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Background: Pancreatic adenocarcinoma (PAAD) is a highly malignant
gastrointestinal tumor and is associated with an unfavorable prognosis
worldwide. Considering the effect of mitochondrial metabolism on the
prognosis of pancreatic cancer has rarely been investigated, we aimed to
establish prognostic gene markers associated with mitochondrial energy
metabolism for the prediction of survival probability in patients with PAAD.

Methods: Gene expression data were obtained from The Cancer Genome Atlas
and Gene Expression Omnibus databases, and the mitochondrial energy
metabolism–related genes were obtained from the GeneCards database.
Based on mitochondrial energy metabolism score (MMs), differentially
expressed MMRGs were established for MMs-high and MMs-low groups using
ssGSEA. After the univariate Cox and least absolute and selection operator
(LASSO) analyses, a prognostic MMRG signature was used in the multivariate
Cox proportional regression model. Survival and immune cell infiltration analyses
were performed. In addition, a nomogram based on the risk model was used to
predict the survival probability of patients with PAAD. Finally, the expression of key
genes was verified using quantitative polymerase chain reaction and
immunohistochemical staining. Intro cell experiments were performed to
evaluated the proliferation and invasion of pancreatic cancer cells.

Results: A prognostic signature was constructed consisting of twomitochondrial
energy metabolism–related genes (MMP11, COL10A1). Calibration and receiver
operating characteristic (ROC) curves verified the good predictability
performance of the risk model for the survival rate of patients with PAAD.
Finally, immune-related analysis explained the differences in immune status
between the two subgroups based on the risk model. The high-risk score
group showed higher estimate, immune, and stromal scores, expression of
eight checkpoint genes, and infiltration of M0 macrophages, which might
indicate a beneficial response to immunotherapy. The qPCR results confirmed
high expression of MMP11 in pancreatic cancer cell lines, and IHC also verified
high expression ofMMP11 in clinical pancreatic ductal adenocarcinoma tissues. In
vitro cell experiments also demonstrated the role of MMP11 in cell proliferation
and invasion.
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Conclusion:Our study provides a novel two-prognostic gene signature—based on
MMRGs—that accurately predicted the survival of patients with PAAD and could be
used for mitochondrial energy metabolism–related therapies in the future.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most
common malignant pancreatic adenocarcinoma (PAAD), and
most patients with PDAC are diagnosed with advanced distant
metastasis or vascular invasion; only 10%–20% of patients meet
the surgical conditions (Baliyan et al., 2018; Huang et al., 2021;
Guo et al., 2022). PDAC has a poor prognosis, with a 1-year
survival rate of 20% and a 5-year survival rate of <10% (Baliyan
et al., 2018; Orth et al., 2019; Siegel et al., 2020). Primary
chemotherapy with FOLFIRINOX or nano albumin-bound
(nab)-paclitaxel plus gemcitabine provides a modest
improvement in survival rates of pancreatic cancer (Conroy
et al., 2011; Von Hoff et al., 2013). Therefore, approaches to
enhance the prognosis of patients with pancreatic cancer are
required urgently.

As Otto Warburg pointed out in the 1920s, solid tumors
utilize glucose and generate excess lactate regardless of oxygen
availability, and aerobic glycolysis and mitochondrial
dysfunction have been proposed as hallmarks of cancer
(Warburg, 1956; Hanahan and Weinberg, 2000).
Mitochondrial metabolism provides precursors for
macromolecules and generates oncometabolites to support
cancer proliferation (DeBerardinis and Chandel, 2020; Vasan
et al., 2020). Inhibition of mitochondrial metabolism provides
new therapeutic strategies for cancer treatment. In recent years,
many studies have shown that reprogramming mitochondrial
metabolism contributes to the malignant phenotype of PAAD
(Faubert et al., 2020). However, the effect of mitochondrial
metabolism on the prognosis of pancreatic cancer has rarely
been investigated.

In the present study, mitochondrial energy metabolism–related
genes (MMRGs) were identified. RNA-sequencing and clinical data
were downloaded from The Cancer Genome Atlas (TCGA)
(Weinstein et al., 2013) and Gene Expression Omnibus (GEO)
databases (Barrett et al., 2013). After univariate Cox regression and
least absolute and selection operator (LASSO)–Cox analysis (Cai
and van der Laan, 2020), we successfully established a two-gene
prognostic signature to construct a risk model that served as an
independent prognostic factor for PAAD; we also performed
functional enrichment and immune cell distribution analyses
based on the risk model. In addition, a 15-hub gene signature
related to the mitochondrial energy metabolism score (MMs)—and
based on the risk model—was obtained through Gene Ontology
(GO) similarity analysis. Finally, by considering both the clinical
information and prognostic gene signature, a nomogram (Park,
2018) was developed to predict the individual survival rate in
patients with PAAD.

