
The role of metal ions in the
occurrence, progression, drug
resistance, and biological
characteristics of gastric cancer

Pengtuo Xiao1, Changfeng Li1*, Yuanda Liu1, Yan Gao2,
Xiaojing Liang2, Chang Liu1 and Wei Yang2*
1Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China,
2Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China

Metal ions exert pivotal functionswithin the human body, encompassing essential
roles in upholding cell structure, gene expression regulation, and catalytic
enzyme activity. Additionally, they significantly influence various pathways
implicated in divergent mechanisms of cell death. Among the prevailing
malignant tumors of the digestive tract worldwide, gastric cancer stands
prominent, exhibiting persistent high mortality rates. A compelling body of
evidence reveals conspicuous ion irregularities in tumor tissues, encompassing
gastric cancer. Notably, metal ions have been observed to elicit distinct
contributions to the progression, drug resistance, and biological attributes of
gastric cancer. This review consolidates pertinent literature on the involvement of
metal ions in the etiology and advancement of gastric cancer. Particular attention
is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn,
elucidating their roles in the initiation and progression of gastric cancer, cellular
demise processes, drug resistance phenomena, and therapeutic approaches.

KEYWORDS

metal ion, gastric cancer, calcicoptosis, ferroptosis, cuproptosis, drug resistance

1 Metal ion: a weight on the scale of health
and disease

Gastric cancer, ranking fifth in incidence and third inmortality among all cancers, poses
a significant global health burden, causing approximately 800,000 deaths annually (Sung
et al., 2021). Notably, variations in gastric cancer incidence are observed across populations,
with the highest rates documented in East Asian populations. Chronic infection with the
bacterium H. pylori (Helicobacter pylori) stands as the principal risk factor for gastric
cancer, accounting for an estimated 90% of cases (Suzuki et al., 2009), while other risk
factors include diet, smoking, and excessive alcohol consumption (Machlowska et al., 2020).
Approaches to gastric cancer treatment encompass a range of options. Surgical resection
entails the excision of the cancerous region of the stomach along with adjacent lymph nodes
and tissues (curative gastrectomy). Furthermore, therapeutic strategies encompass
intraluminal stent placement, intraluminal laser therapy, chemotherapy, radiotherapy,
and targeted therapy (Petrillo and Smyth, 2020). Nevertheless, these treatment
modalities are not without limitations. A retrospective study conducted in Japan
involving 118,367 gastric cancer patients who underwent surgical treatment revealed a
5-year survival rate of 71.1% (Katai et al., 2018). Although neoadjuvant chemotherapy has
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shown promise in enhancing the R0 resection rate and reducing
tumor staging, it does not confer a significant advantage in terms of
long-term survival rates (Mirza et al., 2013). Immunotherapy
primarily serves as a salvage treatment for patients who are
ineligible for surgery. While it has demonstrated effectiveness in
improving 3-year survival rates, overall survival rates remain
relatively low (Boku et al., 2021). Non-surgical approaches to
tumor treatment aim to induce apoptosis or necrosis of tumor
cells. Unfortunately, tumor cells exhibit significant resistance to
these processes, which is believed to be associated with the
accumulation of metal ions within the tumor microenvironment,
as suggested by current research.

Multiple metal ions found within the human body exhibit
specific functions in preserving cellular structure, regulating gene
expression, and catalyzing enzymatic activity. These ions also
participate in modulating relevant pathways during different
forms of cell death. Recent research indicates the presence of
numerous ion irregularities within tumor tissues, which are
closely associated with the malignant characteristics of tumors.
Metal ions exert influence over cellular processes such as
proliferation, apoptosis, migration, differentiation, and
angiogenesis. Among these processes, extensive investigations
have been conducted to understand the regulatory role of ions in
cell death. Cell death is of paramount importance for the organism
and encompasses well-established pathways like apoptosis (D’arcy,
2019), necroptosis (Yu et al., 2021), autophagy (Mizushima and
Komatsu, 2011), as well as newly discovered pathways such as
ferroptosis (Li et al., 2020) and cuproptosis (Tsvetkov et al.,
2022), all demonstrating the involvement of metal ions. During
various stress responses, cell death can occur through one or
multiple forms, and the loss of control over single or mixed
types of cell death can result in the development of severe
diseases, including cancer. The relationship between metal ions
and cancer has gained increasing attention in recent years, with
both essential elements (e.g., potassium, sodium, calcium, and
magnesium) and trace elements (e.g., iron, copper, zinc, nickel,
and cobalt) shown to exert varying degrees of influence on different
types of cancer.

Currently, metal ions have a significant impact on inducing cell
death, including calcium ion-mediated mitochondrial death, iron
ion-mediated ferroptosis, and copper ion-related cuproptosis.
Calcium ion-related mitochondrial death represents the classical
caspase-dependent mitochondrial apoptotic pathway (Jeong and
Seol, 2008). Notably, the development of BH3-mimetic drugs
targeting the mitochondrial apoptotic pathway has exhibited
substantial progress in the treatment of various cancers
(Diepstraten et al., 2022). Ferroptosis is a novel form of cell
death characterized by iron-dependent accumulation of lipid
peroxides. It is primarily induced by iron overload and reactive
oxygen species-dependent lipid peroxidation (Li et al., 2020).
Currently, research on ferroptosis in tumors mainly focuses on
eliminating residual or drug-resistant cancer cells, which may
provide new avenues for anti-tumor therapy (Mou et al., 2019).
Cuproptosis, a recently discovered form of cell death associated with
copper ions, is triggered by the disruption of copper ion
homeostasis. Copper death occurs through the direct binding of
copper with lipid components of the tricarboxylic acid cycle,
resulting in protein toxic stress and subsequent loss of iron-sulfur

proteins, ultimately leading to cell death. Moreover, the imbalance of
Cu + homeostasis leads to the loss of intracellular iron-sulfur
proteins and elevated expression levels of HSP70, further
inducing protein toxic stress. These two pathways collectively
contribute to cell death mediated by copper ions (Tsvetkov
et al., 2022).

The principal objective of this study entails conducting an
extensive literature review on the role of metal ions in the
development and progression of gastric cancer. Specifically, this
investigation aims to explore the effects of various metal ions, such
as sodium (Na+), potassium (K+), magnesium (Mg2+), calcium
(Ca2+), iron (Fe2+,Fe3+), copper (Cu2+), zinc (Zn2+), manganese
(Mn2+), cobalt (Co2+), chromium (Cr3+), and nickel (Ni2+), in
relation to gastric cancer development, cellular apoptosis, and
therapeutic interventions (see Figure 1).

2 Unveiling the impact of metal ions on
gastric cancer

2.1 Sodium

Sodium (Na+), an essential ion for maintaining physiological
homeostasis, has been implicated in the etiology and progression of
gastric cancer, as evidenced by numerous investigations.
Cumulatively, heightened sodium intake has been linked to an
augmented risk of gastric cancer. Epplein et al. (2014) examined
the association between dietary sodium intake and the susceptibility
to Helicobacter pylori-related gastric cancer, revealing a noteworthy
increase in the risk of gastric cancer when sodium intake surpassed
3,506 mg/day in the presence of H. pylori infection. Conversely, in
the absence of H. pylori infection, excessive sodium intake alone did
not significantly contribute to gastric cancer development. Sufficient

FIGURE 1
The role of metal ions in the development, cell death and
treatment of gastric cancer.
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quantities of sodium ions activate the destructive activity ofH. pylori
on the gastric mucosa, resulting in ulceration, inflammation, and
ultimately the development of gastric cancer. Similarly, Salvador
et al. (2015) identified high sodium intake as a significant factor
contributing to gastric cancer. Their research indicated that when
salt consumption exceeded the recommended level (5 g/day) by
50%, an excessive amount of sodium ions caused damage to the
gastric mucosa, thereby becoming a high-risk factor for
gastric cancer.

Regarding its underlying mechanism, elevated sodium ion levels
have been found to heighten gastric acidity, thereby facilitating the
interaction between nitrite and amines and promoting the
formation of N-nitroso compounds (NOCs) (Jain et al., 2020),
which have been demonstrated to induce various cancers,
including gastric cancer (Kazmierczak-Siedlecka et al., 2022). In a
study conducted by Xu et al. (2015) involving 18,244 patients with
gastric cancer, it was observed that these patients exhibited elevated
sodium ion levels, and their endogenous NOC levels exhibited a
positive correlation with sodium ion levels. This suggests that
sodium creates a conducive environment for the formation of
NOCs, thereby promoting the occurrence of gastric
cancer (Figure 2).

