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Objective: The appropriate use of statins plays a vital role in reducing the risk of
atherosclerotic cardiovascular disease (ASCVD). However, due to changes in diet
and lifestyle, there has been a significant increase in the number of individuals
with high cholesterol levels. Therefore, it is crucial to ensure the rational use of
statins. Adverse reactions associated with statins, including liver enzyme
abnormalities and statin-associated muscle symptoms (SAMS), have impacted
their widespread utilization. In this study, we aimed to develop a predictive model
for statin efficacy and safety based on real-world clinical data using machine
learning techniques.

Methods: We employed various data preprocessing techniques, such as
improved random forest imputation and Borderline SMOTE oversampling, to
handle the dataset. Boruta method was utilized for feature selection, and the
dataset was divided into training and testing sets in a 7:3 ratio. Five algorithms,
including logistic regression, naive Bayes, decision tree, random forest, and
gradient boosting decision tree, were used to construct the predictive models.
Ten-fold cross-validation and bootstrapping sampling were performed for
internal and external validation. Additionally, SHAP (SHapley Additive
exPlanations) was employed for feature interpretability. Ultimately, an
accessible web-based platform for predicting statin efficacy and safety was
established based on the optimal predictive model.

Results: The random forest algorithm exhibited the best performance among the
five algorithms. The predictive models for LDL-C target attainment (AUC = 0.883,
Accuracy = 0.868, Precision = 0.858, Recall = 0.863, F1 = 0.860, AUPRC = 0.906,
MCC = 0.761), liver enzyme abnormalities (AUC = 0.964, Accuracy = 0.964,
Precision = 0.967, Recall = 0.963, F1 = 0.965, AUPRC = 0.978, MCC = 0.938), and
muscle pain/Creatine kinase (CK) abnormalities (AUC = 0.981, Accuracy = 0.980,
Precision = 0.987, Recall = 0.975, F1 = 0.981, AUPRC = 0.987, MCC = 0.965)
demonstrated favorable performance. The most important features of LDL-C
target attainment predictionmodel was cerebral infarction, TG, PLT andHDL. The
most important features of liver enzyme abnormalities model was CRP, CK and
number of oral medications. Similarly, AST, ALT, PLT and number of oral
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medications were found to be important features for muscle pain/CK
abnormalities. Based on the best-performing predictive model, a user-friendly
web application was designed and implemented.

Conclusion: This study presented a machine learning-based predictive model for
statin efficacy and safety. The platform developed can assist in guiding statin
therapy decisions and optimizing treatment strategies. Further research and
application of the model are warranted to improve the utilization of statin therapy.
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1 Introduction

Atherosclerotic cardiovascular disease (ASCVD) is a condition
characterized by arterial inflammation and closely linked to lipid
abnormalities, causing morbidity and mortality worldwide, casting
its widespread impact on over 500 millon individuals and
contributing to an alarming toll of 19 million annual fatalities
(Barquera et al., 2015; Vasan et al., 2022). Stroke and ischemic
heart disease (IHD) are the leading causes of years of life lost (YLLs)
in China, which is the main type of ASCVD (Zhou et al., 2019). Low-
density lipoprotein (LDL) is causally associated with ASCVD, and
reducing LDL cholesterol (LDL-C) can significantly decrease the risk
of ASCVD (Li et al., 2021). However, recent studies have indicated a
changing global epidemiological profile of lipid level. While elevated
cholesterol levels have long been regarded as emblematic of affluent
Western nations, the determinants of blood cholesterol—both
dietary and behavioral—are undergoing rapid transformations
across the globe. Remarkably, over the past decade, China has
witnessed an unprecedented surge in LDL-C levels, exemplifying
an alarming trajectory (Repositioning of the global epicentre, 2020).
The extent of lipid-lowering drug utilization varies greatly among
nations, and these fluctuations are highly likely to have had a
substantial impact on cholesterol levels in the past decade. In
addition, both the US Preventive Services Task Force (USPSTF)
and American Heart Association American College of Cardiology
(AHA/ACC) guidelines recommend initiating statin therapy for
patients aged 40–75 years with elevated 10-year ASCVD risk (Nasir
et al., 2015; Mortensen et al., 2016; Zeitouni et al., 2020; Greenland
and Lloyd-Jones, 2022; Stone et al., 2022). Therefore, the rational use
of statin therapy is crucial. Statins are generally well-tolerated,
however, during clinical application, they have been associated
with muscle pain, liver enzyme abnormalities, hyperglycemia, and
neurological disorders, collectively known as statin-associated
symptoms (SAS). Among them, statin-associated muscle
symptoms (SAMS) are the most common side effect of statins. It
has been reported that SAMS occurs in 10%–25% of patients
receiving statin treatment (Thompson et al., 2016). The impact of
statins on liver function is dose-dependent, and approximately 1%–
3% of patients may experience elevated liver enzyme levels (Farmer
and Torre-Amione, 2000). Due to genetic polymorphisms, Chinese
individuals have been found to have lower tolerability to statins
compared to Caucasians. It has been observed that Chinese patients
are more prone to experiencing adverse reactions at the same dosage
(Liao, 2007). So achieving optimal efficacy, characterized by reaching
guideline-recommended LDL-C levels, while maintaining effective

control of adverse reactions is of paramount importance in
statin therapy.

With the advancement of scientific and technological
innovations, the “medicine+” paradigm has gained prominence,
integrating medical big data mining and machine learning
techniques into clinical decision-making. These approaches have
been widely utilized to optimize treatment and management
strategies in various clinical domains, including risk prediction
models (Deo, 2015), disease diagnosis (Zhang et al., 2016), and
medical image recognition (Shehab et al., 2022). Currently, machine
learning methods have been employed to establish predictive models
for various blood lipid disorders, including models for predicting
familial hypercholesterolemia gene mutations (Besseling et al., 2017)
and Traditional Chinese Medicine (TCM) based classification of
lipid abnormalities (Liu J. et al., 2023). However, there remains a
paucity of prediction models specifically focused on statin therapy.
Liu H. et al. (2023) recently developed a prediction model to assess
the attainment of LDL-C targets after 1 month of atorvastatin
treatment, but this study focused solely on efficacy prediction
and did not consider safety outcomes. Additionally, the sample
size used in the study was relatively small.

So this study aimed to construct prediction models for the
efficacy and safety of statin therapy based on real-world clinical
data. The efficacy prediction model focused on predicting LDL-C
target attainment (Referred to as Model 1), while the safety
prediction models were further divided into sub-models for
predicting liver enzyme abnormalities (Referred to as Model 2)
and muscle pain or Creatine kinase (CK) abnormalities (Referred to
as Model 3). In total, three prediction models were established to
provide a practical monitoring tool for the rational application of
statins in clinical practice.

2 Materials and methods

2.1 Data source and collection

We obtained data on all hospitalized patients who had used
statins from the Hospital Information System (HIS) of the China-
Japan Friendship Hospital and Baiyin First People’s Hospital. The
data retrieval period for China-Japan Friendship Hospital was from
May 2018 to February 2024, and for Baiyin First People’s Hospital, it
was from September 2017 to October 2022. Identifying information
such as names, phone numbers, and home addresses will be
anonymized to ensure patient confidentiality. And this study has
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been approved by the Medical Ethics Committee of China-Japan
Friendship Hospital and Baiyin First People’s Hospital.

Inclusion criteria: (1) Data of all hospitalized patients who
had used statins (including Atorvastatin, Rosuvastatin,
Pitavastatin, Simvastatin, Fluvastatin, Pravastatin, Amlodipine
and Atorvastatin).

Exclusion criteria: (1) Exclusion of data without dosage of
statins; (2) For Model 1, data with empty LDL-C fields were
excluded; for Model 2, data with empty alanine aminotransferase
(ALT) or aspartate aminotransferase (AST) fields were excluded,
and data with diagnoses of “liver disease” or “hepatitis” were also
excluded; for Model 3, data with empty CK fields were excluded, and
data with diagnoses of “acute myocardial infarction”, “myocarditis”,
or “dermatomyositis” were also excluded.

2.2 Diagnostic criteria and grouping basis

The criteria for determining LDL-C target attainment are
based on the “Guidelines for the Prevention and Treatment of
Dyslipidemia in Chinese Adults (Revised in 2016)”: LDL-C <
1.8 mmol/L for extremely high-risk individuals, LDL <2.6 mmol/
L for high-risk individuals, and LDL <3.4 mmol/L for moderate
and low-risk individuals. A value of 1 is assigned for attainment,
while a value of 0 is assigned for non-attainment (specific criteria
can be found in the Supplementary Table S1). The criteria for
determining liver enzyme abnormalities are as follows: AST or
ALT >40 U/L is assigned a value of 1, and vice versa was assigned
a value of 0. The criteria for determining muscle pain or CK
abnormalities are as follows: explicit indication of muscle pain in
the medical records after statin use and CK > 200 U/L in
laboratory tests are assigned a value of 1, and vice versa was
assigned a value of 0.