2 Methods

2.1 Data collection and preprocessing

RNA-sequencing and clinical data of 178 PAAD and
4 normal samples were obtained from TCGA database
(https://portal.gdc.cancer.gov/) for analysis. The relative
clinical characteristics of the samples were acquired from the
UCSC Xena database (http://genome.ucsc.edu) (Goldman et al.,
2020). Gene expression was normalized using the “limma” R
package (https://www.r-project.org/) (Hänzelmann et al., 2013).
GSE62452 (Yang et al., 2016), GSE57495 (Chen et al., 2015),
GSE28735 (Zhang et al., 2012), and GSE16515 (Pei et al., 2009)
were downloaded from the GEO database (http://ncbi.nlm.nih.
gov/geo/) as validation sets. A total of 178 (TCGA), 69
(GSE62452), 63 (GSE57495), 45 (GSE28735), and 36
(GSE16515) patients with PAAD were finally enrolled in the
study. Supplementary Table S1 summarizes detailed
patient features.

We also obtained 43 MMRGs from the GeneCards database
(https://www.genecards.org/) (Stelzer et al., 2016) (“mitochondrial
energy metabolism” as keywords, MMRGs with “Protein Coding”
and “Relevance score>1” retained), and 188 genes were obtained
from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database (https://www.genome.jp/kegg/pathway.html)
(Kanehisa and Goto, 2000). A total of 226 MMRGs were
identified after removing duplicates.

2.2 Single-sample gene set enrichment
analysis (ssGSEA)

To quantify the relative abundance of gene sets enriched in a
sample, ssGSEA was used to generate the mitochondrial energy
metabolism sore (MMs) in each PAAD sample using the “GSVA” R
package (Hänzelmann et al., 2013). With reference to the median
value of the MMs, patients were classified intoMMs-high andMMs-
low groups.

2.3 Identification of differentially expressed
genes (DEGs)

To determine the DEGs based on MMs-high and -low groups,
the “limma” R package was employed (https://www.r-project.org/)
(Hänzelmann et al., 2013). Genes with a p-value <0.05 and log FC >
1.2 were identified as upregulated genes, and those with a p-value <0.
05 and log FC < −1.2 as downregulated genes.
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2.4 Weighted co-expression network
analysis (WGCNA)

As a biological approach for evaluating gene association patterns
among various samples (Zhang and Horvath, 2005), the “WGCNA”
R package (Langfelder and Horvath, 2008) was employed to
determine the gene modules associated with the PAAD MMs.
The key genes were obtained by the intersection of the DEGs
and module genes, which were highly related to the MMs.

2.5 Construction and validation of the
prognosis for the MMRG-related
gene signature

Initially, univariate Cox regression analyses were performed to
establish the key prognostic MMRGs associated with survival rates
of patients with PAAD. We used genes with a p-value <0.1 in
subsequent studies. Next, LASSO regression was used to select key
prognostic genes, and multivariate Cox regression analyses were
performed to verify whether these potential prognostic genes were
independent prognostic indicators. TCGA nomogramwas identified
according to the independent prognostic gene signature via the
“rms” R package (Park, 2018). Calibration curves were then plotted
to validate the predictability of the model for the survival of patients
with PAAD. The MMRG-related risk score for each patient with
PAAD was calculated by multiplying the relative expression level by
regression coefficients. Patients were divided into high- and low-risk
score groups based on the median risk score. Risk scores were also
calculated using the GEO datasets (GSE28735, GSE57495, and
GSE62452) to validate the prognostic gene signature. Receiver
operating characteristic (ROC) curves were used to evaluate
efficacy in the validation sets.

2.6 GO and KEGG analyses according to the
high and low MMRG-related risk
score groups

Initially, to build DEGs according to high and low MMRG-related
risk score groups, genes with p-values <0.05 and log FC > 1.2 were
identified as upregulated genes, and those with p-values <0.05 and log
FC < −1.2 were identified as downregulated genes. GO (Yu, 2020) and
KEGG pathway (Kanehisa and Goto, 2000) genomes were used to
conduct a series of gene functional enrichment analyses. To identify the
functions of PAAD prognosis–related genes and relevant molecular
mechanisms, the “clusterProfiler”R package (Yu et al., 2012) was used to
perform GO and KEGG analyses (p < 0.05 and FDR <0.20).

2.7 Identification of hub genes

The “GOSemSim” package (Yu et al., 2010) was used to calculate
the GO semantic similarity of genes and the geometric mean values
of biological processes, molecular functions, and cellular
components of DEGs obtained from the Cox multivariate model.
The top 15 DEGs with the highest comprehensive scores were
considered hub genes in subsequent studies. Finally, the “ggplot”

package was used for the visualization of the functional similarity
analysis outcomes.

2.8 GSEA

To identify molecular and biological differences, GSEA was
performed according to KEGG and HALLMARK gene sets from
the molecular signature database (https://www.gsea-msigdb.org/
gsea/msigdb) (Liberzon et al., 2015) between subgroups with high
or low risk scores, as analyzed using the “clusterProfiler” R package
(p < 0.05 and FDR <0.25).

2.9 Interaction analysis of hub genes

The GeneMANIA website (Franz et al., 2018) was used to
predict the functionally similar genes among the screened hub
genes. We used the GeneMANIA website to illustrate the
functionally similar genes among the prognostic hub genes and
construct an interaction network.

The ENCORI (https://starbase.sysu.edu.cn/) (Li et al., 2014) and
miRDB (Chen and Wang, 2020) databases were used to predict the
miRNAs interacting with hub genes. Next, the mRNA–miRNA
interaction network was plotted after the mRNA–miRNA data in
the ENCORI database intersected with the data with a Target
Score >85 in the miRDB database.