In the realm of signaling pathways, gastric cancer cells
experience various modifications in sodium-related pathways.
Epithelial sodium channels (ENaC), which are transmembrane

proteins responsible for regulating sodium absorption, have
exhibited associations with the proliferation and metastasis of
multiple cancer types (Liu et al., 2016). Intracellular sodium
influx through ENaC has been identified as an intracellular signal
preceding cell migration (Kapoor et al., 2009), and the
depolarization induced by ENaC contributes to cellular
proliferation by impacting the cell cytoskeleton (Chifflet et al.,
2005). Moreover, ENaC functions as a mechanosensor, engaging
with the cell cytoskeleton and extracellular matrix, thereby
generating mechanically gated sodium influx and initiating
secondary signal transduction pathways (Wei et al., 2007).
Sodium-hydrogen exchangers (NHEs), proteins involved in
regulating intracellular pH through sodium and hydrogen ion
exchange, have shown overexpression of NHE1 in gastric cancer
cells. NHE1 promotes cell proliferation in gastric cancer by
modulating the G1/S and G2/M cell cycle transitions, while
upregulating positive cell cycle regulators like cyclin D1 and
cyclin B1 in gastric cancer cells. Furthermore, NHE1 stimulates
the proliferation, invasion, and migration of gastric cancer cells by
influencing the expression of epithelial-mesenchymal transition
(EMT) proteins (Xie et al., 2017a). Sodium-potassium ATPase
(Na+/K+ ATPase), an ion pump responsible for maintaining
cellular ion balance, has been investigated, revealing that
silencing ATP1B3 leads to reduced expression of
phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT),

FIGURE 2
Diagram of sodium ion channels in normal gastric tissue and NOCs induced by high sodium promoting gastric cancer.
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and phosphorylated AKT (p-AKT), ultimately inhibiting the
proliferation and migration of gastric cancer cells (Li et al.,
2017). Sodium-dependent glucose transporters (SGLTs), which
utilize sodium gradients to facilitate glucose transportation into
cells, have been found to exhibit high expression of the SGLT1 gene
in gastric cancer, correlating with a poorer prognosis for gastric
cancer patients. SGLT1 promotes gastric cancer cell proliferation
and glucose metabolism, exerting carcinogenic effects in gastric
cancer (Shi et al., 2022). Recent investigations have revealed
alterations in sodium ion channels during the onset and
progression of gastric cancer, particularly highlighting
significantly higher expression of the Nav1.7 channel in gastric
cancer tissues compared to normal gastric tissues. Abnormal
expression of the Nav1.7 sodium ion channel in gastric cancer
cells closely aligns with malignant severity (Xia et al., 2016).

The aforementioned research findings highlight the involvement
of sodium ions, fundamental for maintaining homeostasis, in
regulating the characteristics of tumor biology. Further
investigation into the relationship between sodium ion levels and
the diagnosis, progression, and prognosis of gastric cancer is
warranted to offer insights for therapeutic interventions based on
this fundamental examination.

2.2 Iron

Iron (Fe2+,Fe3+), an indispensable element found in numerous
enzymes such as hemoglobin, myoglobin, and cytochromes, plays a
vital role as a catalytic subunit, facilitating electron transfer and
mediating redox reactions (Philpott, 2012). While its significance is
undeniable, excessive iron poses a threat to organisms due to its
potent oxidizing ability, leading to the generation of toxic oxygen
species through the Fenton reaction. (Koppenol and Hider, 2019).

Rahman et al. (Rahman et al., 2020) conducted an investigation
exploring the association between iron and gastric cancer, revealing that
iron levels below 30 mg/L increase the susceptibility to H. pylori
infection, consequently influencing the incidence of gastric cancer
(Lahner et al., 2018). Moreover, a substantial reduction in gastric
acid secretion occurs when iron deficiency reaches 35% of the
recommended amount. This reduction exacerbates the progression of
gastric cancer, resulting in shortened survival rates for patients diagnosed
with the disease (Rahman et al., 2020). The research by Rahman
(Rahman et al., 2020) and Noto (Alizadeh and Raufman, 2022) iron
deficiency contributes to gastric carcinogenesis through the induction of
gastric inflammation, thereby promoting disease progression. However,
some scholars have also identified a significant direct correlation
between increased heme iron intake (>3.14 mg/day) and the risk of
distal gastric cancer (Epplein et al., 2014). Hence, the role of iron in the
onset and advancement of gastric cancer holds crucial significance, with
its intertwined relationship with H. pylori, albeit the precise underlying
mechanisms necessitating further elucidation. Studies indicate that Fe2+

creates a tumor-promoting microenvironment that facilitates
carcinogenesis, including gastric cancer (Gu et al., 2022). Liang et al.
further demonstrated the involvement of iron ions, elucidating one of
the mechanisms through which iron ions foster gastric cancer
development by generating reactive oxygen species (ROS), which
contribute to DNA damage and the activation of carcinogenic
signaling pathways (Liang et al., 2016).

Cellular iron death represents a form of cell death induced by the
accumulation of iron-dependent lipid peroxides. Primarily
attributed to iron overload and the buildup of reactive oxygen
species (ROS) (Figure 3), this phenomenon extensively affects
mitochondrial utilization, breakdown, and synthesis pathways.
During iron death, mitochondria display distinctive
characteristics, including heightened membrane density, reduced
volume, diminished or absent cristae, and ruptured outer
membranes in comparison to normal mitochondria (Jiang et al.,
2021). Remarkably, gastric cancer cells use diverse pathways to resist
iron death. For instance, cancer-associated fibroblasts (CAFs)
impede iron death by releasing extracellular vesicle miR-522,
which targets ALOX15 and impedes lipid ROS accumulation
(Zhang et al., 2020). Additionally, the Wnt/β-catenin signaling
pathway in gastric cancer cells reinforces resistance to iron death
by targeting GPX4 (Wang et al., 2022). The activation of the
MAT2A-ACSL3 pathway in gastric cancer cells also contributes
to cellular resistance against iron death (Ma et al., 2022).

Emerging investigations have elucidated the participation of
numerous functionally significant proteins in the modulation of
ferroptosis during the developmental stages of gastric cancer.
Notably, cysteine dioxygenase 1 (CDO1) assumes a pivotal role
in the mechanism of iron-dependent cell death provoked by Erastin
in gastric cancer cells. Suppression of CDO1 impedes Erastin-
triggered ferroptosis in gastric cancer cells by augmenting
intracellular levels of glutathione and the expression of GPX4,
thereby abating the generation of reactive oxygen species and
lipid peroxidation. Consequently, the process of iron-dependent
cell death in gastric cancer cells is impeded (Zhao et al., 2020). Akin
to CDO1, stearoyl-CoA desaturase 1 (SCD1), an enzyme associated
with the endoplasmic reticulum that is significantly upregulated in
gastric cancer tissues, is implicated in the conversion of saturated
fatty acids to monounsaturated fatty acids. Upregulation of
SCD1 correlates with the growth of gastric cancer cells and the
inhibition of ferroptosis, underscoring its potential as a prognostic
marker for gastric cancer (Wang et al., 2020). Furthermore,
microRNAs (miRNAs), a class of non-coding small RNA
molecules composed of 18–24 nucleotides, have been implicated
in the dysregulation of ferroptosis in gastric cancer cells through
their modulation of gene expression via interactions with the
3′untranslated region (3′UTR) of target genes (Lu et al., 2022).
For instance, the upregulation of miR103a3p, an oncogenic miRNA,
in gastric cancer is associated with an unfavorable prognosis in
patients (Hu et al., 2018). Niu et al. discovered that emodin-8-
glucoside (EG), a compound derived from Rheum palmatum,
induces ferroptosis in gastric cancer cells, suppressing their
proliferation and metastasis by alleviating the inhibitory effect of
miR103a3p on phospho-activated glutaminase 2 (GLS2) (Niu et al.,
2019). GLS2, a glutaminase modulator induced by p53, converts
glutamine to glutamate for synthesizing glutathione (Kang et al.,
2019), and miR103a3p regulates ferroptosis in gastric cancer cells by
altering intracellular glutathione levels. Furthermore, Mao et al.
discovered that the local anesthetic levobupivacaine induces
ferroptosis in gastric cancer cells through the miR4893p/
SLC7A11 axis, thereby inhibiting gastric cancer cell growth (Mao
et al., 2021). In terms of signaling pathways in gastric cancer cells,
iron ions are involved in the regulation of AKT/mTOR (Xu et al.,
2020), ERK (Geng and Wu, 2022), NF-κB (Yao et al., 2021), STAT3
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(Zuo et al., 2018), Wnt (Wang et al., 2022), and other pathways,
indicating their significant impact on the occurrence and
progression of gastric cancer through activation or inhibition of
these pathways. Regarding the mechanisms of iron entry into gastric
cancer cells, transferrin receptor (TfR) expression does not differ
significantly from normal gastric tissue (Dong et al., 2012), but
recent studies suggest that TfR could be a novel prognostic marker
and therapeutic target (Yue et al., 2012).