2.3 Study variables

There were 47 variables: (1) basic data, including age, sex, Body
Mass Index(BMI), smoking history, drink history, length of stay
(days); (2) disease data, including number of diseases, Type 2
Diabetes Mellitus (T2DM), hypertension, Coronary Heart Disease
(CHD), hypothyroidism, heart failure, atrial fibrillation, depression,
epilepsy, chronic liver disease, chronic kidney disease (CKD),
Myocardial Infarction (MI) or old MI, stroke, cerebral infarction,
statin intolerance, coronary artery stent implantation; (3) drug use
information, including number of oral medicines, dose of statins
(Principles for the treatment of statin dose are provided in the
Supplementary Table S2), amlodipine, ezetimibe, evolocumab,
fibrates, niacin, aspirin, clopidogrel, Traditional Chinese Medicine
(TCM), cyclosporine, colchicine; (4) laboratory examination,
including C-reactive protein (CRP), High density lipoprotein
(HDL), Triglyceride (TG), Uric acid (UA), Platelets (PLT),
Homocysteine (HCY), ALT, AST, Creatinine (Crea), Systolic
blood pressure (SBP), Low density lipoprotein (LDL), Total
cholesterol (TC), Creatine kinase (CK).

2.4 Data preprocessing

2.4.1 Data pre-screening
(1) Delete columns with a missing data ratio of 90%; (2) Delete

columns with a single category ratio of 90%; (3) Delete columns with
a coefficient of variation less than 0.1.

2.4.2 Data filling
Two main methods were used. (1) No filling: delete the missing

columns in the data in turn, and then delete the missing rows, and
finally get the data without missing values. (2) Improved random
forest filling: firstly, the missing data is initially filled by linear
interpolation; then, the original missing data is combined with the
initial filling data into a matrix; finally, a random forest filling model
is built to fill the missing data. (Deng et al., 2019).

2.4.3 Data balance
If there is a significant imbalance in the number of positive and

negative samples, defined as a difference greater than 2 times, it is
considered as an imbalanced dataset. Imbalanced datasets can
cause biased model performance, which tends to be biased
towards the majority class because it has more instances to
learn from. And the model may not accurately capture the
underlying patterns in the minority class, affecting its ability to
make reliable predictions. Therefore, when the data filling is
complete, the data must be checked for imbalance and if there
is imbalance, the data must be sampled so that the positive and
negative sample sizes of the data for model training are in the
correct proportion. Borderline Synthetic Minority Over-sampling
Technique (BSMOTE) was used for oversampling, which is a
variation of the traditional SMOTE algorithm. Instead of
generating synthetic samples indiscriminately for the minority
class, BSMOTE focuses on instances near the decision boundary
between the minority and majority classes. This helps in creating
synthetic samples where they are most needed to improve model
generalization. In addition, the implementation of BSMOTE is
relatively straightforward, making it accessible for medical
practitioner without requiring intricate adjustments (Gao et al.,
2020; Han et al., 2005).

The basic flow of the algorithm is:

(1) Find K samples of the nearest neighbor for each sample xi,
whose label is “1”;

(2) A sample xj belonging with few categories is selected
randomly from K;

(3) Linearly interpolate randomly between xi and xj to construct a
new minority sample.

2.4.4 Feature selection
Feature selection is an important aspect of model construction,

as it helps eliminate the limitations of relevant variables and
unnecessary noise, making the final analysis results closer to
reality. In this study, the feature selection method used is Boruta
screening, which is based on data sampling and conducted after data
imputation.
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2.5 Model training

During the model training phase, five machine learning
algorithms were employed, including logistic regression, naive
Bayes, decision tree (DT), random forest (RF), and gradient
boosting decision tree (GBDT). These algorithms are chosen
because of their respective features and strengths to cope with
different types of data and problems. Logistic regression is
suitable for linearly divisible problems, DT and RF are able to
capture nonlinear relationships and handle high dimensional
data, GBDT has high predictive performance, and naive Bayes
performs well with large scale data and missing data. By
comparing the performance of these algorithms, the most
suitable model for the problem at hand can be selected.

Seven evaluationmetrics, including area under the receiver operating
characteristic curve (AUC), Accuracy, Precision, Recall, F1 Score, Area
Under the Precision-Recall Curve (AUPRC) and Matthews correlation
coefficient (MCC) were used to assess the performance of the machine
learning models. The modeling process was conducted as follows:

(1) The data was divided into a training set and a testing set in a
7:3 ratio.

(2) The training set was fed into the machine learning models,
and a ten-fold cross-validation method was applied to adjust
the model parameters, aiming to maximize the AUC value on
the training set.

(3) The best model parameters obtained from the training set
were used to test the models on the testing set. The AUC
values obtained from the testing set were used to differentiate
the performance of the various machine learning models.

2.6 Model validation

Model validation was conducted through both internal and
external validation. Hypothesis testing was employed to examine
the impact of different data processing methods and algorithms on
the predictive performance of the models. Internal validation was
performed using ten-fold cross-validation, and external validation
was conducted by utilizing bootstrapping sampling and analyzing
the results on an independent validation dataset. Meanwhile, in the
external validation, another copy of the data, which is completely
separated from the training data (training and validation sets),
serves as a test set to evaluate the performance of the final model
again. The mean ± standard deviation and 95% confidence intervals
(CI) were calculated for the seven evaluation metrics (AUC,
Accuracy, Precision, Recall, F1 Score, AUPRC and MCC).

Decision curve analysis (DCA) was used to access the model
performance. Additionally, sample size validation was carried out to
assess the correlation between sample size and model predictive
performance. Furthermore, model interpretation analysis based on
SHAP (Shapley Additive Explanations) was also conducted.

2.7 Model application

Based on the developed optimal prediction models, a web-based
platform for predicting the effectiveness and safety of statins was

built using the Flask framework. This platform serves as a practical
tool for the application and refinement of the models in the future.

2.8 Statistical analysis

Categorical variables were presented as percentages and counts,
while continuous variables were reported as mean ± standard
deviation (SD). Analysis of variance (ANOVA) and rank sum
tests were used for univariate analysis. Statistical analysis was
performed using the “stats” module in Python 3.8, and model
development utilized the “sklearn” library in Python 3.8.

3 Results

3.1 Description of variables

Model 1 included 3633 samples, with 1153 patients (32%)
reaching the target and 2480 patients (68%) not reaching it. A
total of 44 variables were considered. For Model 2, 4159 samples
were analyzed, with 768 patients (18%) showing abnormal enzyme
levels and 3391 patients (82%) having normal levels. A total of
45 variables were included. Regarding Model 3, the sample size was
3345, with 209 patients (6%) experiencing abnormal CK levels and
94% of patients having normal CK levels. A total of 47 variables were
analyzed in the study. The information for each variable is presented
in Table 1. The results of the ANOVA of the variables in the three
models were presented in the Supplementary Tables S3–S5.

3.2 Data pre-screening

(1) Model 1: After pre-screening, a total of 29 variables remained,
including X1 age, X2 sex, X3 BMI, X4 smoking history,
X5 drink history, X6 length of stay, X7 number of diseases,
X8 T2DM, X9 hypertension, X10 CHD, X13 atrial fibrillation,
X17 CKD, X20 cerebral infarction, X22 coronary artery stent
implantation, X23 number of oral medicines,
X25 amlodipine, X26 ezetimibe, X30 aspirin,
X31 clopidogrel, X35 CRP, X36 HDL, X37 TG, X38 UA,
X39 PLT, X40 HCY, X41 AST, X42 ALT, X43 Crea, X44 SBP.

(2) Model 2: After preprocessing, a total of 30 variables remained,
including X1 age, X2 sex, X3 BMI, X4 smoking history,
X5 drink history, X6 length of stay, X7 number of diseases,
X8 T2DM, X9 hypertension, X10 CHD, X13 atrial fibrillation,
X16 CKD, X19 cerebral infarction, X22 coronary artery stent
implantation, X23 number of oral medicines,
X25 amlodipine, X26 ezetimibe, X31 aspirin,
X32 clopidogrel, X36 CRP, X37 HDL, X38 TG, X39 UA,
X40 PLT, X41 HCY, X42 Crea, X43 SBP, X44 LDL,
X45 TC, X46 CK.

(3) Model 3: After preprocessing, a total of 30 variables remained,
including X1 age, X2 sex X3 BMI, X4 smoking history,
X5 drink history, X6 length of stay, X7 number of diseases,
X8 T2DM, X9 hypertension, X10 CHD, X17 CKD,
X20 cerebral infarction, X23 coronary artery stent
implantation, X24 number of oral medicines,
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TABLE 1 Basic characteristics of each variable.