CHIPBase (Zhou et al., 2017) (version 3.0) (https://rna.sysu.edu.
cn/chipbase/) and hTFtarget databases (Zhang Q. et al., 2020)
(http://bioinfo.life.hust.edu.cn/hTFtarget) were used to predict the
transcriptional regulation relationship between several million
transcription factors (TFs) and hub genes.

2.10 Assessment of immune cell infiltration
and immune microenvironment

The “ESTIMATE”R package (Yoshihara et al., 2013) was used to
evaluate immune infiltration in PAAD samples. The difference in
immune cell infiltration between the high- and low-risk score groups
of patients was analyzed using the CIBERSORT algorithm (https://
cibersortx.stanford.edu/) (Steen et al., 2020). The
“ConsensusClusterPlus” R package (Wilkerson and Hayes, 2010)
was used for consensus clustering analysis (Brière et al., 2021), which
could classify samples into several subtypes according to different
omics data sets, to find new subtypes of diseases or conduct
comparative analysis of different subtypes (reps = 100, pItem =
0.8, pFeature = 1). In addition, we predicted the immune checkpoint
response in the high- and low-risk score groups using the tumor
immune dysfunction and exclusion (TIDE) (http://tide.dfci.harvard.
edu/) algorithms (Fang et al., 2020; Fu et al., 2020).

2.11 Construction and validation of the
prediction nomogram

A nomogram was developed to evaluate the mortality rate of
patients with PAAD by combining the MMRG-related risk score of
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the model and clinical data. Prognostic ROC curves were used to
assess the efficacy of predicting patient outcomes.

2.12 Cell culture and quantitative
polymerase chain reaction (qPCR)

A cDNA microarray, which contained seven pancreatic cancer
cell lines, and a normal pancreatic duct epithelial cell line (hTERT-
HPNE) were obtained from Shanghai Outdo Biotech Company
(Shanghai, China). hTERT-HPNE and SW1990 cell lines were
maintained in DMEM (Invitrogen, Carlsbad, CA, United States)
supplemented with 1% penicillin-streptomycin (Invitrogen) and
10% fetal bovine serum (Invitrogen) at 37°C and 5% CO2. RNA
was extracted from hTERT-HPNE using a TRIzol kit (Sigma-
Aldrich Co., St. Louis, MO, United States) according to the
manufacturer’s instructions. The extracted RNA was reverse
transcribed into cDNA using a PrimeScript RT kit (Takara Bio,
Inc., Dalian, China). We then performed qPCR analyses using an
ABI 7500 PCR system (Thermo Fisher Scientific, Waltham, MA,
United States) using ChamQ Universal SYBR qPCR Master Mix
(Vazyme Biotech Co., Ltd. Nanjing, China). β-actin was used as the
internal control. The primer sequences used were as follows:
MMP11-forward, 5′-CTTGCTGTATCCCTGTTGTG-3′; MMP11-
reverse, 5′-ACCCCTCCCCATTTGACTG; β-actin- forward, 5′-
GAAGAGCTACGAGCTGCCTGA-3′; and β-actin-reverse, 5′-
CAGACAGCACTGTGTTGGCG-3′.

2.13 Immunohistochemistry

MMP11 was detected using PC tissue microarrays obtained
from Shanghai Outdo Biotech containing 51 PC tissure spots and
9 peritumoral tissue spots of 56 patients (TMA; HPanA060CS04,
Shanghai, China). In brief, TMAs were incubated with
MMP11 antibodies (AF0211,1:500, Affinity Biosciences), and
then using the EnVisionTM FLEX + Kit (K8002, Dako,
Denmark). Subsequently, samples were imaged using Aperio
ImageScope (Leica Biosystems, Wetzlar, Germany). The overall
score for each section was assessed by multiplying the intensity
score by the percentage score of positively stained cells.

2.14 Cell transfection

Cells were transfected with synthesized small interfering RNAs
(GenePharma Inc, Shanghai, China) targeting MMP11 using
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
protocol. Cells were seeded in 6-well plates, and transfection was
performed when the cells reached 70%–80% confluence. The siRNA
sequences for gene MMP11 were as follows: MMP11-Homo-775:
sense (5′-3′) GGGCGUUCAACACCUAUAUTT, antisense (5′-3′)
AUAUAGGUGUUGAACGCCCTT; MMP11-Homo-1407: sense
(5′-3′) GGAAGUUUGACCCUGUGAATT, antisense (5′-3′)
UUCACAGGGUCAAACUUCCTT; MMP11-Homo-590: sense
(5′-3′) GAUGUCCACUUCGACUAUGAU, antisense (5′-3′)
AUCAUAGUCGAAGUGGACAUC; MMP11-Homo-870: sense

(5′-3′) GAUAGACACCAAUGAGAUUGC; antisense (5′-3′)
AAUCUCAUUGGUGUCUAUCCC.

2.15 CCK-8 assay

Cell lines were seeded in 96-well plates at a density of 3 × 103

cells/well and then cultivated for 0, 24, 48, or 72 h. Twenty-
four hours after siRNA transfection, 10 μL of Cell Counting Kit-8
(CCK-8) solution (Dojindo, Tokyo, Japan) was applied to each well.
The absorbance was determined at 450 nm with a
spectrophotometric plate reader (Multiskan FC, Thermo Fisher
Scientific, Waltham, MA, United States). Subsequently, the
relative percentage of viable cells was calculated as follows:
(OD450 at detection time/OD450 at 0 h) × 100.