In the context of investigating gastric cancer drug resistance,
research has demonstrated that the upregulation of the KEAP1/
NRF2 signaling pathway significantly diminishes the sensitivity of
gastric cancer cells to fluorouracil (5-FU) and oxaliplatin (Zhou
et al., 2023). Moreover, the KEAP1/NRF2 pathway exhibits a close
association with ferroptosis. For instance, the knockout of latent
transforming growth factor-beta binding protein 2 (LTBP2)
augments ferroptosis in gastric cancer cells via the KEAP1/
NRF2 pathway (Wang et al., 2022), while Xiaojian Decoction, a
traditional Chinese medicine, can alleviate gastric mucosal injury by
suppressing ferroptosis through the activation of the Keap1/
Nrf2 signaling pathway in normal gastric tissue (Chen et al.,
2022). Additionally, downregulation of the negative regulatory
axis involving stat3 in ferroptosis can reduce the resistance of
typical chemotherapeutic drugs such as 5-FU (Ouyang et al.,
2022). Furthermore, ATF3 has been found to induce ferroptosis
and enhance sensitivity to cisplatin in GC cells by blocking Nrf2/
Keap1/xCT signaling (Fu et al., 2021).

In the treatment of gastric cancer, resistance to cisplatin and
paclitaxel has become increasingly severe in GC patients (Zhai et al.,
2019), and ferroptosis inducers may help overcome this resistance.
Studies have indicated that blocking lipid reactive oxygen species
(ROS) mediated by cancer-associated fibroblast exosomes leads to
increased levels of ferroptosis in cancer cells, thus enhancing their
sensitivity to chemotherapy (Zhang et al., 2020). Another potential
therapeutic target for gastric cancer treatment is the GCN2-eIF2α-
ATF4-xCT pathway, which is activated by ROS and constitutes a
signaling cascade that amplifies resistance to cisplatin via the
induction of mitochondrial dysfunction (Wang et al., 2016).
Moreover, modulation of ROS levels represents a novel
therapeutic strategy since ROS can disrupt cellular oxidative
environments and induce cell death. Peroxiredoxin 2, an
antioxidant enzyme, significantly sensitizes AGS and SNU-1 cells
to cisplatin treatment by regulating ROS levels (Dharmaraja, 2017).
Regulating ferroptosis may thus serve as a practical strategy for
targeting drug-resistant tumor cells (Zhang et al., 2021) given that
chronic and excessive ROS levels contribute to drug resistance (Xu
et al., 2020).

2.3 Copper

Copper (Cu2+) represents an essential elemental component
ubiquitous in nearly all living organisms and assumes the role of

FIGURE 3
Diagram of the relationship between lipid peroxidation and ferroptosis. The process of lipid peroxidation in cells is mainly catalyzed by the lipid
peroxidation process catalyzed by fatty acid enzymes and the Fenton reaction induced by free iron ions. At the same time, the clearance of lipid
peroxidation in cells mainly relies on the action of glutathione peroxidase 4 (GPX4).
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a cofactor for crucial metabolic enzymes that orchestrate various
physiological processes. However, maintaining precise copper levels
proves vital for sustaining normal biochemical reactions (Scheiber
et al., 2013). Extensive research has focused on unraveling the
impact of copper on cancer progression due to its potential
involvement in the activation of cell proliferation-related
signaling pathways. Notably, cancer cells, including those in
gastric tissue, generally exhibit heightened copper requirements
in comparison to their normal cell counterparts (Denoyer et al.,
2015). Furthermore, serum copper levels have demonstrated
correlations with tumor staging and disease progression across
multiple cancer types, including gastrointestinal malignancies
(Diez et al., 1989; Gupta et al., 1993).

Copper emerges as a pivotal factor in cellular signal
transduction, contributing to the development and progression of
cancers such as gastric cancer by stimulating cell proliferation,
angiogenesis, and metastasis. Experimental evidence involving
mice indicates that direct administration of copper promotes the
growth of tumors such as pancreatic, lung, and breast cancer (Ishida
et al., 2013; Skrajnowska et al., 2013; Brady et al., 2014).
Mechanistically, copper can amplify the generation of reactive
oxygen species (ROS), which closely associates with cellular
malignant transformation. Additionally, the copper transporter
CTR1-dependent import mechanism triggers the mitogen-
activated protein kinase (MAPK) signaling cascade (Turski et al.,
2012). Copper forms direct high-affinity bonds with MEK1, thereby
fostering tumor growth via the activation of downstream ERK1/
2 phosphorylation (Brady et al., 2017). Furthermore, copper acts as a
fundamental regulator of the autophagy kinase ULK1/2, thereby
facilitating carcinogenesis (Tsang et al., 2020). The promotion of
vascular growth constitutes a critical aspect of tumor progression,
and investigations by McAuslan (Mcauslan and Reilly, 1980) have
established the ability of copper to facilitate blood vessel formation.
Silencing the expression of CTR1 in endothelial cells impedes copper
entry, consequently reducing cell migration and ultimately
attenuating angiogenesis (Narayanan et al., 2013). Copper is also
closely associated with cancer metastasis, as it can activate
metastasis-related enzymes and signaling cascades. Copper
enzyme LOX is involved in tumor cell invasion (Erler et al.,
2009) and metastasis and has been identified as an important
factor in breast cancer metastasis (Cox et al., 2015). Additionally,
copper impacts PD-L1, an immune checkpoint inhibitor implicated
in cancer immune evasion. Studies have highlighted that depleting
copper facilitates the degradation of PD-L1, inhibiting tumor growth
and enhancing survival rates in animal models (Voli et al., 2020).

Regarding the resistance of cancer cells, including gastric cancer
cells, to platinum-based chemotherapy, ongoing research suggests
that the interaction between the copper ion transporter ATP7B and
cisplatin disrupts copper homeostasis, thereby augmenting
resistance to platinum-based drugs (Leonhardt et al., 2009).

In the realm of cancer treatment, the disruption of copper
homeostasis in tumor cells, coupled with the substantial role of
copper in promoting cancer progression, has spurred the
development of several copper coordination compounds for
anticancer therapy. These compounds can be broadly categorized
into two major groups: copper chelators that diminish copper
bioavailability (Figure 4A) and copper ion carriers that facilitate
copper delivery into cells, elevating intracellular copper levels

(Figure 4B). Prominent copper chelators employed in current
research encompass TTM, trientine, and d-penicillamine, among
others, with their anticancer activities substantiated through diverse
animal models and clinical trials (Zagzag et al., 1990; Yoshii et al.,
2001). Nevertheless, research targeting gastric cancer in particular
remains scarce, thus providing an avenue worthy of investigation. As
for copper ion carrier drugs, elesclomol, bis(thiosemicarbazone)
analogs, and disulfiram (DSF) have exhibited heightened
intracellular copper levels and displayed anticancer activity. The
cytotoxic effects of ion carriers can be attributed to their capacity to
intensify ROS production and inhibit proteasomes (Denoyer et al.,
2016). Specifically, the combination of DSF and copper (DSF/Cu)
demonstrates promise in overcoming drug resistance during gastric
cancer chemotherapy. DSF/Cu sensitizes tumor cells to cisplatin by
targeting aldehyde dehydrogenase (ALDH+) (Macdonagh et al.,
2017), impedes ATP hydrolysis to prevent drug efflux (Shukla
et al., 2004), enhances the sensitivity of tumor cells to
temozolomide by inhibiting proteasomes (Lun et al., 2016), and
reduces nuclear factor κB (NF-kB) activity to delay IkB degradation,
thereby increasing cell sensitivity to gemcitabine (Guo et al., 2010).
DSF/Cu also reverses resistance to tamoxifen by amplifying the
expression and phosphorylation of c-Jun NH2-terminal kinase
(JNK) (Xu et al., 2011). These findings offer novel insights into
the diagnosis and treatment of gastric cancer through
chemotherapy. Elesclomol, a pioneering copper ion carrier,
effectively transports copper to mitochondria, culminating in
escalated oxidative stress and cell death. Beyond the cell,
elesclomol forms a stable 1:1 complex with Cu(II) (Wu et al.,
2011). Subsequently, elesclomol freely shuttles between
extracellular and intracellular environments, facilitating the
delivery of copper ions into cells. Distinguishing itself from other
copper ion carriers like DSF, elesclomol selectively enhances copper
levels in mitochondria. At equivalent concentrations, elesclomol
induces a significantly greater elevation of intracellular copper ions
compared to DSF (Nagai et al., 2012). Moreover, treatment with
elesclomol has been shown to degrade copper efflux protein ATPase
1 (ATP7A) in colon cancer cells, responsible for mediating copper
efflux (Fukai et al., 2018). The degradation of ATP7A by elesclomol
further enriches copper ions within cancer cell mitochondria (Gao
et al., 2021). Elesclomol has demonstrated the potential to enhance
the therapeutic efficacy of paclitaxel in patients with refractory solid
tumors (O’Day et al., 2013). Thus, exploring the application of
Elesclomol in combination with copper for cancer treatment,
particularly in gastric cancer, represents a promising avenue for
future research.