Variables Parameters Model 1 Model 2 Model 3

Y1: LDL-C target attainment N 3633

No, n (%) 2480 (0.68)

Yes, n (%) 1153 (0.32)

Y2: Liver enzyme abnormality N 4159

No, n (%) 3391 (0.82)

Yes, n (%) 768 (0.18)

Y3: Muscle pain/CK abnormality N 3345

No, n (%) 3136 (0.94)

Yes, n (%) 209 (0.06)

Age N 3633 4159 3345

Mean (SD) 71.09 (11.02) 70.92 (11.01) 71.25 (10.64)

Sex N 3633 4159 3345

Male, n (%) 2113 (0.58) 2427 (0.58) 1930 (0.58)

Female, n (%) 1520 (0.42) 1732 (0.42) 1415 (0.42)

BMI N 2708 3099

Mean (SD) 24.60 (19.56) 24.09 (16.45) 24.42 (15.55)

Smoking history N 3633 4159 3345

No, n (%) 1623 (0.45) 2046 (0.49) 1448 (0.43)

Yes, n (%) 2010 (0.55) 2113 (0.51) 1897 (0.57)

Drink history N 3633 4159 3345

No, n (%) 1905 (0.52) 1759 (0.42) 1703 (0.51)

Yes, n (%) 1728 (0.48) 2400 (0.58) 1642 (0.49)

Length of stay (days) N 2616 2837 2456

Mean (SD) 12.21 (13.08) 9.52 (14.00) 12.04 (13.02)

Number of diseases N 3633 4159 3345

Mean (SD) 10.40 (7.00) 10.84 (7.23) 10.10 (6.69)

T2DM N 3633 4159 3345

No, n (%) 1858 (0.51) 2149 (0.52) 1770 (0.53)

Yes, n (%) 1775 (0.49) 2010 (0.48) 1575 (0.47)

Hypertension N 3633 4159 3345

No, n (%) 1265 (0.35) 1418 (0.34) 1195 (0.36)

Yes, n (%) 2368 (0.65) 2741 (0.66) 2150 (0.64)

CHD N 3633 4159 3345

No, n (%) 2257 (0.62) 2531 (0.61) 2156 (0.64)

Yes, n (%) 1376 (0.38) 1628 (0.39) 1189 (0.36)

Hypothyroidism N 3633 4159 3345

No, n (%) 3487 (0.96) 3995 (0.96) 3223 (0.96)

Yes, n (%) 146 (0.04) 164 (0.04) 122 (0.04)

(Continued on following page)
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TABLE 1 (Continued) Basic characteristics of each variable.

Variables Parameters Model 1 Model 2 Model 3

Heart failure N 3633 4159 3345

No, n (%) 3357 (0.92) 3810 (0.92) 3156 (0.94)

Yes, n (%) 276 (0.08) 349 (0.08) 189 (0.06)

Atrial fibrillation N 3633 4159 3345

No, n (%) 3261 (0.90) 3704 (0.89) 3030 (0.91)

Yes, n (%) 372 (0.10) 455 (0.11) 315 (0.09)

Depression N 3633 4159 3345

No, n (%) 3519 (0.97) 4032 (0.97) 3255 (0.97)

Yes, n (%) 114 (0.03) 127 (0.03) 90 (0.03)

Epilepsy N 3633 4159 3345

No, n (%) 3597 (0.99) 4118 (0.99) 3311 (0.99)

Yes, n (%) 36 (0.01) 41 (0.01) 34 (0.01)

Chronic liver disease N 3633 - 3345

No, n (%) 3578 (0.98) - 3289 (0.98)

Yes, n (%) 55 (0.02) - 56 (0.02)

CKD N 3633 4159 3345

No, n (%) 3082 (0.85) 3519 (0.85) 2901 (0.87)

Yes, n (%) 551 (0.15) 640 (0.15) 444 (0.13)

MI/old MIa N 3633 4159 3345

No, n (%) 3334 (0.92) 3781 (0.91) 3220 (0.96)

Yes, n (%) 299 (0.08) 378 (0.09) 125 (0.04)

Stroke N 3633 4159 3345

No, n (%) 3610 (0.99) 4133 (0.99) 3329 (0.99)

Yes, n (%) 23 (0.01) 26 (0.01) 16 (0.01)

Cerebral infarction N 3633 4159 3345

No, n (%) 2215 (0.61) 2578 (0.62) 2038 (0.61)

Yes, n (%) 1418 (0.39) 1581 (0.38) 1307 (0.39)

Statin intolerance N 3633 4159 3345

No, n (%) 3615 (0.99) 4134 (0.99) 3335 (0.997)

Yes, n (%) 18 (0.01) 25 (0.01) 10 (0.003)

Coronary artery stent implantation N 3633 4159 3345

No, n (%) 3193 (0.88) 3616 (0.87) 2978 (0.89)

Yes, n (%) 440 (0.12) 543 (0.13) 367 (0.11)

Number of oral medicines N 3633 4151 3344

Mean (SD) 10.10 (5.48) 9.72 (5.34) 9.34 (5.17)

Dose of statins N 3633 4159 3345

High dose (%) 205 (0.05) 224 (0.05) 156 (0.04)

Conventional dose (%) 3427 (0.94) 3934 (0.94) 3188 (0.95)

Low dose (%) 1 (0.01) 1 (0.01) 1 (0.01)

(Continued on following page)
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TABLE 1 (Continued) Basic characteristics of each variable.

Variables Parameters Model 1 Model 2 Model 3

Amlodipine N 3633 4159 3345

No, n (%) 3246 (0.89) 3713 (0.89) 2991 (0.89)

Yes, n (%) 387 (0.11) 446 (0.11) 354 (0.11)

Ezetimibe N 3633 4159 3345

No, n (%) 3166 (0.87) 3591 (0.86) 2995 (0.90)

Yes, n (%) 467 (0.13) 568 (0.14) 350 (0.10)

Evolocumab N 3633 4159 3345

No, n (%) 3547 (0.98) 4057 (0.98) 3288 (0.98)

Yes, n (%) 86 (0.02) 102 (0.02) 57 (0.02)

Fibrates N 3633 4159 3345

No, n (%) 3584 (0.99) 4111 (0.99) 3311 (0.99)

Yes, n (%) 49 (0.01) 48 (0.01) 34 (0.01)

Niacin N 3633 4159 3345

No, n (%) 3616 (0.99) 4142 (0.996) 3330 (0.996)

Yes, n (%) 17 (0.01) 17 (0.004) 15 (0.004)

Aspirin N 3633 4159 3345

No, n (%) 1414 (0.39) 1736 (0.42) 1330 (0.40)

Yes, n (%) 2219 (0.61) 2423 (0.58) 2015 (0.60)

Clopidogrel N 3633 4159 3345

No, n (%) 2208 (0.61) 2582 (0.62) 2085 (0.62)

Yes, n (%) 1425 (0.39) 1577 (0.38) 1260 (0.38)

TCM N 3633 4159 3345

No, n (%) 3550 (0.98) 4067 (0.98) 3270 (0.98)

Yes, n (%) 83 (0.02) 92 (0.02) 75 (0.02)

Cyclosporine N 3633 4159 3345

No, n (%) 3599 (0.99) 4127 (0.99) 3328 (0.99)

Yes, n (%) 34 (0.01) 32 (0.01) 17 (0.01)

Colchicine N 3633 4159 3345

No, n (%) 3629 (0.999) 4155 (0.999) 3342 (0.999)

Yes, n (%) 4 (0.001) 4 (0.001) 3 (0.001)

CRP N 1722 2234 1790

Mean (SD) 15.76 (27.81) 17.34 (28.55) 15.19 (27.61)

HDL N 3633 3757 3185

Mean (SD) 1.09 (0.32) 1.10 (0.32) 1.10 (0.31)

TG N 3633 3759 3187

Mean (SD) 1.56 (0.99) 1.57 (1.00) 1.55 (0.96)

UA N 3619 4136 3323

Mean (SD) 350.84 (167.79) 350.29 (167.96) 351.23 (176.52)

(Continued on following page)
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X26 amlodipine, X27 ezetimibe, X32 aspirin, X33 clopidogrel,
X37 CRP, X38 HDL, X39 TG, X40 UA, X41 PLT, X42 HCY,
X43 AST, X44 ALT, X45 Crea, X46 SBP, X47 LDL, X48 TC.

3.3 Data imputation

(1) Model 1: Without imputation, 845 records remained for
analysis. With improved random forest imputation,
2708 records remained for analysis.