2.16 Transwell assay

Transwell chambers (8 μm pores; Corning, Corning, NY,
United States) were precoated with 60 μL of Matrigel (1:3 mixed
with fetal bovine serum [FBS]-free medium; BD Biosciences,
Philadelphia, PA, United States). Afterward, 5 × 103 transfected
cells in FBS-free medium were inoculated in the upper chambers for
24 h and 700 μL of medium with 20% FBS was placed in the lower
chambers to evaluate the invasive capacity of cells. The cells in the
bottom chamber were fixed with paraformaldehyde for 30 min
before staining with Giemsa for 30 min. Next, the number of
cells was counted under a microscope (Nikon Eclipse,
Tokyo, Japan).

2.17 Statistical analysis

This study employed GraphPad Prism 8.0 (GraphPad Software
Inc., La Jolla, CA, United States) and R software (version 4.1.2) (R
Foundation for Statistical Computing, Vienna, Austria) for data
analysis. The two-sided Student’s t-test and Kruskal–Wallis test were
used for statistical analyses, and the Chi-squared test was employed
to distinguish various proportions. Kaplan-Meier analysis was used
to evaluate the survival of patients in the different groups. Statistical
significance was set to p < 0.05.

3 Results

The flow diagram of the study process is shown in Figure 1A. All
data were standardized using the “limma” package in R
(Figures 1B,C).

3.1 Identification of prognostic MMRGs in
TCGA dataset

Altogether, 226 MMRGs obtained from the GeneCards and
KEGG pathway databases were enrolled after removing duplicates.
By comparing the MMRG expression between high- and low-MMs
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groups, we identified 41 genes as differentially expressed:
23 upregulated and 18 downregulated genes (Figure 2A).

3.2 WGCNA

Gene modules related to mitochondrial energy metabolism were
acquired via WGCNA based on TCGA database. By setting the soft
threshold to 7 (Supplementary Figure S1), RsquaredCut to 0.85, and
the minimum number of module genes to 25, a total of 14 non-gray
modules were established. As shown in Figure 2B, MEyellow was
highly related to theMMs in the non-gray module. We then took the
intersection of DEGs and module genes of MEyellow in TCGA-
PAAD dataset and obtained 12 key genes (COL11A1, EPYC,
MMP11, KCNK10, SERPINE1, FN1, COL10A1, TGM3,
ADAM12, KLK4, XIRP1, and KRT5; Figure 2C). A heatmap of

the expression of the 12 key genes in the MMs-high and MMs-low
groups is shown in Figure 2D. The expression levels of the 12 key
genes significantly differed between the MMs-high and MMs-low
groups (Figure 2E). Moreover, the constructed correlation heatmap
for key genes showed significant correlations between all key genes
(p < 0.05; Figure 2F).

3.3 Construction of an overall survival (OS)
prognostic risk model based on MMRGs

By analyzing the OS data of patients with PAAD in TCGA
database, the 12 potential prognostic key genes were selected to
perform a univariate Cox regression analysis. As a result, five
prognostic genes (MMP11, COL10A1, SERPINE1, COL11A1, and
EPYC) were identified as eligible based on the criteria (p < 0.1) in the

FIGURE 1
Study process. (A) Flow diagram of the study. (B) Box-type diagram of TCGA-PAAD dataset before standardization. (C) Box diagram of the
standardized TCGA-PAAD dataset. The purple sample is the PAAD group (n = 178) and the green sample is the normal group (n = 4).
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PAAD datasets (Figure 3A). The Kaplan–Meier curve was plotted
for the key genes with p < 0.05 (Figures 3B–D). The samples with
high expression of MMP11, SERPINE1, and EPYC had a worse
prognosis and all were risk factors (HR > 1).

To further establish an optimal prognostic gene signature for PAAD,
we performed iterative LASSO–Cox regression analysis which identified

a two-gene signature comprisingMMP11 and COL10A1 (Figures 3E,F).
The two key genes were then subjected to multivariate Cox regression
analysis (Supplementary Table S2). A prognostic nomogram of the Cox
multivariate model is plotted in Figure 3G, which illustrates that high
expression of MMP11 and COL10A1 reduced the survival rate of
patients with PAAD. Calibration curves were then plotted to validate

FIGURE 2
Identification of prognostic MMRGs in TCGA database. (A) The volcano plot of differentially expressed MMRGs in TCGA database (23 upregulated
and 18 downregulated genes, |logFC| > 1.2 and p < 0.05). (B)WGCNA indicated that MEyellow modules were closely associated with the MMs. (C) Venn
diagrams of the overlapping MMRGs between DEGs and module genes of MEyellow in TCGA-PAAD dataset. (D)Heatmap showing the expression of the
12 key genes between MMs-high (n = 89) and MMs-low groups (n = 89). (E) Differential expression of key genes between MMs-high (n = 89) and
MMs-low groups (n = 89). (F) Heatmap showing the correlations between the 12 key genes. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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FIGURE 3
Construction and validation of MMRG-related prognostic model. (A) Univariate Cox regression analysis of 12 key genes. (B–D) Kaplan–Meier curve
showing key genes (MMP11, SERPINE1, and EPYC) with p < 0.05. (E) Selection of the optimal parameter (lambda) in the LASSOmodel for PAAD. (F) LASSO
coefficient profiles of the two genes (MMP11 and COL10A1) in PAAD. (G) Prognostic nomogram of multivariate Cox model for the two key genes. (H)
Calibration curves in the prognostic risk model. (I) ROC curves and area under the curve (AUC) for 1-, 3-, and 5-year survival according to the risk
model in TCGA database.
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the predictability of the model for the survival of patients with PAAD
(Figure 3H). The risk score for each patient was calculated as follows:

Risk score � MMP11 × 0.0548461192552124( )
+ COL10A1 × 0.13554174423837( )
− 0.992494070149479.