2.4 Potassium

Potassium ions (K+) are vital cellular ions that play crucial roles
in maintaining intracellular and extracellular fluid ion balance, as
well as regulating muscle and nervous system function and cellular
signaling processes (Palmer and Clegg, 2016). In the context of
gastric cancer, potassium ions have been identified to have a
significant impact. Existing research supports the notion that
higher levels of potassium intake, ranging from 2.5 to 2.8 g/d, are
associated with a reduced risk of gastric cancer (Choi et al., 2022;
Tran et al., 2022). In terms of signaling pathways related to

Frontiers in Pharmacology frontiersin.org06

Xiao et al. 10.3389/fphar.2024.1333543

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1333543


potassium ions, monovalent cations like K+ primarily modulate
membrane potential and indirectly influence other ion signaling
pathways, in contrast to divalent cations such as Ca2+ and Mn2+

which act as second messengers (Stone et al., 2016).

Numerous potassium channels have been identified as
important contributors to the development and progression of
gastric cancer (refer to Table 1) (Anderson et al., 2019). In the
context of drug resistance, Kv1.5 expression is widespread among

FIGURE 4
(A) Cu chelating agents reduce Cu bioavailability; (B) Cu ionophores deliver Cu into cells to increase intracellular Cu levels. Excessive Cu induces
oligomerization of Lipoyl Acyltransferase (DLAT). The oligomerization of DLAT leads to cell toxicity and induces cell death. At the same time, FDX1 reduces
Cu2+ to more toxic Cu+, ultimately leading to inactivation of Fe-S proteins. Together, they induce protein toxicity stress, ultimately resulting in cell death.
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various gastric cancer cells, including SGC7901. Upregulation of
Kv1.5 leads to increased K (+) current density in gastric cancer cells,
resulting in enhanced sensitivity to different chemotherapeutic
drugs. Conversely, downregulation of Kv1.5 promotes drug
resistance in gastric cancer cells (Han et al., 2007). In vivo
studies have shown that knockout of Kir2.2 suppresses tumor cell
proliferation and metastasis by upregulating the tumor suppressor
p27, increasing the accumulation of ROS, and downregulating cyclin
A, cdc2, and E2F1. Among the Kv channel family, Kv4.1, Kv7.1
(KCNQ1), and Kv1.5 have been identified as participants in
promoting the proliferation and progression of gastric cancer
cells (Lee et al., 2000; Arcangeli et al., 2009; Kim et al., 2010).
Furthermore, downregulation of the KCNQ1 subunit KCNE2 in
gastric cancer inhibits cell proliferation and tumor occurrence in the
stomach (Yanglin et al., 2007). Additionally, although Kv11.1 is
undetectable in normal gastric tissue, it is detected in GC tissue
(Ding et al., 2010) and has been shown to promote GC proliferation
and tumor occurrence both in vitro and in vivo, regulating the
secretion of vascular endothelial growth factor 1 (VEGF-1) through
the AKT-dependent pathway (Shao et al., 2008; Crociani et al.,
2014). Moreover, Kv11.1 has been identified as crucial for inducing
apoptosis in gastric cancer cells mediated by cisplatin, suggesting its
potential as a novel target for cisplatin chemotherapy (Zhang
et al., 2012).

Potassium ions play a crucial role as essential metal ions in the
human body. Adequate intake of potassium (K) has been shown to
have a positive impact on the prevention of gastric cancer. Extensive
research has focused on studying the structure and function of
potassium ion channels, revealing significant alterations in certain
channels during the occurrence and progression of gastric cancer.
These channels hold promise as potential targets for the treatment of
gastric cancer.

2.5 Zinc

Zinc (Zn2+) is a constituent element of the human body, with a
total content ranging from 2 to 3 g. Daily exchange of approximately
0.1% occurs, and the majority (around 90%) is localized in muscles
and bones. The presence of zinc is crucial for the activity or tertiary
structure formation of over 10% of human genes, including
transcription factors, receptors, kinases, ligases, and enzymes.
These proteins, encompassing more than three thousand in
number, require zinc binding to facilitate their catalytic functions
(Elitt et al., 2019).

In the context of gastric cancer, Yuan’s (Yuan et al., 2016)
research findings propose a potential link between alterations in the
Cd/Zn ratio and the development of gastric cancer. These alterations
may contribute to elevated error rates in DNA replication and
ineffective DNA repair, potentially promoting carcinogenesis.
Additionally, Namikawa et al. (2021) discovered a noteworthy
correlation between low levels of zinc and gastric cancer, with a
significant portion (68.8%) of gastric cancer patients exhibiting
serum zinc deficiency (<80 μg/Dl). Notably, zinc deficiency has
been associated with unfavorable prognosis in gastric cancer
patients. A pioneering study conducted in Korea demonstrated
that sufficient zinc intake significantly prolongs the survival of
gastric cancer patients. The insufficiency of zinc intake can result
in reduced immune function, compromised DNA damage response,
and repair capabilities (Kwak et al., 2022). While previous research
suggests the involvement of zinc in the regulation of pathways such
as Wnt/β-catenin, NF-κB, and PI3K/Akt, its specific role in gastric
cancer cells remains unclear (Didonato et al., 2012; Tian et al., 2020;
Liang et al., 2022).

Due to its considerable cytotoxicity at high concentrations,
cellular zinc levels are stringently regulated. Zinc does not pass

TABLE 1 Gene expression of K+ channel on gastric cancer.

Gene name Cell
localization

Physiological function Pathophysiological conditions
caused by dysfunction in GC

Ref.

KCNQ1(KV7.1) Apical KCNQ1 participates in K+ recycling
and stimulates gastric acid secretion;

Pumps K+ into the lumen

KCNQ1 is implicated in GC progression Bielanska et al. (2009), Zhang et al.
(2013)

KCNA5/Kv1.5 Apical Pumps K+ into the lumen Expression upregulated; silencing in GC cells
inhibits proliferation; alters drug resistance

Lan et al. (2005), Han et al. (2007),
Arcangeli et al. (2009a)

KCND1/Kv4.1 Apical Pumps K+ into the lumen Expression upregulated Kim et al. (2010)

KCNE2/MiRP1 Apical KCNE2 participates in K+ recycling
and stimulates gastric acid secretion;

Pumps K+ into the lumen

Expression downregulated; deficiency promotes
tumor progression; knockout mice develop gastritis

cystic profundal and neoplasia, pyloric
polyadenomas; invasive adenocarcinomas;

upregulation of cyclin D1; downregulated in gastric
cancer tissues and cell lines; overexpression in cell
lines suppressed growth in soft agar and mouse

tumor xenografts

Yanglin et al. (2007), Roepke et al.
(2010), Kuwahara et al. (2013),

Abbott and Roepke (2016), Li et al.
(2016)

NKCC1/
SLC12A2

Basolateral NKCC1/SLC12A2 known as Na+-K+-
2Cl− cotransporter pumps Na+, K+, and

2Cl− into parietal cells

NKCC1 promotes proliferation, invasion and
migration in human GC cells via activation of the

MAPK-JNK/EMT signaling pathway

Wang et al. (2021)

KCNH2/hERG1/
Kv11.1

Apical Pumps K+ into the lumen Expression upregulated; stimulates angiogenesis by
promoting VEGF-A secretion via AKT-dependent
regulation of HIF1; promotes GC cell proliferation
and progression with positive in 69% of gastric
cancers; associated with poor patient prognosis