(2) Model 2: Without imputation, 826 records remained for
analysis, while with improved random forest imputation,
2937 records were included for analysis.

(3) Model 3: Without imputation, 814 records remained for
analysis, while with improved random forest imputation,
2906 records were included for analysis.

3.4 Data balance

(1) Model 1: When data was processed without imputation, there
were 845 samples in the datasets after prescreening. The
proportion of patients with and without LDL-C compliance
was 23.67% vs. 76.33%, so the distribution was uneven.
BSMOTE was employed, resulting in 1290 records for
subsequent feature selection. On the other hand, when the data

was imputed using the improved random forest method, no
sample imbalance was present, eliminating the need for sampling.

(2) Model 2: When data was processed without imputation, there
were 826 samples in the datasets after prescreening. The
proportion of patients with abnormal and normal liver
enzymes was 15.01% vs. 84.99%, so the distribution was
uneven. With the improved random forest imputation method,
there were 2937 samples in the datasets. The proportion of
patients with abnormal and normal liver enzymes was 16.48%
vs. 83.52%, so the distribution was also uneven. Therefore,
BSMOTE was employed, resulting in 1404 and 4906 records
for subsequent feature selection without and with improved
random forest imputation, respectively.

(3) Model 3: When data was processed without imputation,
there were 804 samples in the datasets after prescreening.
The proportion of patients with muscle pain/CK
abnormality and no muscle pains/CK normal was 7.00%
vs. 93.00%, so the distribution was uneven. With the
improved random forest imputation method, there were
2521 samples in the datasets. The proportion of patients
with muscle pain/CK abnormality and no muscle pains/CK
normal was 6.19% vs. 93.81%, so the distribution was also
uneven. Therefore, BSMOTE was employed, resulting in
1514 and 4730 records for subsequent feature selection
without and with improved random forest imputation,
respectively.

TABLE 1 (Continued) Basic characteristics of each variable.

Variables Parameters Model 1 Model 2 Model 3

PLT N 3567 4090 3285

Mean (SD) 202.10 (65.85) 206.32 (67.551) 205.80 (66.17)

HCY N 2159 2270 2036

Mean (SD) 14.16 (9.90) 14.28 (10.15) 13.97 (10.29)

AST N 3606 - 3326

Mean (SD) 25.35 (47.36) - 23.22 (29.13)

ALT N 3605 - 3321

Mean (SD) 24.60 (38.97) - 23.48 (28.16)

Crea N 3619 4139 3324

Mean (SD) 86.44 (88.00) 89.42 (93.48) 79.98 (71.27)

SBP N 1860 1945 1760

Mean (SD) 129.19 (16.96) 128.82 (18.30) 129.17 (16.54)

LDL N - 3759 3187

Mean (SD) - 2.50 (0.97) 2.52 (0.96)

TC N - 3758 3186

Mean (SD) - 4.07 (1.26) 4.10 (1.22)

CK N - 3481 -

Mean (SD) - 133.53 (483.35) -

aFor Model 3, the variable for MI, only includes patients with old MI.
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The proportions of positive and negative samples for each model
and the results after processing by the balancing algorithm were
shown in Supplementary Figure S1.

3.5 Feature selection

(1) Model 1: 23 variables selected using Boruta screening
with no imputation and BSMOTE up-sampling. And
all 29 pre-selected variables were included with
improved random forest imputation and no
data sampling.

(2) Model 2: 21 variables were selected using non-imputed data
with BSMOTE up-sampling, and 30 pre-selected variables

were included using improved random forest imputation and
BSMOTE up-sampling.

(3) Model 3: 26 variables were selected for model development
using non-imputed data with BSMOTE up-sampling, while all
30 pre-selected variables were included when using improved
random forest imputation with BSMOTE up-sampling.

3.6 Model establishment

During model training, five machine learning algorithms were
used to build models based on the data after feature selection. The
best-performing models for the three prediction models were all
built on non-imputed data with BSMOTE up-sampling as well as RF

FIGURE 1
The performance of these three predictionmodels. The results of AUPRC (A) and AUC (B) in Model 1. The results of AUPRC (C) and AUC (D) in Model
2. The results of AUPRC (E) and AUC (F) in Model 3. AUPRC, area under the precision-recall curve.
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machine learning methods. The AUC values for these models were
0.883, 0.964, and 0.981, respectively. The MCC values for these
models were 0.761, 0.938, and 0.965, respectively. The performance
of the models is shown in Figure 1 and Table 2.

3.7 Model validation

The three models were internally and externally validated using
ten-fold cross-validation and bootstrapping sampling. The mean ±
SD and 95% CI of five evaluation metrics (AUC, Accuracy,
Precision, Recall, F1 Score, MCC) were calculated. The detailed
information is shown in Table 3. And the validation results for the
test set were shown in Supplementary Table S6. DCA showed
excellent predictive performances (Figure 2).

3.8 Sample size validation

The sample size validation was used to assess the correlation
between the sample size and the predictive performance of the
models. The X-axis represents the percentage of the total sample
size, while the Y-axis represents the AUC values corresponding to
different sample sizes. The results of the sample size validation
demonstrated that as the sample size increases, the AUC values of
the three models gradually rise and then plateau, indicating good
predictive performance. This suggests that the sample size used for
modeling adequately meets the requirements (shown in Figure 3).

3.9 Model interpretability analysis

The study utilized the SHAP model interpretability framework to
explain the constructed models. Two interpretation methods were
employed: feature density scatter plot and feature importance SHAP
values. Feature density scatter plot displays the features sorted by their
average absolute SHAP values, indicating their importance to the
model. The width of the plot represents sample density, and the color
intensity represents the feature value. A dispersed sample distribution
indicates a greater feature influence, while a concentration around
SHAP = 0 suggests the feature affects only a subset of individuals. And
significant features are identified through SHAP values.

Taking the example of the LDL-C target attainment prediction
model, smaller values of the feature X37-TGwill give a positive boost
to the predictions of Model 1 (Figure 4A). X20-Cerebral infarction,
X37-TG, X31-Clopidogrel and X36-HDL were the top 4 important
features (Figure 4B).

The SHAP of Model 2 and Model 3 were shown in
Supplementary Figures S2, S3.

3.10 Model application

Based on the best-performing model, a web-based platform for
predicting the effectiveness and safety of statin drugs was developed
using the Flask framework.

The platform based on the prediction model has been deployed
to the Elderly Polypharmacy Risk Alert Platform in China-Japan

TABLE 2 The summary of all prediction results in the models.

Auc Accuracy Precision Recall F1 AUPRC MCC

Model 1

Logistic regression 0.766 0.765 0.733 0.786 0.759 0.810 0.531

Naive bayes 0.746 0.747 0.726 0.742 0.734 0.794 0.492

Decision tree 0.787 0.780 0.787 0.731 0.758 0.828 0.580

Random forest 0.883 0.868 0.858 0.863 0.860 0.906 0.761

GBDT 0.867 0.868 0.843 0.885 0.885 0.889 0.737

Model 2

Logistic regression 0.772 0.773 0.773 0.787 0.780 0.834 0.544

Naive bayes 0.720 0.718 0.784 0.620 0.693 0.799 0.449

Decision tree 0.880 0.882 0.855 0.926 0.889 0.906 0.756

Random forest 0.964 0.964 0.967 0.963 0.965 0.978 0.938

GBDT 0.941 0.941 0.953 0.931 0.941 0.959 0.882

Model 3

Logistic regression 0.837 0.837 0.842 0.849 0.846 0.885 0.674

Naive bayes 0.721 0.727 0.699 0.845 0.765 0.813 0.459

Decision tree 0.919 0.921 0.901 0.954 0.927 0.937 0.847

Random forest 0.981 0.980 0.987 0.975 0.981 0.987 0.965

GBDT 0.968 0.969 0.959 0.983 0.971 0.976 0.939
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TABLE 3 The results of internal and external validation in the models.