Patients with PAAD were classified into high- and low-risk score
groups based on median values. We also evaluated the relationship
between risk score andMMs (Supplementary Figure S1). However, with
an increase in time, the two-gene signature appeared to yield better

prediction in the ROC analysis (Figure 3I). In addition, we analyzed the
data of patients with PAAD from GSE28735, GSE57495, and
GSE62452 as exterior validation sets to provide an in-depth
illustration of the risk model performance (Supplementary Figure S1).

3.4 Functional enrichment evaluation of
the DEGs

To identify DEGs according to high- and low-risk score groups,
we defined genes with p-values <0.05 and log FC > 1.2 as

FIGURE 4
GO enrichment analysis. Identification of DEGs according to risk score-related high (n = 89) and low groups (n = 89) visualized as a (A) volcano plot
and (B) heatmap (187 upregulated and 61 downregulated genes, |logFC| > 1.2 and p < 0.05). (C)Histogram and (D) The network diagram of GO and KEGG
enrichment analysis of DEGs. (E) Functional similarity analysis of hub genes. (F) Lollipop chart of the correlation between hub genes and MMs.
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upregulated and genes with p-values <0.05 and log FC < −1.2 as
downregulated. A total of 248 genes were differentially expressed;
187 upregulated genes and 61 downregulated genes (Figures 4A,B).

To determine the relationship between the prognostic risk score
and GO or biological pathways, gene functional enrichment analysis
was performed on DEGs between the high- and low-risk score

FIGURE 5
GSEA for differences in biological function between the high- (n = 89) and low-risk score groups (n = 89). (A–E) GSEA based on risk score-related
high and low groups. (F) PPI network of hub genes. (G) mRNA–miRNA interaction network of hub genes. (H) Network between TFs and hub genes.
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groups in TCGA database. The top enriched GO annotations were
associated with extracellular matrix organization, extracellular
structure organization, and ossification in biological processes.
Cellular components included connective tissue development,
collagen-containing extracellular matrix, endoplasmic reticulum
lumen, collagen trimer, and transport vesicle. Extracellular matrix
structural constituent, endopeptidase activity, receptor ligand
activity, and channel activity were the top four identified
molecular functions. KEGG pathways, including protein digestion
and absorption, proteoglycans in cancer, human papillomavirus
infection, ECM-receptor interaction, and the AGE-RAGE
signaling pathway in diabetic complications, were notably
enriched (Figures 4C,D; Supplementary Table S3). We analyzed
the functional similarity of DEGs using the “GOSemSim” package
and selected the top 15 DEGs as hub genes (IGFL2, MUC16, MSLN,
CHGB, ODAM, SYNC, LY6D, RIPPLY2, IBSP, C5orf46, FN1,
AHNAK2, CLMP, GAS1, and HHIP; Figure 4E). We then
plotted a lollipop chart of the correlation between the hub genes
and mitochondrial energy metabolism. As shown in Figure 4F,
FN1 had the highest negative correlation with MMs, whereas
ODAM had the highest positive correlation with MMs. The
correlation between MMs and hub genes in TCGA and GEO
datasets was also validated (Supplementary Figure S2).

3.5 GSEA for the risk model

GSEA was performed to explore differences in biological
function between the high- and low-risk score groups. As shown
in Figures 5A–E, TGF-beta receptor signaling, the Wnt signaling
pathway, senescence and autophagy in cancer, and the PI3K-Akt
signaling pathway differed significantly between the two groups
(Supplementary Table S4). The interaction network of functionally
similar genes was illustrated according to the GeneMANIA database
to observe their physical interactions, shared protein domains, gene
interactions, and other information (Figure 5F). As shown in
Figure 5G, the mRNA–miRNA interaction network was
composed of five hub genes (HHIP, SYNC, FN1, IBSP, and
GAS1) and 34 miRNA molecules, which constituted a total of
35 pairs of mRNA–miRNA interactions. According to CHIPBase
and the hTFtarget database, the interaction relationship data of
10 hub genes (AHNAK2, CHGB, CLMP, FN1, GAS1, HHIP, LY6D,
MSLN, RIPPLY2, and SYNC) and 101 TFs were obtained and
visualized using the Cytoscape software (Figure 5H).

