive fibrosis, for instance,
can lead to adverse remodeling in myocardial infarction patients,
potentially resulting in heart failure. Yet, in the early stages of

myocardial infarction, fibrosis is crucial in maintaining the
structural integrity of the infarcted ventricle (Prabhu and
Frangogiannis, 2016). Moreover, STAT3 actively participates in
the activation and proliferation of CFs, fostering fibrotic
remodeling. In cardiomyocytes, STAT3 exhibits a dual nature. It
can offer protective or adverse effects, such as enhancing survival
and mitigating oxidative stress or mediating cardiac hypertrophy
(Wang et al., 2021; Li et al., 2022). Despite cardiomyocytes not being
directly involved in ECM production, they can influence the fibrotic
response through paracrine signals (Qu et al., 2017). Additionally,
the STAT3 signaling pathway interacts with other pathways, playing
varying roles. JAK1, for example, binds to TGF-βR1, while JAKs also
associate with gp130 and get activated by TGF-β (Itoh et al., 2018).
Previous studies have shown that STAT3 works in tandem with
Smad3 to induce connective tissue growth factor, contributing to
fibrosis (Liu et al., 2013; Tang et al., 2017). Conversely, overactivated
STAT3 signaling in lung fibroblasts diminishes SMAD signaling by
reducing Smad3 phosphorylation, potentially due to
Smad7 induction, although this theory requires experimental
validation (O’Donoghue et al., 2012). Thus, identifying the
optimal timing for STAT3 inhibition is crucial for maximizing
therapeutic benefits and minimizing side effects. Targeting
STAT3 in CFs could effectively reduce fibrosis, but its protective
potential in cardiomyocytes warrants consideration. Overall,
STAT3’s role in cardiac biology is multifaceted. A thorough

TABLE 2 Mediators regulate fibrosis through the STAT3 signaling pathway.

Mediators Models Effects and related mechanisms Reference

SHP-1 SHP-1-overexpressing myocytes and fibroblasts The use of STAT3 agonist colivelin leads to more ROS
generation, ECM deposition, and TGF-β1/SMAD2 activation

Zang et al. (2023)

Hypoxia/reoxygenation induced cardiomyocytes Y-box protein 1 knockdown attenuates acute myocardial
infarction damage via SHP-1 mediated STAT3 suppression

Cao et al. (2020)

PTEN Coronary artery ischemia/reperfusion model in Type 1 diabetes
rats induced by Streptozotocin

PTEN partially inhibits the post ischemic regulation and post
hypoxic regulation of diabetes heart through destroying JAK2/

STAT3 signaling pathway

Xue et al. (2016)

βIV spectrin Cardiac specificity βIV spectrin KO mice βIV spectrin deficiency in cardiomyocytes causes
STAT3 impairment, fibrosis, and impaired cardiac function

Unudurthi et al. (2018)

Genetic and acquired mouse models of βIV-spectrin deficiency βIV spectrin protein dysfunction leads to nuclear
STAT3 accumulation and activation, which changes gene

expression and CF behavior. Fibrosis and cardiac dysfunction
in βIV spectrin-deficient mice are abolished by

STAT3 inhibition

Patel et al. (2019)

Elabela Ang II induced myocardial hypertrophy and fibrosis
exacerbation in hypertensive mice

By inhibiting the IL-6/STAT3/GPX4 signaling pathway,
antagonize the promoting effects of Ang II mediated cardiac

microvascular endothelial cells deionization, adverse
myocardial remodeling, fibrosis, and cardiac dysfunction

Zhang et al. (2022b)

PPAR Type 1 diabetes rat model induced by Streptozotocin PPARδ activation might suppress STAT3 and lower connective
tissue growth factor and Fibronectin levels in diabetic rats with

cardiac fibrosis

Lo et al. (2017b)

PPARα knockout mice PPARα blocks T helper 17 cell differentiation via IL-6/STAT3/
RORγT pathway, thus alleviating autoimmune Myocarditis

Chang et al. (2019)

SIRT3 SIRT3 knockout mice SIRT3 can inhibit the STAT3-NFATc2 signaling pathway,
thereby reducing myofibroblast transdifferentiation and

preventing cardiac fibrosis

Guo et al. (2017)

Abbreviation: SHP-1, tyrosine phosphatase 1; ECM, extracellular matrix; ROS, active oxygen; TGF-β1, transforming growth factor-β1; SMAD2, small mother against decapentaplegic 2; PTEN,

phosphatase and tensin homologue deleted on chromosome 10; CF, cardiac fibroblasts; GPX4, glutathione peroxidase; PPAR, peroxisome proliferator-activated receptor.