Auc Accuracy Precision Recall F1 MCC

Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI

Model 1

Internal validation

Not Imputing

Logistic regression 0.853 ± 0.030 0.834,0.871 0.775 ± 0.030 0.757,0.794 0.776 ± 0.040 0.751,0.801 0.795 ± 0.042 0.769,0.821 0.784 ± 0.027 0.767,0.800 0.803 ± 0.028 0.785,0.820

Naive bayes 0.798 ± 0.039 0.774,0.822 0.728 ± 0.052 0.695,0.760 0.733 ± 0.062 0.694,0.771 0.752 ± 0.060 0.714,0.789 0.739 ± 0.043 0.713,0.766 0.746 ± 0.038 0.722,0.769

Decision tree 0.781 ± 0.053 0.748,0.814 0.772 ± 0.043 0.745,0.798 0.770 ± 0.060 0.733,0.807 0.803 ± 0.055 0.769,0.837 0.783 ± 0.035 0.762,0.805 0.890 ± 0.035 0.868,0.911

Random forest 0.959 ± 0.011 0.952,0.966 0.881 ± 0.027 0.865,0.898 0.885 ± 0.043 0.858,0.911 0.888 ± 0.038 0.864,0.911 0.885 ± 0.026 0.869,0.901 0.972 ± 0.015 0.962,0.981

GBDT 0.931 ± 0.022 0.918,0.945 0.839 ± 0.038 0.816,0.863 0.833 ± 0.052 0.801,0.866 0.864 ± 0.044 0.837,0.891 0.847 ± 0.034 0.826,0.868 0.957 ± 0.027 0.941,0.974

Improved Random Forest

Logistic regression 0.749 ± 0.027 0.732,0.766 0.693 ± 0.024 0.678,0.708 0.694 ± 0.025 0.679,0.709 0.699 ± 0.031 0.680,0.718 0.696 ± 0.025 0.680,0.712 0.784 ± 0.027 0.767,0.800

Naive bayes 0.702 ± 0.044 0.674,0.729 0.596 ± 0.032 0.576,0.616 0.562 ± 0.021 0.549,0.575 0.894 ± 0.032 0.875,0.914 0.690 ± 0.022 0.676,0.704 0.739 ± 0.043 0.713,0.766

Decision tree 0.833 ± 0.022 0.820,0.847 0.763 ± 0.024 0.748,0.778 0.788 ± 0.035 0.767,0.810 0.725 ± 0.041 0.700,0.751 0.754 ± 0.027 0.738,0.771 0.776 ± 0.042 0.751,0.802

Random forest 0.946 ± 0.012 0.939,0.954 0.859 ± 0.021 0.846,0.872 0.882 ± 0.041 0.857,0.908 0.834 ± 0.033 0.813,0.855 0.856 ± 0.021 0.844,0.869 0.878 ± 0.030 0.859,0.897

GBDT 0.919 ± 0.008 0.914,0.923 0.834 ± 0.021 0.821,0.848 0.857 ± 0.029 0.840,0.875 0.806 ± 0.039 0.781,0.830 0.830 ± 0.024 0.815,0.845 0.845 ± 0.033 0.824,0.865

External validation

Not Imputing

Logistic regression 0.854 ± 0.019 0.853,0.855 0.764 ± 0.022 0.763,0.765 0.733 ± 0.033 0.731,0.734 0.784 ± 0.031 0.783,0.785 0.757 ± 0.025 0.756,0.758 0.758 ± 0.025 0.757,0.759

Naive bayes 0.811 ± 0.022 0.810,0.812 0.747 ± 0.022 0.746,0.748 0.727 ± 0.033 0.725,0.728 0.741 ± 0.033 0.740,0.743 0.733 ± 0.026 0.732,0.735 0.733 ± 0.026 0.731,0.734

Decision tree 0.806 ± 0.024 0.805,0.807 0.781 ± 0.021 0.780,0.782 0.788 ± 0.032 0.786,0.789 0.731 ± 0.033 0.730,0.733 0.758 ± 0.025 0.757,0.759 0.772 ± 0.025 0.771,0.773

Random forest 0.947 ± 0.010 0.947,0.948 0.868 ± 0.017 0.867,0.869 0.858 ± 0.025 0.857,0.859 0.862 ± 0.026 0.861,0.863 0.860 ± 0.019 0.859,0.861 0.869 ± 0.019 0.868,0.870

GBDT 0.925 ± 0.013 0.925,0.926 0.868 ± 0.017 0.867,0.868 0.842 ± 0.026 0.841,0.844 0.884 ± 0.024 0.883,0.885 0.863 ± 0.019 0.862,0.863 0.861 ± 0.019 0.860,0.861

Improved Random Forest

Logistic regression 0.722 ± 0.015 0.722,0.723 0.668 ± 0.014 0.668,0.669 0.655 ± 0.020 0.654,0.655 0.693 ± 0.019 0.692,0.694 0.673 ± 0.016 0.672,0.674 0.758 ± 0.024 0.757,0.759

Naive bayes 0.668 ± 0.016 0.667,0.669 0.585 ± 0.015 0.584,0.585 0.548 ± 0.016 0.548,0.549 0.895 ± 0.013 0.894,0.895 0.680 ± 0.014 0.679,0.680 0.733 ± 0.026 0.732,0.734

Decision tree 0.820 ± 0.012 0.819,0.820 0.727 ± 0.014 0.727,0.728 0.758 ± 0.019 0.758,0.759 0.656 ± 0.020 0.655,0.657 0.703 ± 0.016 0.703,0.704 0.771 ± 0.025 0.770,0.772

(Continued on following page)
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TABLE 3 (Continued) The results of internal and external validation in the models.

Auc Accuracy Precision Recall F1 MCC

Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI

Random forest 0.935 ± 0.007 0.934,0.935 0.843 ± 0.011 0.843,0.844 0.850 ± 0.015 0.849,0.851 0.829 ± 0.016 0.828,0.829 0.839 ± 0.012 0.838,0.839 0.873 ± 0.018 0.872,0.874

GBDT 0.893 ± 0.009 0.893,0.894 0.806 ± 0.012 0.806,0.807 0.824 ± 0.016 0.823,0.825 0.772 ± 0.018 0.771,0.772 0.797 ± 0.013 0.796,0.797 0.863 ± 0.018 0.863,0.864

Model 2

Internal validation

Not Imputing

Logistic regression 0.861 ± 0.043 0.835,0.888 0.812 ± 0.052 0.779,0.844 0.802 ± 0.069 0.759,0.846 0.831 ± 0.037 0.808,0.854 0.815 ± 0.043 0.788,0.842 0.815 ± 0.043 0.788,0.842

Naive bayes 0.806 ± 0.066 0.765,0.847 0.737 ± 0.075 0.691,0.784 0.773 ± 0.089 0.718,0.828 0.669 ± 0.106 0.603,0.735 0.714 ± 0.085 0.661,0.766 0.714 ± 0.085 0.661,0.766

Decision tree 0.886 ± 0.043 0.859,0.913 0.864 ± 0.042 0.838,0.891 0.845 ± 0.061 0.808,0.883 0.895 ± 0.043 0.868,0.922 0.868 ± 0.039 0.844,0.892 0.861 ± 0.031 0.842,0.880

Random forest 0.983 ± 0.013 0.975,0.992 0.952 ± 0.022 0.938,0.966 0.963 ± 0.026 0.947,0.979 0.940 ± 0.049 0.910,0.971 0.951 ± 0.025 0.935,0.966 0.944 ± 0.028 0.926,0.962

GBDT 0.967 ± 0.017 0.956,0.977 0.922 ± 0.034 0.901,0.943 0.924 ± 0.044 0.897,0.951 0.920 ± 0.057 0.884,0.955 0.920 ± 0.037 0.898,0.943 0.919 ± 0.034 0.898,0.940

Improved Random Forest

Logistic regression 0.725 ± 0.029 0.707,0.743 0.665 ± 0.027 0.649,0.682 0.676 ± 0.034 0.655,0.697 0.648 ± 0.024 0.633,0.663 0.661 ± 0.022 0.648,0.675 0.656 ± 0.031 0.636,0.675

Naive bayes 0.716 ± 0.033 0.696,0.736 0.675 ± 0.028 0.657,0.693 0.697 ± 0.042 0.671,0.722 0.638 ± 0.058 0.602,0.674 0.664 ± 0.032 0.644,0.684 0.661 ± 0.027 0.644,0.678

Decision tree 0.885 ± 0.019 0.874,0.897 0.826 ± 0.020 0.814,0.839 0.855 ± 0.026 0.839,0.871 0.791 ± 0.044 0.764,0.818 0.821 ± 0.024 0.806,0.836 0.828 ± 0.021 0.815,0.841

Random forest 0.978 ± 0.004 0.976,0.981 0.940 ± 0.010 0.934,0.947 0.989 ± 0.008 0.984,0.994 0.891 ± 0.018 0.880,0.903 0.938 ± 0.011 0.931,0.944 0.939 ± 0.012 0.931,0.946

GBDT 0.956 ± 0.011 0.949,0.962 0.912 ± 0.014 0.904,0.921 0.956 ± 0.016 0.947,0.966 0.866 ± 0.025 0.850,0.881 0.909 ± 0.015 0.899,0.918 0.906 ± 0.014 0.897,0.914

External validation

Not Imputing

Logistic regression 0.855 ± 0.019 0.854,0.856 0.772 ± 0.021 0.771,0.772 0.771 ± 0.029 [0.770,0.773 0.787 ± 0.028 0.785,0.788 0.779 ± 0.023 0.778,0.780 0.780 ± 0.022 0.779,0.781