3.6 Immune-related analysis of patients with
PAAD based on the prognostic risk model

To validate the underlying differences in immune cell
infiltration between the high- and low-risk score subgroups, the
estimate score (the summation of immune and stromal scores),
immune score (immune cell infiltration in the tumor tissue), stromal
score (substrate cells in the tumor tissue), and tumor purity were
analyzed. All these scores suggested a significantly higher immune
cell infiltration in the high-risk score group (p < 0.05; Figures
6A–D). We further explored the distinctive immune cell
distribution in the high- and low-risk score groups. CD8 T cells,

monocytes, and M0 macrophages significantly differed between the
two groups, among which M0 macrophages had high infiltration
rates in the high-risk score group, whereas CD8 T cells and
monocytes had high infiltration rates in the low-risk score group
(Figure 6E). A heatmap of the correlation between hub genes and
immune cell infiltration is shown in Figure 6F. We then performed
unsupervised consensus clustering and divided all PAAD samples
into two subtypes (cluster1: n = 95; cluster2: n = 83, Figures 6G–I).
Analysis of immune cell infiltration abundance revealed that
CD4 memory resting T cells, follicular helper T cells,
M0 macrophages, M1 macrophages, and resting dendritic cells
significantly differed between the two immune characteristic
subtypes (Figure 6J). A heatmap of the correlation between hub
genes and immune cell infiltration is shown in Figure 6K.

3.7 TIDE analysis and mutation analysis of
hub genes

We performed tumor mutation burden analysis and observed a
significant difference between the high- and low-risk score groups
(p < 0.05; Figure 7A). We also evaluated the sensitivity of the two
groups to immunotherapy using the TIDE algorithm (Figure 7B). A
comparison of the immune checkpoint gene expression between the
high- and low-risk score groups revealed that eight checkpoint
genes, BTN3A1, CD86, HHLA2, BTN2A2, CD70, TIGIT, CD47,
and SIRPA, varied between the two groups (Figures 7C,D). We
analyzed the mutations in the 15 hub genes from the cBioPortal
database in the TCGA-PAAD dataset (Figure 7E). The results
revealed that genetic mutations primarily focused on missense
mutations (unknown significance), splice mutations (unknown
significance), truncating mutations (unknown significance),
amplification, deep deletions, and no alterations. We also
analyzed the positions of the 15 hub genes on human
chromosomes using the “RCircos” R package (Figure 7F). The
chromosomal localization map showed that hub genes were
primarily distributed on chromosomes 1, 2, 4, 5, 6, 8, 9, 11, 14,
16, 19, and 20, among which, three hub genes were distributed on
chromosome 4.

3.8 Nomogram construction

The predictive nomogram was used to calculate the likelihood of
patient outcome by combining clinical data and MMRG-related risk
score values (Figure 8A). Figures 8B–D shows that the estimated OS
rates of patients with PAAD at one, two, and three years matched
well with the actual OS rates.

3.9 Validation of key genes in vitro

The expression of five key genes (MMP11, COL10A1,
SERPINE1, COL11A1, and EPYC) in normal pancreatic and
pancreatic cancer cell lines were detected using qPCR. The
results showed that MMP11 was highly expressed in pancreatic
cancer cell lines, including MIAPaCa, Aspc-1, HPAF-2, Panc-1, SW
1990, and CFPAC-1 and we selected SW1990 cell lines in the
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subsequent cell experiments (Figure 9A). Immunohistochemistry
assays showed that MMP11 expression level was significantly
enhanced in PC tissues compared with in para-carcinoma tissues

(Figures 9B,C). We used qRT-PCR to evaluate mRNA level of
MMP11 24 h after transfection in SW1990 cell lines. The results
showed that MMP11–775 and MMP11–1407 had a better

FIGURE 6
Immune cell infiltration analysis in patients with PAAD. (A–D) The estimate, immune, and stroma scores and tumor purity in the high- (n = 89) and
low-risk score groups (n = 89) in the PAAD cohort. (E) Distribution of 22 immune cells in the PAAD cohort, according to CIBERSORT. (F) Heatmap of the
relationship between infiltrating immune cells and 15 hub genes. (G) Heatmap of consensus clustering matrix. (H) Consensus cumulative distribution
function diagram. (I) Delta area plot. (J) Distribution of 22 immune cells in the PAAD cohort, according to unsupervised consensus clustering. (K)
Heatmap of the relationship between infiltrating immune cells and hub genes, according to unsupervised consensus clustering. Not significant (ns), p >
0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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knockdown efficiency, which were used in subsequent experiments
(Figure 9D). CCK8 assay further showed that knockdown of
MMP11 showed a significant reduction in cell viability and
proliferation (Figure 9E). After siRNA knockdown, the
percentage of cells crossing the plate decreased dramatically,
which indicated that the invasion capacity of SW1990 cells
decreased significantly, compared with the negative control group
(Figures 9F,G).

4 Discussion

The prognosis of PAAD is extremely poor because of its late
diagnosis and resistance to chemotherapy (Wu et al., 2022). Patients
with PAAD who qualify for surgical resection account for less than 20%
because most tumors are already at advanced stages upon diagnosis
(Lindgaard et al., 2022). Thus, advanced prognostic biomarkers are
urgently required to predict the survival rate of patients with PAAD.