Arcangeli et al. (2009b), Ding et al.
(2010), Crociani et al. (2014), Lang
and Stournaras (2014), Arcangeli

and Becchetti (2017)

aGC: gastric cancer.
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freely through the cell membrane; instead, it is regulated by various
zinc permeation channels and transport proteins responsible for
cellular uptake and efflux (Levaot and Hershfinkel, 2018). These
transporters include influx and efflux transporters, while zinc can
also traverse the cell membrane through other ion channels.
Notably, Zn2+ can activate certain voltage-gated Ca2+ ion
channels permeable to zinc (Inoue et al., 2015). Disturbances in
the ZnT/SLC30A and ZIP/SLC39A families, which constitute major
groups of Zn2+ transporters, have been observed in gastrointestinal
cancer (Fukada and Kambe, 2011). In gastric cancer, the expression
levels of ZIP1, 2, 4, 6, 7, 8, 9, 11, 12, 13, and 14 zinc transport proteins
are notably elevated. Specifically, ZIP7, 11, and 14 expression levels
correlate positively with patient survival (Anderson et al., 2019).
However, the mechanisms underlying dysregulation of zinc
homeostasis and the impact of zinc transport protein expression
in cancer remain unclear. Existing research only provides insights
into the tissue-specific roles of zinc in different types of cancers. For
example, zinc transport proteins act as tumor suppressors in
prostate cancer but as oncogenes in breast cancer (Bhutia et al.,
2016; Takatani-Nakase, 2018). The specific role of zinc in
gastrointestinal cancers, including gastric cancer, is still
inadequately understood. Changes in intracellular zinc ion
concentrations can serve as second messengers for external
signals, including the activation of pathways such as mitogen-
activated protein kinase (MAPK), extracellular signal-regulated
kinase (ERK), and c-Jun N-terminal kinase (JNK). These
pathways play crucial roles in protein phosphorylation and the
regulation of fundamental cellular processes such as proliferation,
differentiation, and apoptosis (Bafaro et al., 2017; Levaot and
Hershfinkel, 2018). Consequently, zinc is considered a pivotal
signaling molecule in both normal cellular functions and
pathological conditions, including cancer. Nonetheless, the
precise mechanisms by which zinc signaling is transduced from
zinc transporters to downstream signaling pathways remain elusive.

The resistance of gastric cancer cells to drugs is closely associated
with the presence of zinc. Several zinc finger proteins have been
identified as contributors to drug resistance in gastric cancer cells.
ZFP64 overexpression, for instance, is associated with invasive
phenotypes and resistance to nab-paclitaxel. The ZFP64/GAL-
1 axis promotes the therapeutic effect of nab-paclitaxel and
counteracts the immunosuppressive microenvironment in gastric
cancer (Zhu et al., 2022). Similarly, overexpression of zinc finger
protein GLI1 induces drug resistance in gastric cancer cells by
binding to the AKT-mTOR pathway (Yao et al., 2019). The
regulatory role of MALAT1 in oxaliplatin (OXA) resistance in
gastric cancer cells is mediated by its interaction with
ZFP91 through miR-22-3p sponging (Zhang et al., 2020).
Additionally, zinc finger protein 139 (ZNF139) inhibits the
expression of multidrug resistance (MDR)-related genes in gastric
cancer cells, resulting in multidrug resistance (Tan et al., 2018).
Notably, zinc, when employed as a nanomaterial, demonstrates
advantageous effects in overcoming drug resistance in gastric
cancer cells. For instance, zinc oxide nanoparticles (ZnO-NP)
alleviate drug resistance in gastric cancer cells by inhibiting
autophagy (Miao et al., 2021). Noteworthy findings reveal that
SGC7901/DDP cells, which are resistant to DDP, exhibit
increased autophagy levels compared to SGC7901 cells.
Treatment with ZnO-NP (5 μg/mL) leads to decreased tumor

growth in SGC7901/DDP cells in nude mice, thereby indicating a
reduction in tumor growth of chemotherapy-resistant gastric cancer
cells (Figure 5A). Furthermore, TP-ZnO-NP, another novel
nanomaterial, exhibits significant anti-proliferative and anti-
cancer activity against gastric cancer cells (Bozgeyik et al., 2023).
TP-ZnO-NP effectively inhibits the viability of gastric cancer cells in
a dose-dependent manner after a 24-h incubation period. Colony
formation assays further support the interference of TP-ZnO-NP
with the colony-forming ability of HCG-27 cells in a dose-
dependent manner. Moreover, TP-ZnO-NP significantly
suppresses the migratory capacity of HCG-27 gastric cancer cells
in a time- and dose-dependent manner (Figure 5B).

Limited research has been conducted regarding the development
of drugs that specifically target various zinc transporters for the
treatment of gastric cancer. However, immediate therapeutic effects
have been observed through zinc supplementation in diseases
related to zinc deficiency, including cancer. The efficacy of zinc
supplementation has been demonstrated in the treatment of
inflammatory bowel disease and may be beneficial for zinc-
deficient cancers (Franklin et al., 2014). Additionally, zinc finger
proteins may play a crucial role in enhancing the adjunctive
chemotherapy process for gastric cancer (Zhu et al., 2022).

2.6 Calcium

The role of calcium (Ca2+) is multifaceted in gastric cancer,
acting as a ubiquitous second messenger and a signaling molecule
involved in various cellular processes such as cell cycle control,
apoptosis, and migration. Calcium ions exhibit the highest
concentration gradient among metal ions in the body, with
uneven subcellular distribution. Most intracellular calcium is
stored in the extracellular space and the endoplasmic reticulum,
with concentrations ranging from 0.3 to 2 mM (Prakriya, 2020). In
the event of endoplasmic reticulum stress, calcium is released into
the cytoplasm, activating calcium-dependent proteases in proximity
to the endoplasmic reticulum. These proteases can impact Caspase-
12, leading to its activation and subsequent release into the
cytoplasm, thereby inducing apoptosis. Additionally, calcium can
induce apoptosis by activating calcium/calmodulin-dependent
protein phosphatase, which triggers the dephosphorylation of the
pro-apoptotic protein Bad, consequently resulting in the release of
cytochrome C (Brenner and Mak, 2009). However, gastric cancer
cells exhibit resistance to calcium-induced apoptosis via the
mitochondrial pathway. Mechanisms underlying this resistance
involve the overexpression of Cell Retinoic Acid Binding Protein
2 (CRABP2), which promotes the binding of BAX and PARKIN in
gastric cancer cells, thereby facilitating ubiquitin-mediated BAX
degradation and weakening of mitochondrial apoptosis (Tang
et al., 2022). Moreover, Ajuba overexpression in gastric cancer
regulates mitochondrial membrane potential through the YAP/
Bcl-xL/GLUT1 pathway, offering resistance against apoptosis (Li
et al., 2019). Additionally, MUC20 in gastric cancer cells plays a
significant role in maintaining mitochondrial homeostasis (Fu
et al., 2022).

Calcium ions demonstrate contradictory roles in gastric cancer.
Some studies suggest that calcium intake may have a promoting
effect on gastric cancer. Xie et al. (2017b) found that calcium
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enhances the expression and function of the calcium-sensing
receptor (CaSR), potentially promoting the effects of GC.
Similarly, Wang et al. (2020a) demonstrated that elevated
calcium levels of 0.1–2 mM in gastric cancer cells promote tumor
growth, proliferation, and metastasis through the AKT/β-catenin
pathway. Conversely, other studies indicate that calcium intake can
reduce the risk of gastric cancer. Dai et al. (2013) observed that a
daily calcium intake of over 600 mg reduces the risk of gastric
adenocarcinoma, while Shah et al. (2020) reported that calcium
intake exceeding 881.3 mg/day can lower cancer-related mortality.
Though the above research might appear contradictory, Dai, Shah
and their teams conducted epidemiological studies on a large
population while Xie, Wang and their groups explored the effects
of calcium ions on gastric cancer in vitro. Given that the conversion
and distribution of calcium ions within the human body are
extremely complex, this implies that the expression of calcium
ingested from diet or supplements differs from that of calcium
generated through chemical reactions surrounding gastric cancer
cells. Patergnani et al. (2020) altered Ca2+ signaling can disrupt
calcium dynamics, affecting various aspects of cellular function.
Excessive Ca2+ overload can lead to mitochondrial swelling, rupture,
and cell death, contributing to widespread apoptosis and ultimately
carcinogenesis. Proliferation and cell growth, which may lead to
various types of cancer including gastric cancer, are among the

cellular functions affected. Furthermore, the accumulation of
calcium ions (Ca2+) in the cytoplasm can cause cellular calcium
overload, inducing cell death (Bai et al., 2022).