Frontiers in Pharmacology frontiersin.org12

Jiang et al. 10.3389/fphar.2024.1336102

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1336102


understanding of its function across various cell types and disease
stages is essential for developing effective treatments.

Despite the complexities in targeting STAT3 signaling for
fibrosis treatment, recent advancements have yielded promising
results (Table 3). Presently, methods to directly inhibit STAT3,
aimed at targeting fibrosis, are categorized based on various target
domains. These include the SH2, DBD, NTD, and TAD. In this
section, we highlight key STAT3 inhibitors that specifically target
these domains of the STAT3 protein.

6.1 Inhibitors targeting the SH2 domain

STAT3 homodimerization is facilitated by protein-protein
interactions between the SH2 domains of the individual
monomers, particularly via phosphorylation at Tyr705. This
pivotal molecular interaction has been harnessed to develop
inhibitors targeting STAT3 directly (Furtek et al., 2016).
Inhibiting the SH2 domain not only disrupts STAT3 activation
and dimerization but also impedes its subsequent nuclear
translocation and the expression of genes regulated by STAT3.

Several small molecule STAT3 inhibitors, notably Stattic, S3I-
201, and S3I-201 analogs, play a significant role in mitigating
myocardial fibrosis. These inhibitors function by binding to the
SH2 domain of STAT3, thereby curtailing its activity. Elevated levels
of fibroblast growth factor 23 (FGF23) are reported to induce atrial
fibrosis in atrial fibrillation patients through enhancing ROS
production and subsequent STAT3 and Smad3 phosphorylation.
Stattic has been shown to counteract these effects (Dong et al., 2019).
Moreover, administering S3I-201 tomice withmyocardial infarction
has demonstrated reduced left atrial fibrosis in vivo (Chen
et al., 2017b).

Another category of inhibitors targeting STAT3’s SH2 domain
comprises derivatives of natural compounds. Cryptotanshinone, a
primary active component extracted from Salvia miltiorrhiza,
suppresses the STAT3 pathway to reduce cardiac fibrosis and
improve cardiac function in diabetic rats (Lo et al., 2017a). In
vitro studies reveal that cryptotanshinone significantly curbs Ang
II-induced cardiomyocyte hypertrophy and TGF-β-induced
myofibroblast activation by impeding STAT3 phosphorylation

and nuclear translocation (Li et al., 2023). Additionally, natural
compounds like curcumin and resveratrol have been identified to
possess properties beneficial in combating atherosclerosis (Zordoky
et al., 2015; Ganjali et al., 2017).

These inhibitors are crucial for their anti-inflammatory and
anti-atherosclerotic properties, suggesting their potential as
therapeutic agents for ameliorating fibrosis. However, these
inhibitors are not without drawbacks. A primary issue is that
most inhibitors targeting the SH2 domain lack specificity to
STAT3, making it challenging to exclude the involvement of
other STAT proteins in fibrosis (Szelag et al., 2016). Additionally,
STAT3 monomers or unphosphorylated STAT3 proteins can
interact with other proteins to transcribe downstream target
genes, which limits the efficacy of targeting the SH2 domain.
Further complicating matters, activating mutations in the SH
domain have been identified in somatic cells. The impact of these
somatic mutations on the binding efficiency of SH2 domain
inhibitors to STAT3, and consequently on their effectiveness,
remains to be fully understood (Qiu and Fan, 2016). Therefore,
the precise targeting of STAT3’s SH2 domain warrants further
research focus.

6.2 Inhibitors targeting the DBD domain

The DBD of STAT3 specifically recognizes and binds to distinct
DNA elements in target genes. This selective interaction facilitates
the precise induction of target gene expression, characterized by
high specificity.

Research has uncovered that platinum compounds, including
IS3-295, CPA-1, CPA-7, and platinum tetrachloride (IV), effectively
block the DNA-binding activity of STAT3. These compounds can
inhibit cell growth and induce apoptosis, while not affecting normal
cells and avoiding prolonged STAT3 activation (Beebe et al., 2018).
Additionally, Galiellalactone, a natural product, impedes STAT3’s
DNA-binding activity by interacting with its DBD domain. To
enhance its oral bioavailability, N-acetyl L-cysteine methyl ester
has been added to the thiol group, resulting in the creation of the
prodrug GPA512. However, GPA512’s lack of specificity, as it also
disrupts other signaling pathways like NF-κB and TGF-β, could pose

TABLE 3 STAT3 inhibitors for treating organ fibrosis.