FIGURE 7
TIDE analysis and mutations of hub genes in TCGA database. (A) Mutation burden analysis and (B) TIDE score between high- (n = 89) and low-risk
score groups (n = 89). (C) Differential expression of immune checkpoint genes according to the risk score. (D) Heatmap of immune checkpoint genes
according to the risk score. (E)Mutation subtypes of hub genes. (F)Chromosomal localizationmap of hub genes. Not significant (ns), p > 0.05; *, p < 0.05;
**, p < 0.01; ***, p < 0.001.
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Reprogrammed mitochondrial energy metabolism, including the
tricarboxylic acid (TCA) cycle, is considered a hallmark of cancer (Di
Gregorio et al., 2022; Sawant Dessai et al., 2022). Tumor cells use
glycolysis and the TCA cycle to generate ATP, NADPH, and
macromolecules (nucleotides, lipids, and amino acids) to synthesize
substrates essential for cell proliferation (DeBerardinis and Cheng,
2010; DeBerardinis and Chandel, 2020; Ghosh et al., 2020; Vasan et al.,
2020). Therefore, inhibition of the mitochondrial TCA cycle has
attracted much attention in cancer treatment. CPI-613, a lipoate
analog that inhibits pyruvate dehydrogenase and α-ketoglutarate
dehydrogenase, showed efficacy in tumor therapy (Stuart et al.,
2014; Reddy et al., 2022). CPI-613 is currently undergoing phase III
clinical trials for patients with metastatic pancreatic adenocarcinoma
(NCT03504423). In addition, mitochondrial energy metabolism is
critically associated with antitumor immunity, and recent studies
have shown that inhibiting mitochondrial transaminase regulates
the immune microenvironment of pancreatic cancer to suppress
tumor progression (Abrego et al., 2022). Therefore, our aim was to
investigate the relationship between genes associated with
mitochondrial energy metabolism and PAAD prognosis,
formulating a gene-signature risk model as a biomarker for guiding
the diagnosis and treatment of pancreatic cancer.

In the present study, public RNA-sequencing expression and
clinical data were obtained from TCGA and GEO databases, and a
total of 41 MMRGs were identified as differentially expressed,
including 18 downregulated and 23 upregulated genes between
the MMs-high and MMs-low groups after ssGSEA. Based on
univariate Cox regression analysis, five prognostic key genes
(MMP11, COL10A1, SERPINE1, COL11A1, and EPYC) were
identified. Furthermore, iterative LASSO–Cox regression analysis
was performed to construct a two-gene signature as a risk model for
prognosis. After verification of the GEO datasets, the risk
model—comprising MMP11 and COL10A1—showed good
performance in predicting PAAD prognosis.

Matrix Metalloproteinase 11 (MMP11) is a member of theMMP
family, which is involved in the breakdown of the extracellular
matrix in normal physiological processes. The enzyme encoded by
MMP11 is activated intracellularly by furin within the constitutive
secretory pathway and plays an important role in the progression of
epithelial malignancies. MMP11 was highly expressed in the
cancerous ductal epithelium and might act as a tumor promoter
in PDAC, stimulating cyclin-dependent kinase 4 and cyclin D1
(Zhang X. et al., 2020). The presence of MMP11 could exacerbate
endoplasmic reticulum stress, alter the mitochondrial unfold protein

FIGURE 8
Nomogram predicting theOS in patients with PAAD. (A) Prognostic nomogram for the OS of patients with PAAD. Calibration curves for the (B) 1-, (C)
2-, and (D) 3-year OS.
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response, which mediated cancer progression (Tan et al., 2020). In
addition, overexpression of MMP11 provoked mitochondrial
defects, which triggered aerobic glycolysis, revealing a major role
in controlling energy metabolism (Dali-Youcef et al., 2016). Type X
collagen α 1 chain (COL10A1), a member of the collagen family, is a
gene associated with the progression of a variety of human tumors.

COL10A1 regulates PDAC cell proliferation and MEK/ERK
signaling pathways by binding to discoid protein domain
receptor 2 (DDR2) to promote migration, invasion, and
epithelial–mesenchymal transition (EMT) (Wen et al., 2022).
Collagen XI, another member of the collagen family, is present in
the extracellular matrix. The COL11A1 gene is involved in

FIGURE 9
In vitro experiments. (A) The mRNA expression of MMP11 in pancreatic cancer cell lines. (B) Immunohistochemical analysis of MMP11 expression in
PC tissues. (C) Statistical analysis of MMP11 expression between PC tissues and paracancer tissues. (D) qRT-PCRwas performed to detect the efficiency of
si-MMP11 transfection. (E) Cell viability according to CCK-8 assay. (F) The invasion capacity of SW1990 cell lines according to Transwell assay. (G)
Statistical analysis of invaded cells. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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tumorigenesis and the development of many human malignancies.
COL11A1 plays a critical role in PAAD progression by stimulating
the Akt/GSK-3β/Snail signaling pathway (Wang et al., 2022) and is
the key to PAAD development. In addition, COL11A1 mediates
mitochondrial apoptotic evasion to enhance chemotherapy
tolerance in pancreatic cancer cells (Wang et al., 2021). Circ-
000510 could modulate COL11A1 expression, activating EMT in
PAAD (Ma et al., 2021). Serpin Family E Member 1 (SERPINE1), as
primary inhibitor of tissue-type plasminogen activator (PLAT), is
involved in the regulation of cell adhesion and spreading (Planus
et al., 1997), and cellular and replicative senescence (Kortlever et al.,
2006). SERPINE1 was identified as a key target of the TP53/miR34a
axis, with relevance to the biology of PDAC, and might serve as a
potential biomarker for early detection of PDAC (Akula et al., 2020).
EPYC is a member of the small leucine-rich repeat proteoglycan
family, which is composed of seven exons. However, the association
between EPYC and cancer has rarely been studied. To explore the
expression levels of the five key genes, qPCR-based cDNA array
analysis was performed. The results showed that the mRNA
expression of MMP11 was significantly upregulated in pancreatic
cancer cell lines than in a normal pancreatic duct epithelial cell line,
which is consistent with the results of previous studies. In addition,
IHC results further confirmed elevated expression of MMP11 in
pancreatic cancer tissues compared with adjacent tissues.
Subsequently, CCK-8 and transwell assay demonstrated that
knockdown of MMP11 significantly reduced cell proliferation
and invasion of SW1990 cell lines in vitro, suggesting
MMP11 might provide new therapeutic target for the treatment
of pancreatic cancer.