While the precise role of calcium ions in gastric cancer
development requires further elucidation, several mechanisms
have been proposed to explain their potential involvement. TRP
channels, consisting of transmembrane proteins, regulate ion
distribution between cells by forming gated pores as
homotetramers or heterotetramers. Notably, six TRP channels
(TRPC6, TRPM2, TRPM5, TRPM7, TRPV4, and TRPV6) have
been identified as crucial players in the growth and survival of
gastric cancer (Table 2) (Sterea et al., 2019). Cai et al. (2009) an
upregulation of TRPC6 expression in human gastric cancer tissue
and revealed that inhibiting TRPC6 significantly halts the cell cycle
at G2/M phase, resulting in a notable reduction in cell growth.
TRPC6 also plays a critical role in the epithelial-to-mesenchymal
transition (EMT) of gastric cancer through regulation of the Ras/
Raf/ERK1/2 signaling pathway (Ge et al., 2018). Almasi et al. (2019)
confirmed the significance of TRPM2 in gastric cancer by
downregulating its expression using targeted TRPM2 shRNA in
gastric cancer cell lines, leading to inhibited invasion and reduced
cell survival rates. These findings were further supported by an in
vivo model using SCID mice, where the loss of TRPM2 resulted in
decreased tumor growth, primarily mediated by the jnk-dependent

FIGURE 5
(A) ZnO-NP can reduce tumor growth of chemotherapy-resistant GC cells in vivo. Adopted from MIAO Y H, MAO L P, CAI X J, et al. Zinc oxide
nanoparticles reduce the chemoresistance of gastric cancer by inhibiting autophagy. World J Gastroenterol, 2021, 27 (25): 3,851-62; (B) TP-ZnO-NP has
significant anti-proliferation and anticancer activity on gastric cancer cells. TP-ZnO-NPs demonstrated better inhibition on the proliferation and colony
formation of gastric cancer cells compared with cisplatin. Adopted from BOZGEYIK I, EGE M, TEMIZ E, et al. Novel zinc oxide nanoparticles of
Teucrium polium suppress the malignant progression of gastric cancer cells through modulating apoptotic signaling pathways and epithelial to
mesenchymal transition. Gene, 2023, 853: 147091.
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and mTOR-independent autophagy pathway (Almasi et al., 2018).
TRPM2 expression levels showed a negative correlation with patient
survival rates (Almasi et al., 2019). Similarly, other studies have
found a correlation between high expression of TRPM5 and shorter
survival periods in gastric cancer patients (Maeda et al., 2017).
identified an upregulation of TRPM7 in many gastric cancer cell
lines and demonstrated that inhibiting TRPM7 significantly reduced
cell proliferation and increased apoptosis in gastric cancer cells Kim
et al. (2008). TRPV4 also plays a significant role in gastric cancer,
with studies confirming its upregulation in gastric cancer cells.
Activation of TRPV4 induces a substantial increase in
cytoplasmic Ca2+ levels through a large outward rectifying
current (Xie et al., 2017b). The functional role of TRPV4 in
gastric cancer cells is achieved via the activation of G protein-
coupled receptors (GPCRs) (Tang et al., 2019). Hediger (Peng et al.,
2000) found an upregulation of TRPV6 expression in gastric cancer
cells, and subsequently, demonstrated that capsaicin/TRPV6 can
induce cell death in gastric cancer cells through the Ca2+/p53/JNK
pathway Chow et al. (2007).

In the realm of gastric cancer research, the involvement of
calcium channels and calcium-binding proteins has garnered
significant attention. Notably, the histidine-rich calcium-binding
protein (HRC), a calcium-binding protein, has been observed to

modulate the Raf/MEK/ERK pathway through calcium (Ca) and
calmodulin (CaM) signaling, thereby impacting the epithelial-
mesenchymal transition (EMT) in gastric cancer (GC) cells
(Wang et al., 2022). Another calcium-binding protein, S100A14,
exhibits the ability to upregulate the expression of E-cadherin and
PGII, promoting differentiation in GC cells and inhibiting
metastasis (Zhu et al., 2017). Similarly, the calcium-binding
protein/Siah-1 interacting protein (CacyBP/SIP) has been found
to inhibit cell growth and invasion in gastric cancer cells by
activating β-catenin expression and Tcf/LEF transcription (Ning
et al., 2007).

Furthermore, the influence of calcium ions extends to the
acquisition of drug resistance in gastric cancer cells. Studies
indicate that overexpression of MUC20v2 in GC cells leads to
chemoresistance against cisplatin (CDDP) and paclitaxel (PTX),
with upregulated pathways related to intracellular calcium
regulation. This finding supports the notion that forced
expression of MUC20v2 in the cytoplasm of GC cells contributes
to the maintenance of mitochondrial calcium homeostasis and
mitochondrial membrane potential (MMP), thereby conferring
chemoresistance (Fu et al., 2022). Additionally, calcium ion
channels, such as TRPA1 and TRPC5, have been implicated in
drug resistance (Takahashi et al., 2018). TRPC5, involved in ATP-

TABLE 2 Therapeutical agents and changes in the expression or activity of some Ca2+ channels and pumps in gastric cancer.

Channel or pump Changes in cancer Activator Inhibitors Ref.

Function Name mRNA Protein Activity

Store Ca2+ channel IP3R3 upregulated upregulated — — Heparin, polyvinyl sulphate O’Rourke and
Feinstein (1990),
Takahashi et al.
(1994), Al et al.

(2003)

Voltage-gated
channels

CaV3.1
(T-type α1G)

downregulated — Expression
downregulated by

promoter
hypermethylation

— — Lafrenie et al.
(2017)

CACNA2D3 downregulated downregulated Expression
downregulated by

promoter
hypermethylation

— — Lastraioli et al.
(2015)

Transient receptor
potential channels

TRPC6 upregulated upregulated — — Pyrazolo [1,5-a]pyrimidine Cai et al. (2009),
Brabletz et al.

(2018), Ding et al.
(2018), Ge et al.

(2018)

TRPM2 upregulated upregulated Suppression reduced
proliferation of gastric
cancer cells, increased

autophagy and sensitized
cells to paxlitaxel and

doxorubicin

— N-(p-amylcinnamoyl)
anthranilic acid, 2-

aminoethoxydiphenyl borate,
clotrimazole

Jiang et al. (2010),
Xia et al. (2017),
Almasi et al.

(2018), Lin et al.
(2018)

TRPM7 High-
expression

High-
expression

Mg is required for GC
survival; Inhibitors
induced cell death

Quercetin, ginsenoside Rd,
ginsenoside Rg3

Kim et al. (2011);
Kim (2013), Kim
et al. (2014), Litan
and Langhans

(2015)

TRPV1 downregulated downregulated — Evodiamine — Gao et al. (2020),
Liu et al. (2022)

“—”: no data or no available pharmacological agents; TRPC, transient receptor potential canonical.
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binding cassette subfamily B member 1 (ABCB1)-mediated
overexpression of ABCB and cyclin D1, induces nuclear β-
catenin accumulation, leading to resistance of gastrointestinal
tumor cells to 5-Fluorouracil (5-FU) (Campbell et al., 2018).
Increased expression of YY1 has been associated with an anti-
apoptotic phenotype in tumor cells (Zhu et al., 2011). Studies
suggest that calcium channel blockers, particularly lercanidipine
and amlodipine, effectively inhibit YY1. Lercanidipine and
amlodipine can be used for targeted and combination therapy in
gastric cancer, especially to enhance the efficacy of amphotericin B
(Panneerpandian et al., 2021).