Naive bayes 0.796 ± 0.022 0.795,0.797 0.718 ± 0.022 0.717,0.719 0.783 ± 0.031 0.782,0.784 0.621 ± 0.033 0.619,0.622 0.692 ± 0.027 0.691,0.693 0.691 ± 0.026 0.690,0.692

Decision tree 0.915 ± 0.015 0.914,0.916 0.882 ± 0.016 0.881,0.882 0.855 ± 0.023 0.854,0.856 0.926 ± 0.018 0.925,0.927 0.889 ± 0.016 0.888,0.890 0.887 ± 0.016 0.886,0.887

Random forest 0.993 ± 0.003 0.993,0.993 0.964 ± 0.009 0.964,0.965 0.967 ± 0.012 0.967,0.968 0.963 ± 0.013 0.962,0.964 0.965 ± 0.009 0.965,0.966 0.953 ± 0.011 0.953,0.953

GBDT 0.981 ± 0.006 0.981,0.981 0.941 ± 0.011 0.940,0.941 0.953 ± 0.014 0.952,0.954 0.930 ± 0.017 0.930,0.931 0.941 ± 0.011 0.941,0.942 0.942 ± 0.012 0.941,0.942

Improved Random Forest

Logistic regression 0.755 ± 0.012 0.755,0.756 0.697 ± 0.012 0.697,0.698 0.701 ± 0.017 0.700,0.701 0.669 ± 0.018 0.669,0.670 0.684 ± 0.014 0.684,0.685 0.670 ± 0.014 0.669,0.670
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TABLE 3 (Continued) The results of internal and external validation in the models.

Auc Accuracy Precision Recall F1 MCC

Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI

Naive bayes 0.713 ± 0.013 0.712,0.713 0.671 ± 0.012 0.670,0.671 0.700 ± 0.019 0.699,0.701 0.575 ± 0.019 0.574,0.576 0.631 ± 0.016 0.631,0.632 0.675 ± 0.015 0.675,0.676

Decision tree 0.902 ± 0.008 0.902,0.902 0.835 ± 0.009 0.835,0.835 0.869 ± 0.013 0.869,0.870 0.781 ± 0.015 0.780,0.782 0.823 ± 0.011 0.822,0.823 0.814 ± 0.012 0.813,0.815

Random forest 0.979 ± 0.003 0.979,0.979 0.933 ± 0.007 0.933,0.933 0.991 ± 0.004 0.990,0.991 0.871 ± 0.013 0.871,0.872 0.927 ± 0.007 0.927,0.927 0.927 ± 0.007 0.927,0.928

GBDT 0.956 ± 0.005 0.956,0.957 0.898 ± 0.008 0.897,0.898 0.969 ± 0.007 0.969,0.969 0.818 ± 0.014 0.817,0.818 0.887 ± 0.009 0.886,0.887 0.902 ± 0.009 0.901,0.902

Model 3

Internal validation

Not Imputing

Logistic regression 0.880 ± 0.025 0.864,0.895 0.804 ± 0.026 0.788,0.819 0.790 ± 0.031 0.771,0.809 0.818 ± 0.052 0.786,0.851 0.803 ± 0.028 0.785,0.820 0.803 ± 0.028 0.785,0.820

Naive bayes 0.845 ± 0.035 0.823,0.866 0.716 ± 0.047 0.687,0.745 0.665 ± 0.043 0.639,0.692 0.851 ± 0.048 0.822,0.881 0.746 ± 0.038 0.722,0.769 0.746 ± 0.038 0.722,0.769

Decision tree 0.910 ± 0.027 0.893,0.927 0.889 ± 0.038 0.865,0.912 0.868 ± 0.047 0.839,0.897 0.913 ± 0.039 0.889,0.937 0.889 ± 0.037 0.866,0.912 0.890 ± 0.035 0.868,0.911

Random forest 0.994 ± 0.008 0.989,0.999 0.977 ± 0.018 0.966,0.988 0.982 ± 0.014 0.974,0.991 0.971 ± 0.025 0.956,0.986 0.977 ± 0.018 0.965,0.988 0.972 ± 0.015 0.962,0.981

GBDT 0.990 ± 0.009 0.985,0.996 0.956 ± 0.028 0.938,0.973 0.943 ± 0.038 0.920,0.966 0.969 ± 0.023 0.955,0.983 0.956 ± 0.028 0.938,0.973 0.957 ± 0.027 0.941,0.974

Improved Random Forest

Logistic regression 0.819 ± 0.028 0.802,0.837 0.758 ± 0.015 0.749,0.767 0.757 ± 0.025 0.741,0.772 0.769 ± 0.029 0.751,0.787 0.762 ± 0.013 0.754,0.770 0.770 ± 0.021 0.756,0.783

Naive bayes 0.707 ± 0.028 0.690,0.724 0.633 ± 0.036 0.611,0.656 0.605 ± 0.030 0.587,0.624 0.789 ± 0.044 0.762,0.817 0.685 ± 0.031 0.665,0.704 0.683 ± 0.013 0.675,0.691

Decision tree 0.928 ± 0.025 0.913,0.944 0.895 ± 0.025 0.880,0.911 0.872 ± 0.032 0.851,0.892 0.931 ± 0.026 0.915,0.947 0.900 ± 0.023 0.885,0.914 0.895 ± 0.012 0.888,0.903

Random forest 0.996 ± 0.004 0.994,0.998 0.982 ± 0.007 0.977,0.986 0.995 ± 0.006 0.991,0.999 0.968 ± 0.012 0.961,0.976 0.981 ± 0.007 0.977,0.986 0.982 ± 0.005 0.979,0.985

GBDT 0.990 ± 0.005 0.987,0.994 0.966 ± 0.008 0.961,0.972 0.976 ± 0.010 0.970,0.982 0.957 ± 0.012 0.949,0.964 0.966 ± 0.009 0.961,0.972 0.967 ± 0.006 0.963,0.971

External validation

Not Imputing

Logistic regression 0.884 ± 0.017 0.883,0.885 0.838 ± 0.017 0.837,0.838 0.843 ± 0.024 0.842,0.844 0.850 ± 0.023 0.849,0.851 0.846 ± 0.018 0.845,0.847 0.845 ± 0.018 0.845,0.846

Naive bayes 0.844 ± 0.018 0.844,0.845 0.727 ± 0.021 0.727,0.728 0.699 ± 0.027 0.698,0.700 0.844 ± 0.023 0.843,0.845 0.764 ± 0.021 0.764,0.765 0.765 ± 0.021 0.764,0.766

Decision tree 0.942 ± 0.013 0.941,0.942 0.921 ± 0.013 0.921,0.922 0.902 ± 0.019 0.901,0.902 0.954 ± 0.013 0.954,0.955 0.927 ± 0.012 0.926,0.928 0.927 ± 0.012 0.926,0.927

Random forest 0.998 ± 0.001 0.998,0.998 0.980 ± 0.007 0.980,0.980 0.987 ± 0.007 0.987,0.988 0.975 ± 0.010 0.974,0.975 0.981 ± 0.006 0.981,0.981 0.983 ± 0.006 0.983,0.983

GBDT 0.995 ± 0.002 0.995,0.996 0.969 ± 0.008 0.969,0.970 0.960 ± 0.013 0.959,0.960 0.983 ± 0.008 0.983,0.984 0.971 ± 0.008 0.971,0.971 0.971 ± 0.008 0.971,0.971
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Friendship Hospital, enabling the application and optimization of
the models. By sharing the IP address of the prediction platform to
each clinical department in the hospital, especially the
cardiovascular department and other key departments, before the
use of statins, the prediction model is used to predict the efficacy
(LDL-C compliance rate) and safety (incidence of abnormalities in
liver enzymes and CK). For patients with high efficacy rate and high
risk of adverse reactions, close supervision and monitoring of all
relevant indicators are given; for patients with low efficacy rate and
high risk of adverse reactions, replacement of lipid-lowering drugs
can be considered. Therefore, based on the prediction platform can
help clinicians or clinical pharmacists to ensure the lipid-lowering
effect while avoiding the occurrence of serious adverse reactions and
improving the efficiency of treatment. Model application is the
visual display of model training, and the prediction platform
built based on model training can be used to solve practical
clinical problems in the process of clinical practice, so that the
model is not only built, but also can be applied and promoted. The
platform of Model 1 was shown in Figure 5. The platform of Model
2 and Model 3 were shown in Supplementary Figures S4, S5.

4 Discussion

In this study, we have developed three prediction models for the
effectiveness and safety of statins, namely, the LDL target attainment
(Model 1), the liver enzyme abnormality (Model 2), and the muscle
pain/CK abnormality prediction model (Model 3). Among these
models, the RF algorithm has demonstrated the best performance,
and AUC value was 0.883, 0.964, and 0.981, respectively.