Classification Inhibitor
name

Target
site

Mode of targeting
STAT3

Fibrotic organs
treated

Reference

Small molecules Stattic SH2 Phosphorylation myocardium, liver, lung,
kidney

Celada et al. (2018), Dong et al. (2019), Fu et al.
(2019), Park et al. (2022)

S3I-201 SH2 Dimerization myocardium, lung, liver Chen et al. (2017b), Wang et al. (2018), Yuan
et al. (2023)

BP-1–102 SH2 Dimerization kidney Zhu et al. (2019)

STX-0119 NTD DNA binding liver, kidney Choi et al. (2019), Makitani et al. (2020)

Niclosamide Unknown Unknown liver, lung, kidney Chen et al. (2021), Cui et al. (2021), Gan et al.
(2023)

Natural compounds Cucurbitacin I SH2 Phosphorylation liver Hu et al. (2020a)

Cryptotanshinone SH2 Phosphorylation myocardium, liver, lung Lo et al. (2017a), Zhang et al. (2019a), Zhao et al.
(2022)
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challenges in its future development (Don-Doncow et al., 2014;
Escobar et al., 2016). InS3-54, discovered through an advanced
computer screening method, selectively binds to STAT3’s DBD
domain in vitro, inhibiting its DNA-binding activity. Its analog,
InS3-54A18, exhibits improved solubility, specificity, and
pharmacological properties, while showing minimal side effects
in animal models (Huang et al., 2016).

While virtual screening techniques, including molecular
modeling, have demonstrated that certain inhibitors can directly
bind to the DBD domain of STAT3, the scarcity of adequate assay
systems has limited the identification of small molecule inhibitors in
this category. This constraint has significantly impeded the drug
development process. Additionally, inhibitors targeting the
STAT3 DBD encounter similar challenges to those faced by
SH2 domain-targeting inhibitors in terms of therapeutic application.

6.3 Inhibitors targeting NTD and
TAD domains

Inhibitors targeting the NTDs and TAD of STAT3 can modulate
the binding of STAT3 dimers and regulate DNA transcription,
potentially contributing to anti-fibrotic effects. In the study of the
selective STAT3 NTD inhibitor ST3-H2A2, Timofeeva et al. observed
that this compound robustly activated apoptosis genes, leading to
the induction of apoptosis in cancer cells (Timofeeva et al., 2013).
Moreover, researchers have successfully identified the allosterically
active small molecule K116, which binds to the TAD of STAT3 and
effectively inhibits its activity (Huang et al., 2018).

In summary, while numerous STAT3 inhibitors have
demonstrated anti-fibrotic properties, identifying inhibitors that
are highly efficient, low in toxicity, and have minimal side effects
remains a challenge. Additionally, there is a scarcity of extensive
animal studies on the pharmacology and toxicology of these
inhibitors. Furthermore, only a limited number of these
inhibitors have progressed to clinical evaluation. However, the
integration of STAT3 inhibitors with other targeted therapeutic
agents, particularly in combination with immunotherapy agents,
offers promising potential. It is hoped that future research will lead
to significant advancements, enabling the broader clinical
application of STAT3 inhibitors.

7 Conclusion

Cardiac fibrosis results from the excessive accumulation of ECM
in the myocardium and is central to many cardiac pathologies. Since
JAK/STAT3 activation can increase fibrotic effector cells and ECM
deposition through various pathways, it may be a potential target of
antifibrotic therapy. As mentioned previously, we emphasized the
promoting effects of various mediators on cardiac fibrosis through

activation of the JAK/STAT3 signaling pathway. However, there
may be many other mediators that have not yet been identified, and
modern proteomics technology and protein identification will speed
up the discovery. Regarding fibrosis, the antifibrotic effect of
STAT3 inhibitors is receiving attention, but there has been little
research on their ability to inhibit myocardial fibrosis. While further
research is required to elucidate its role in various types of
myocardial fibrosis, the JAK/STAT3 signaling holds promise as a
therapeutic target for cardiac fibrosis due to its connection between
cardiac inflammation and fibrosis.
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