In conclusion, the role of calcium ions in gastric cancer is nuanced
yet substantial, manifesting through their ionic state, calcium channels,
and calcium-binding proteins. The specific impact on gastric cancer
development is contingent on their concentration and expression levels.
Ongoing investigations are centered on exploring drug interventions
that target these pathways, such as the use of pyrazolo [1,5-a]
pyrimidine as a TRPC6 antagonist. In vitro experiments have
demonstrated its efficacy in inhibiting gastric cancer cell
proliferation and migration (Ding et al., 2018), as well as impeding
tumor progression in animal models. Moreover, exploring whether
TRPC6 antagonists can enhance the effectiveness of common gastric
cancer chemotherapeutic agents, including paclitaxel and cisplatin,
holds promise (Almasi et al., 2018). Inhibition of TRPM7 has also
shown promising results, as it significantly reduces gastric cancer cell
proliferation and promotes apoptosis (Kim et al., 2008). Multiple
TRPM7 inhibitors have been developed and applied in animal
models (Kim et al., 2011; Kim, 2013; Kim et al., 2014), positioning
TRPM7 as a promising target for gastric cancer treatment.
Furthermore, the potential of inorganic nanomaterials involving
calcium ions in tumor therapy is an exciting prospect. Inspired by
calcium overload, researchers have successfully synthesized ultra-small
SH-CaO2 nanoparticles with a diameter below 5 nm, coatedwith a layer
of sodium hyaluronate. In the tumor microenvironment, the protective
layer undergoes degradation by hyaluronidase, triggering the rapid
decomposition of exposed CaO2 and generating abundant H2O2 and
free Ca2+ ions. The accumulation of H2O2 induces oxidative stress,
impairing calcium ion channel function and prolonging intracellular
retention of Ca2+ in tumor cells. Consequently, persistent cellular
calcium overload disrupts tumor cell metabolism and functionality,
ultimately leading to cell death. Furthermore, localized accumulation of
Ca2+ promotes calcification in the tumor lesion area (Zhang et al., 2019).
These innovative ion interference therapies (IITs) present promising
avenues for the clinical application of inorganic nanomaterials in tumor
treatment, as depicted in Figure 6.

2.7 Magnesium

Magnesium (Mg2+), the most abundant intracellular divalent
cation in the human body, plays a pivotal role in regulating a
multitude of biochemical reactions that impact crucial
physiological functions such as nucleic acid metabolism, protein
synthesis, and energy production (Jomova et al., 2022). Considering
the gastrointestinal effects of magnesium in conjunction with
calcium levels is essential. Dai et al. (2013) reported that the
recommended calcium-to-magnesium ratio in the diet should be
at least 2.63, while Shah et al. (2020) indicated that increasing

magnesium intake to >358.9 mg/day in males can reduce the risk
of non-cardia gastric adenocarcinoma (NCGA) by 22%–27%.
Studies have demonstrated that magnesium ions can modulate
several classical pathways, including the Akt/mTOR pathway
(Qiao et al., 2019), Wnt/β-catenin pathway (Montes De Oca
et al., 2014), and NF-kB pathway (Chen et al., 2022), which are
implicated in the development of various cancers, including gastric
cancer. Therefore, magnesium ions may play a significant role in
regulating the growth, survival, and differentiation of gastric cancer
cells, making them a potential target for cancer treatment (Lin et al.,
2020). The expression of the classical magnesium ion channel
protein, TRPM7, has been observed in human gastric
adenocarcinoma (Zou et al., 2019), and inhibiting Mg2+ leads to
upregulation of TRPM7 expression (Sun et al., 2020) and subsequent
inhibition of gastric cancer cell growth and survival (Kim et al.,
2014). Similarly, magnesium transport protein SLC41A1 has been
shown to play important roles in cancers such as head and neck
cancer, breast cancer, and pancreatic cancer (Lin et al., 2015; Uddin
et al., 2018; Xie et al., 2019), but its role in gastric cancer remains
unexplored. In terms of cancer treatment, supplementing sufficient
magnesium may effectively reduce the risk of developing malignant
tumors such as bladder cancer, prostate cancer, and colorectal
cancer (Yang and Chiu, 1998; Chun-Yuh Yang et al., 2000;
Michaud et al., 2000). The mechanism by which it inhibits
tumors could be 1) through inhibiting oxidative stress and the
consequent oxidative DNA damage that could lead to mutations;
2) by suppressing DNA repair mechanisms to maintain genomic
stability (Anastassopoulou and Theophanides, 2002). Clinical
reports have demonstrated the analgesic-reducing effects of
intravenous magnesium injection (50 mg/kg) during endoscopic
submucosal dissection of gastric tumors (Kim et al., 2015).
However, the therapeutic effects of magnesium ions or
magnesium ion channels themselves on gastric cancer signaling
pathways are currently unsupported by evidence. These aspects hold
potential as novel therapeutic targets for gastric cancer treatment.

Magnesium is also associated with gastric cancer cell resistance.
Human mitochondrial Mrs2 protein (hsaMrs2p), a magnesium
transport protein in the inner mitochondrial membrane, is
significantly upregulated in multidrug-resistant (MDR) gastric
cancer cell lines (Zhao et al., 2002). Studies have shown that the
upregulation of hsaMrs2p regulates Mg2+ concentration by
downregulating p27 and upregulating cyclin D1, while also
inhibiting the release of mitochondrial cytochrome C, thereby
conferring multiple drug resistance to gastric cancer cells.

In conclusion, magnesium ions, in conjunction with calcium
ions, are involved in the occurrence of gastric cancer; however,
research on magnesium ions in cancer, especially gastric cancer, is
limited, leaving knowledge gaps. Presently, research primarily
focuses on magnesium ions as adjuvant therapy in early gastric
cancer, but further exploration of magnesium ion channels and
transport proteins may unveil promising targets for gastric
cancer treatment.

2.8 Other trace metals

The human body also relies on trace metal elements such as
manganese, cobalt, chromium, and nickel, which exert significant
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roles in various physiological processes. Studies have shown that
abnormal levels of these metals are associated with the occurrence
and progression of gastric cancer (Moradi et al., 2015; Annum Afzal
and Munir, 2020; Michalke, 2022). Li’s study discovered a direct
correlation between elevated manganese levels (>5.12 mg/day) and
increased oxidative stress and inflammation, both linked to gastric
cancer development (Li and Yang, 2018). Moradi’s research revealed
higher manganese ion levels (54%) in gastric cancer patients
compared to the control group (42%) (Moradi et al., 2015). In an
environmental study conducted in China, prolonged exposure to
nickel and its compounds significantly increased the risk of gastric
cancer (Chen et al., 2015). A long-term follow-up investigation of
diagnosed gastric cancer patients found significantly lower serum
nickel levels compared to a healthy control group, potentially related
to malignant nutritional depletion (Turkdogan et al., 2022).
Chromium, as a heavy metal element, has been a research
hotspot for occupational diseases and even cancer caused by
occupational exposure. Currently, high-dose chromium exposure
or inhalation has been proven to be closely associated with
respiratory diseases (including cancer) (Baszuk et al., 2021),
although its carcinogenic properties in gastric cancer
remain debatable.

These trace metal elements, classified as heavy metals, primarily
activate signaling pathways involving reactive oxygen species (ROS)
levels. High ROS levels lead to an imbalance in the oxidative-
antioxidative system, thereby promoting the formation and
progression of gastric cancer (Welling et al., 2015; Li and Yang,
2018). Trace metal elements exhibit similar signaling pathways in
the occurrence and development of gastric cancer. Currently,
research on the therapeutic effects of trace metal elements in

gastric cancer is limited. Cobalt-60, a radioactive element, has
been established as a treatment method where it releases specific
radiation to eliminate tumor cells. Mature devices such as
stereotactic radiosurgery machines are utilized for radiation
therapy of various cancers, including gastric cancer (Yahya and
Roslan, 2018). However, the therapeutic potential of other trace
metal elements in human diseases is still in the exploratory stage.