Of the three prediction models, the best performingmodels were
the unfilled preprocessing method and the RF machine learning
algorithm. The better performance of the predictive models obtained
by the means of data preprocessing without padding may be due to
two reasons, Firstly, the small percentage of missing values, which is
less than 1 percent for most of the variables. When the percentage of
missing values is relatively low, deleting these variables may not
significantly affect the overall model performance, and therefore,
computationally populating a small fraction of the missing values
may not provide substantial benefits. Secondly, the missing values in
this study occurred randomly, and deleting the missing values would
maintain the randomness of the data and avoid adversely affecting
model training (Ren et al., 2023). RF is an integrated learning
method, which means that it combines the predictions of
multiple independent models, such as decision trees, to make
more accurate and robust predictions. As seen from our study,
the RF algorithm consistently outperforms the DT, which shows that
the nature of the ensemble helps to reduce overfitting and improves
generalization to new, unseen data. In addition, the ability of RF to
capture complex non-linear relationships in the data makes it
suitable for tasks where the decision boundaries are intricate and
cannot be easily represented by a linear model (Hu and Szymczak,
2023). Therefore, the RF algorithm performs better in this study.
However, it’s essential to note that the performance of machine
learning models is highly dependent on the specific characteristics of
the dataset, the quality of the features, and the inherent patterns in
the data. Different algorithms may excel in different scenarios, and
it’s common practice to experiment with multiple algorithms toT
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identify the most suitable one for a given task. Modelling with more
data balancing, feature filtering, and machine learning algorithms
may produce better performance (Xingwei et al., 2022).

Regarding Model 1, it exhibited good performance (AUC =
0.883, Accuracy = 0.868, Precision = 0.858, Recall = 0.863, F1 =
0.860, AUPRC = 0.906, MCC = 0.761). These results align with a
similar model by Liu et al., which evaluated the effectiveness of
atorvastatin after 1 month (Liu H. et al., 2023). The RF algorithm
also demonstrated superior performance in the studies. However,
in Liu et al.’s model, TC was an important variable to predict
whether LDL-C would reach the target, resulting in a slightly
higher AUC of 0.97 (19). In contrast, our study focused primarily
on LDL-C, which is a key component of TC. Thus, TC was not
included in our LDL-C prediction model, potentially
contributing to the lower AUC. The strong correlation
between TC and LDL-C likely contributed to the higher
performance observed in Liu et al.’s study. When it comes to
the interpretation of the model, the top 5 important feature were
cerebral infarction, TG, clopidogrel, HDL and PLT. Consistent
with Liu et al.’s study., PLT was found to impact LDL-C target
attainment. Kremser et al. also demonstrated a link between PLT
hyperactivity and elevated LDL-C, possibly due to the storage and
release of pltPCSK9 (platelet-derived proprotein convertase
subtilisin/kexin type 9) during PLT activation, which enhances
LDL-C levels (Petersen-Uribe et al., 2021). The release of
pltPCSK9 may participate in the regulation of plasma LDL-C
levels by binding to LDL-C receptors and reducing the uptake of
LDL-C particles from the extracellular space into cells, thereby
increasing plasma LDL-C concentrations. Similarly, Liu et al.
highlighted the importance of TG as a contributing factor,
indicating that TG has an impact on LDL-C (Esan and
Wierzbicki, 2021; Liu H. et al., 2023). Research suggests that
the synthesis of very-low-density lipoprotein (VLDL) is
influenced by pathways involving hepatic TG storage (Esan
and Wierzbicki, 2021). In addition to TG, HDL has long been
one of the key factors in lipid-lowering models (Liu H. et al.,
2023) and cardiovascular risk prediction models (Georgoulis
et al., 2022). According to the SHAP interpretation, it can be
seen that a smaller HDL increases the predictive value of model 1.
As to whether higher HDL levels are better for the protection of
the cardiovascular system, there is no clear conclusion, and the
latest studies have shown that there is a U-shaped relationship
between HDL levels and the risk of cardiovascular death, which
means that too high or too low a level of HDL is not a good thing
(Liu et al., 2022). Cerebral infarction was important factors for
LDL-C target achievement because patients with these conditions
require strict monitoring of LDL-C levels. Studies have shown
that patients with cerebral infarction or transient ischemic attack
(TIA) accompanied by atherosclerosis have a lower risk of
subsequent cardiovascular events when LDL-C is controlled at
lower levels (Amarenco et al., 2020). Therefore, both clinicians
and caregivers place greater emphasis on educating and
managing patients with these conditions, leading to improved
adherence and higher LDL-C target attainment rates.

Regarding the safety assessment of statins, Model 2 exhibited
favorable performance (AUC = 0.964, Accuracy = 0.964, Precision =
0.967, Recall = 0.963, F1 = 0.965, AUPRC = 0.978, MCC = 0.938).
Similarly, Model 3 also demonstrated excellent performance

(AUC = 0.981, Accuracy = 0.980, Precision = 0.987, Recall =
0.975, F1 = 0.981, AUPRC = 0.987, MCC = 0.965). The top
5 important feature of Model 2 were CRP, CK, T2DM,
hypertension and the number of oral medications. As for the
Model 3, the top 5 important feature were AST, ALT, PLT,
clopidogrel and the number of oral medications. In fact, statins
have a good safety record in clinical practice, with a liver injury risk
of approximately 1%, comparable to placebo. Muscle pain is
relatively common, but the rates of myopathy and
rhabdomyolysis are low, affecting about 5 and 1.6 individuals per
100,000 people annually, respectively (Gillett and Norrell, 2011).
Therefore, there have been no studies conducted to establish
predictive models for the safety assessment of statins. So the
prediction model established in this study is to provide a
practical technical means for the precise administration of statins,
to predict the risk of patients before giving statins, and to make a
comprehensive judgement in combination with the assessment of
effectiveness and safety. If the effectiveness and safety are good,
statins are given, and if the effectiveness is poor and safety is poor,
statins are not recommended. If effectiveness is good and safety is
poor, or if effectiveness is low and safety is good, the dosing regimen
needs to be considered in combination with the assessment. In this
case, if a decision is made to give statins, a regular monitoring
programme needs to be provided, such as regular liver function
(AST/ALT) and CKmonitoring. Otherwise, switching to other types
of lipid-lowering drugs may be considered.

When it comes to the interpretation of the model, in the liver
enzyme prediction model, CRP has a significant impact.
Regarding the relationship between statins and CRP, previous
studies have confirmed that statins can lower CRP levels.
However, the extent of CRP reduction varies depending on
the specific medication used, similar to the reduction in LDL-
C levels (Asher and Houston, 2007; Kandelouei et al., 2022). Even
when exploring the rationality of preventive use of statins, CRP
and LDL-C are both crucial factors to consider, which indicates a
close association between CRP and statins (Dorresteijn et al.,
2011). There is limited research on the correlation between CRP
and liver enzymes during statin use. However, some studies have
reported an association between mild elevation of liver enzymes
and higher plasma CRP levels (Kerner et al., 2005). Furthermore,
in a comprehensive risk factor study conducted among
overweight children and adolescents, both ALT and hs-CRP
(high-sensitivity C-reactive protein) were employed as
screening indicators for assessing the presence of metabolic
syndrome and cardiovascular disease risks (Oliveira et al.,
2008). Therefore, further research is needed to determine the
correlation between liver enzyme abnormalities and CRP levels
following statin use. Also, it is recommended to routinely
monitor CRP when using statins (Ridker et al., 2005). In
Model 2 and Model 3, ALT or AST and CK were important
factors for each other. Liver enzyme elevation and the occurrence
of muscle pain with or without an increase in CK are common
adverse events during statin use. However, there is limited
research exploring the correlation between these factors
during the use of statins. A study on patients with
rhabdomyolysis observed a significant positive correlation
between CK and ALT, AST, Alkaline phosphatase (ALP), and
Total bilirubin (TBiL) (Laitselart et al., 2022). Other studies has
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also explored the clinical and experimental evidence linking
elevated transaminases with muscle injury (Lim, 2020).
Elevated liver enzymes usually do not directly impact CK
levels, but liver dysfunction or disease can occasionally
contribute to muscle injury or inflammation, potentially
affecting CK levels (Md Sani et al., 2017). Therefore, when
using statins, attention should be paid to the possibility of
liver enzyme abnormalities and the occurrence of muscle pain
or CK abnormalities, although the specific mechanisms are not
fully understood. In Model 3, PLT is also one of its important
feature. Generally, there is no direct relationship or correlation
between CK and PLT due to representing different physiological
processes. However, in certain situations, they can independently
affect the levels of PLT and CK. For example, in cases of severe
liver disease, liver dysfunction can lead to muscle injury,
resulting in elevated CK levels. Additionally, liver disease can
affect PLT production or function, leading to changes in PLT
levels (Wang et al., 2013). Furthermore, the study revealed that

the number of oral medications was an important influencing
factor for the occurrence of liver enzyme abnormalities and
muscle pain or CK abnormalities. Patients with multiple
comorbidities often receive multiple drug therapies, which can
lead to increased statin exposure due to DDIs and concurrent
prescription medications, resulting in an increased risk of
adverse events, including SAMA and statin-induced
hepatotoxicity (Bellosta and Corsini, 2018).