GO and KEGG analyses illustrated that DEGs based on the risk
score were closely related to extracellular matrix organization,
collagen-containing extracellular matrix, extracellular matrix
structural constituent, and protein digestion and absorption. In
addition, we identified 15 hub genes through the functional
similarity of DEGs between the high- and low-risk score groups,
among which FN1 had the highest negative correlation with MMs,
whereas ODAM had the highest positive correlation with MMs.
FN1 encodes fibronectin, which is involved in cell adhesion and
migration processes (Owens and Baralle, 1986). Xavier et al. (Xavier
et al., 2021) found that FN1 was expressed in the stroma and
identified FN1 as a potential target for pharmacological
inhibition in PDAC. However, the effect of FN1 on
mitochondrial energy metabolism has rarely been demonstrated.
Odontogenic, Ameloblast-Associated (ODAM) is frequently
upregulated in hepatocellular carcinoma, colorectal
adenocarcinoma, and hepatoblastoma. Yamaguchi et al.
(Yamaguchi et al., 2023) identified ODAM as a novel target gene
of Wnt/ß-catenin signaling, which played an important role in the
regulation of the cell cycle, DNA synthesis, and cell proliferation.
ODAM inhibits colorectal cancer growth by promoting PTEN and
suppressing the PI3K/AKT pathway (Yu et al., 2016). Its role in
pancreatic cancer has not yet been reported. GSEA revealed that the
high- and low-risk score groups showed significant differences in
TGF-beta receptor signaling, theWnt signaling pathway, senescence
and autophagy in cancer, and the PI3K-Akt signaling pathway,
which might account for the poor PAAD prognosis owing to risk
modifiers (Aguilera and Dawson, 2021; Cortesi et al., 2021; Yang
et al., 2021; Stanciu et al., 2022; Yamamoto et al., 2022).

PAAD is regarded as having low immunogenicity and to lack
effective immunotherapy responses (Macherla et al., 2018). The
immune-related analysis was aimed at exploring promising targets
for PAAD immunotherapy. The ESTIMATE analysis showed higher
estimate, immune, and stromal scores in the high-risk score group,
which might benefit from immunotherapy. In addition, the high-
risk score group was associated with a higher infiltration of cancer-
associated M0 macrophages. The relatively lower expression of
monocytes and CD8 T cells in the high-risk score group
indicates that monocyte and CD8 T cell function might have
been suppressed.

The TIDE analysis showed higher TIDE scores in the high-risk
score group, which implied a likelihood of immune surveillance
escape and tumor insensitivity. Immune checkpoint analysis
suggested that eight genes, BTN3A1, CD86, HHLA2, BTN2A2,
CD70, TIGIT, CD47, and SIRPA, showed higher expression in
the high-risk score group, which provide approaches for immune
blockade therapy based on our risk model. However, considering the
unsatisfactory effect of immunotherapy in recent studies and the
associated controversies (Macherla et al., 2018; Leinwand and
Miller, 2020; Wu et al., 2020; Chen et al., 2021), immunological
function in patients with PAAD needs further investigation.
Moreover, a nomogram combining clinicopathological
characteristics and the two-gene signature associated with
mitochondrial energy metabolism efficiently predicted PAAD
prognosis at 1, 2, and 3 years.

Our study has limitations; in that, it was based on the
bioinformatic analysis of two databases and validation of
biological behavior in vitro. At the same time, we validated
clinical significance of MMP11 based on PC tissue microarrays.
However, further in-vivo experiments and specific mechanism are
required. Few related studies have been published, and the role of
our two-gene signature in PAAD is still vague. Therefore, its
function in PAAD requires further investigation. The number of
PAAD samples in TCGA database was not large enough, and the
statistical significance requires further verification. Moreover, the
exact molecular mechanisms underlying functional analysis and
immune infiltration based on the risk model in pancreatic cancer
require in-depth exploration.

5 Conclusion

In this study, we successfully identified an effective prognostic
two-gene signature, which demonstrated an accurate prediction of
survival in patients with PAAD in TCGA and GEO databases. A
nomogram combining clinical characteristics and risk scores was
established to evaluate the survival probability, which showed a
certain accuracy. We demonstrated a close relationship between
mitochondrial energy metabolism and PAAD prognosis, and the
established risk model provides new prognostic biomarkers for
pancreatic cancer.
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