3 The potential of targeting metal in
gastric cancer therapy

Considering the role of metal ions in gastric cancer, the
development of novel nanomaterials and drugs has shown
promising therapeutic effects (see Figure 7). For instance, zinc
oxide nanoparticles (ZnO-NP) can alleviate gastric cancer cell
resistance by inhibiting autophagy (Miao et al., 2021), while
another novel nanomaterial TP-ZnO-NP exhibits significant anti-
proliferation and anticancer activities against gastric cancer cells
(Bozgeyik et al., 2023). Moreover, certain metal ion-based drugs
have demonstrated potential in gastric cancer treatment. In the
therapeutic domain of gastric cancer, certain sodium channel
blockers, such as lidocaine and ropivacaine, have been observed
to inhibit the in vitro growth of gastric cancer cells (Yang et al., 2018;
Ye et al., 2019). Additionally, cardiac glycosides, inhibitors of the
sodium-potassium ATPase, have been shown to enhance autophagy
in gastric cancer cells by reducing the expression of glucose
transporter 1 (GLUT1) (Fujii et al., 2022). Within the realm of
cancer treatment ferroptosis, FePt@MoS2 nanoparticles have been
established as ferroptosis inducers that release over 72% of Fe(II)

FIGURE 6
Diagram of calcium overload leading to cell death.
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within the tumor microenvironment within 30 h of treatment. This
expedited release accelerates the Fenton reaction and effectively
induces ferroptosis in various cancer cell lines (Zhang et al., 2019).
Lactoferrin-iron oxide nanoparticles (LF-IONPs) have also shown
remarkable potential in the hyperthermia treatment of gastric cancer
(Attri et al., 2023). Additionally, TiO2 nanorods coated with 2,2,6,6-
tetramethylpiperidine-N-oxyl, a ferroptosis inhibitor, exhibit the
ability to eradicate MCF-7 cell lines while overcoming their
multidrug resistance (Fakhar et al., 2020). In the context of
gastric cancer treatment, a clinical study involving stage IIb
gastric cancer patients and observed that the addition of Huai Er
particles (60 mg/day) to Tegafur Gimeracil Oteracil potassium
(TGOP, >120 mg/day) significantly improved the prognosis of
gastric cancer patients. The study demonstrated that the presence
of potassium in TGOP catalyzed the anti-tumor function of Huai Er
polysaccharides (Qi et al., 2020), while potassium ions enhanced the
cytotoxic effect of chemotherapy drugs on gastric cancer cells by
interfering with their uptake (Yeo et al., 2017).

4 Discussion

The impact of different metal ions on gastric cancer varies, as
they play a crucial role in gastric tissue and mediate various
physiological activities. Excessive metal ions under physiological
conditions can induce cell death in normal tissues. Different metal
ions induce cell death through distinct pathways, such as classical
pathways for Na, K, Mg, and Ca ions, and unique pathways for Fe
and Cu ions, with other heavy metal ions inducing cell death
revolving around ROS. Interestingly, gastric cancer cells exhibit
higher resilience compared to normal tissue cells. In terms of the

mitochondrial pathway, gastric cancer cells use different
mechanisms, such as cellular retinoic acid-binding protein 2
(CRABP2), Ajuba, and MUC20, to maintain mitochondrial
homeostasis and resist apoptosis. Gastric cancer cells have
developed defense mechanisms against death pathways induced
by heavy metals, but their resistance to copper-induced cell death
remains an area requiring further investigation. Copper-induced cell
death holds promising potential for gastric cancer treatment.

In gastric cancer, there is an imbalance in the concentrations of
various metal ions, and metal ion regulation is crucial for gastric
cancer cells. For example, excessive intake of sodium ions can
promote gastric cancer by creating a favorable environment for
the formation of N-nitroso compounds (NOCs). During gastric
cancer development, multiple members of Kv channels are
upregulated and promote cancer progression through the AKT
pathway. Excessive calcium ions enhance the growth and
metastasis of gastric cancer through pathways such as calcium-
sensing receptor (CaSR) and the AKT/β-catenin pathway. Calcium
ion channels are differentially expressed in gastric cancer cells and
affect tumor progression through pathways such as Ras/Raf/ERK1/
2, JNK, mTOR, and GPCRs. Disruptions in iron ions, whether due to
overload or deficiency, promote gastric cancer development. Gastric
cancer cells possess mechanisms to resist iron-induced cell death
caused by excessive iron ions through signaling pathways involving
ALOX15, Wnt/β-catenin, MAT2A-ACSL3, etc. Excessive copper
ions in gastric cancer cells increase ROS production and activate
pathways such as MAPK, ERK1/2, ULK1/2, promoting tumor
progression. Zinc deficiency is associated with poor prognosis in
gastric cancer patients. Zinc permeation channels and transport
proteins show differential expression in gastric cancer cells
compared to normal gastric cells, and they can regulate the

FIGURE 7
Schematic diagram of potential pathways for metal ion treatment of gastric cancer.

Frontiers in Pharmacology frontiersin.org14

Xiao et al. 10.3389/fphar.2024.1333543

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1333543


biological characteristics of gastric cancer cells through pathways
such as MAPK, ERK, JNK.

Drug resistance poses a significant challenge in the treatment of
gastric cancer. Different metal ions are involved in inducing
resistance in gastric cancer cells. For example, downregulation of
potassium channel Kv1.5 expression enhances the resistance
phenotype in gastric cancer cells. Calcium ions, through the
overexpression of MUC20v2, maintain mitochondrial membrane
potential balance, leading to chemoresistance. Overexpression of
certain calcium ions such as TRPA1 and TRPC5 promotes
chemoresistance in gastric cancer cells. Blocking calcium
channels increases the sensitivity of gastric cancer cells to
chemotherapy drugs. Upregulation of hsaMrs2p expression in
gastric cancer cells leads to increased intracellular Mg2+ and
upregulation of cyclin D1, resulting in multidrug resistance. Iron
ions induce iron-induced cell death and can alter the drug resistance
of gastric cancer cells through pathways such as KEAP1/NRF2,
STAT3, and Nrf2/Keap1/xCT. Copper ions are mainly involved in
gastric cancer cell resistance through changes in copper homeostasis
after binding to copper transporter ATP7B and cisplatin, leading to
increased resistance to cisplatin. Zinc mainly contributes to gastric
cancer cell resistance through zinc finger proteins such as ZFP64,
GLI1, ZFP91, ZNF139, which regulate gastric cancer cell resistance
through pathways such as GAL-1, MALAT1, AKT-mTOR, or by
modulating miRNA. Nanomaterials formed by metal ions, such as
Cu, Fe, Ca, Zn, show promise in reversing drug resistance to some
extent. For example, Cu can inhibit NF-κB, induce ROS production
and autophagy, and induce cancer cell death in novel Schiff base
copper coordinated compounds (SBCCCs) (Xia et al., 2019). Ultra-
small SH-CaO2 nanoparticles can cause calcium overload in tumor
cells and induce cell death (Zhang et al., 2019). Applying zinc
directly to tumor cells through nanomaterials can also alleviate
drug resistance (Miao et al., 2021).

Surgery remains the preferred therapeutic modality for early-
stage gastric cancer, embodying the optimal approach. Robot-assisted
gastric cancer surgery is poised to establish itself as the leading
minimally invasive surgical technique for gastric cancer in the
foreseeable future. The management of advanced gastric cancer
presents a formidable challenge within the realm of gastric cancer
therapy. Notably, the field of immunotherapy for advanced gastric
cancer has experienced rapid advancement and has exhibited
promising prospects. Anticipated developments in transformative
gastric cancer treatments encompass targeted therapies,
immunotherapies, NK cell therapies, and combined chemotherapy
regimens, all with the ultimate objective of achieving R0 resection.
Gastric cancer typically arises due to factors such as H. pylori
infection, diet, environment, and genetics. Metal ion disturbances,
particularly heavy metal ion disorders, are infrequent among the
general population, excluding those employed in the metallurgical
industry. Nevertheless, an increasing body of research highlights the
favorable prospects of employing metal ions in gastric cancer
treatment. In conventional chemotherapy, certain ions, such as
potassium, have demonstrated their ability to enhance the
cytotoxic effects of chemotherapeutic agents on cancer cells.
Moreover, heavy metals like cobalt have already found application
in routine radiotherapy for gastric cancer. In various in vitro
experiments, agents inducing iron-mediated cell death as well as
iron death inhibitors have proven effective in impeding tumor

progression. Copper chelators, including TTM, trientine, and
d-penicillamine, have exhibited anti-tumor activity in numerous
animal models and clinical trials. Furthermore, the combined
utilization of copper ion carriers and copper ions has resulted in
elevated intracellular copper levels and exerted anticancer effects.
Furthermore, as the mechanisms of various ion channels are
investigated in depth and bioinformatics analysis progresses
rapidly, certain established drugs can be repurposed for cancer
treatment. For instance, tricyclic antidepressants have received
FDA endorsement for small cell lung cancer therapy, while aspirin
has shown protective properties against colorectal cancer (CRC).
Recent reports have emerged regarding the inhibitory effects of
verapamil and diltiazem on gastric cancer cells in in vitro
experiments, evoking the prospect of novel classical drugs for
gastric cancer therapy. Despite the significant challenges in
comprehending metal ion-associated signaling pathways and ion
channels, particularly in terms of targeting and drug resistance, the
targeting of gastric cancer through ion channels and signaling
pathways holds substantial promise. Undoubtedly, early diagnosis
and effective preventive strategies are paramount in reducing the
incidence and mortality rates of gastric cancer. Optimal preventive
measures encompass embracing a healthy lifestyle and undergoing
regular endoscopic screenings, as they represent the most effective
strategies.
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