Currently, articles using machine learning methods to help
rationalize the use of statins in the clinic focus more on gene-
level research. Many studies have used machine learning combined
with genomics (Ooi et al., 2021), transcriptomics (Kim et al., 2014),
and also metabolomics (Silveira et al., 2021) to discover relevant
SNPs or endogenous metabolites that affect the metabolism of
statins, and so on, to explore ways and means to personalize the
treatment of statins. Kim et al. used SVM to construct a prediction
model and identified 100 signature genes that distinguish between
high and low response to statins, providing ideas for identifying new

FIGURE 2
DCA plots of Model 1 (A), Model 2 (B) and Model 3 (C).
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pathways that affect cholesterol metabolism (Kim et al., 2014). Using
six machine learning algorithms including logistic regression, elastic
nets, RF, boosted trees, neural networks and SVM, Ooi BNS et al.
(Ooi et al., 2021) identified groups of SNPs that would be used to
predict the incidence of myalgia. Ultimately, a combination of
15 SNPs' was determined to have good predictive performance
for predicting myalgia (AUC > 0.9). Silveira AMR et al. (Silveira
et al., 2021) used the refined Elastic Net model to look for
associations between endogenous metabolites and the
corresponding pharmacokinetic parameters, and ultimately
identified biomarkers that influence the metabolism of
Rosuvastatin (Silveira et al., 2021).

In addition to this, studies relying on electronic health records to
construct predictive models for statins are more similar to this study,
but there are relatively few such studies. Liu et al. used the RF
algorithm to predict the lipid-lowering effect of atorvastatin, which
mainly consisted of predicting the levels of LDL, TG, TC, and HDL,
with AUCs of 0.97, 0.80, 0.98, and 0.87, respectively (Liu H. et al.,
2023). Wemainly focused on the effect of lowering LDL, but focused
on almost all statins. From the final results, the 23 key features
obtained from Model 1 in this study almost included the important
features in the study of Liu et al., such as PLT, TG, UA, BMI, and
HDL. Although the AUC value (0.883) in this study was lower than
that of the LDL prediction model in Liu’s study (0.97), retaining the
indicator TC in the LDL prediction model will inevitably lead to a
higher performance of the prediction model because LDL is one of

the types of TC, and the two variables are highly correlated, which
will have an impact on the results. Sun et al. (2023) utilized six
machine learning algorithms, including DT, SVM, K-Nearest
Neighbours (KNN), RF, and AdaBoost, to construct a prediction
model for predicting the occurrence of SAMS with statins
(atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin,
rosuvastatin and simvastatin), and the final model performance
was as follows: Precision = 0.85, Recall = 0.71, F1 score = 0.77.
Although the optimal algorithm of Sun et al. is a combined rule-
based (CRB) algorithm, the screened key variables affecting SAMS
were also almost all included in the 26 important features of Model
3 of this study, such as gender, coronary artery disease, and
medication factors. Moreover, the model performance of Model
3 in this study is much better.

Therefore, overall, the three prediction models of statin
effectiveness and safety constructed in this study almost include
the important key points during the clinical application of statins,
including the effect of LDL reduction, the abnormalities of liver
enzymes, and the abnormalities of CK. Not only the model
performance is superior, but also the application platform of the
model is built, which makes the prediction model of this study more
clinically applicable and operable than exploring the gene loci
related to statins.

However, it is worth paying attention to the fact that although
relevant information mining based on patients’ electronic health
records has a better clinical practice application value, it needs to

FIGURE 3
Sample size validation. The sample size validation of Model 1 (A), Model 2 (B) and Model 3 (C). ROC, receiver operating characteristic.
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overcome the problems of a single data source, incomplete and
unstandardized data, and the existence of unstructured data.
Therefore, if the case report form (CRF) can be standardized and
designed for the research problem, and the CRF can be embedded
into the clinical practice operation link, such as the hospital
information system, in conjunction with the information
technology personnel. In this way, a large amount of
standardized and structured data can be collected in the working
scenario, which will greatly improve the efficiency of research and
produce more and more valuable research results.

Finally, combining the preliminary ANOVA and the final
modeling results, we found that the variables with differences (p <
0.05) in the ANOVA contained more information that could be mined.
In model 1, of the 29 variables with differences in statistical analysis,
18 variables (62%) were finally used in model construction; in model 2,
of the 18 variables with differences in statistical analysis, 12 variables
(67%) were finally used in model construction; in model 3, of the
13 variables with differences in statistical analysis, 8 variables (62%)
were finally used in model construction. It can be seen that ANOVA
can help to identify variables that differ significantly between categories,
which are better able to discriminate between categories and thus more
helpful in model construction. Therefore, variables with significant
differences can improve the generalization performance of the model
and improve the classification ability of the model. However, the
application of ANOVA relies on some strict assumptions and is less

suitable for high dimensional data. In addition, ANOVA is a univariate
analysis method, which analyzes the relationship between one feature
and the target variable at a time, ignoring the interaction and joint
influence between features. To summarize, traditional statistical
analysis and machine learning both overlap and have their own
focuses, with statistical analysis emphasizing the interpretation and
inference of data, andmachine learning emphasizing the prediction and
application of models. Currently, the two are often used in combination
to fully utilize their respective strengths.

This study still has several limitations that need to be acknowledged
and addressed. First, the data in this study came from only two
healthcare organizations and were exclusively inpatients. This lack of
diverse data sources, such as community-sourced data, limits the
generalizability of our findings. The study population is not
representative of the broader community, which may affect the
external validity of the model and cause selection bias. Future
research should aim to include a more diverse range of data sources
to enhance the robustness and applicability of the model across
different settings and populations. Second, as a retrospective study,
our research was constrained by the variables available in the existing
records. Important factors such as the duration of medication and
outpatient follow-up data were not accessible, potentially omitting
crucial information that could influence the modeling outcomes.
The absence of these variables may lead to an incomplete
understanding of the predictors and their relationships, thus

FIGURE 4
Variable contribution of the Model 1 by SHAP. Summary of SHAP value of each variable (A). Absolute average of SHAP of each variable (B). X1 age,
X3 BMI, X4 smoking history, X5 drink history, X6 length of stay, X7 number of diseases, X9 hypertension, X10 CHD, X17 CKD, X20 cerebral infarction,
X23 number of oral medicines, X30 aspirin, X31 clopidogrel, X35 CRP, X36 HDL, X37 TG, X38 UA, X39 PLT, X40 HCY, X41 AST, X42 ALT, X43 Crea, X44 SBP.
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introducing information bias. Prospective studies with comprehensive
data collection strategies should be conducted to capture these critical
variables and provide a more holistic view. Third, missing values were
prevalent in our dataset, which could affect the integrity of the
information for certain variables. While we applied imputation
methods to handle missing data, these approaches might introduce
bias or reduce the accuracy of the model. Advanced techniques for
handling missing data, such as multiple imputation or the use of robust
machine learning algorithms that can better manage missingness,
should be explored in future work. Fourth, the study primarily
relied on a limited set of data processing and machine learning
methods. Exploring a wider array of techniques, including advanced
preprocessing methods, feature selection techniques, and different
machine learning algorithms, could potentially yield better model
performance. Implementing and comparing various approaches can
help identify the most effective strategies for building robust predictive
models. Finally, continuous validation and constant adjustments are
essential to ensure that the model remains relevant and accurate over
time. The healthcare environment is dynamic, and the patterns
observed in historical data may change. Regular updates to the
model with new data, as well as validation in different clinical
settings, are necessary to adapt to evolving decision-making needs.
In summary, while our study provides valuable insights, addressing
these limitations through future research will be critical to improving
the model’s validity, reliability, and generalizability. This ongoing effort
will help ensure that the model can effectively support clinical decision-
making in diverse healthcare scenarios.

5 Conclusion

In conclusion, the prediction model for the effectiveness and
safety of statins established in this study has good prediction
performance (AUC > 0.85), while the construction of the
prediction-based platform has good clinical application value to
assist clinical decision-making and promote rational drug use. In the
future, more in-depth studies are needed to promote the
popularization and wider application of the model.
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