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There are two main ways to discover or design small drug molecules. The first
involves fine-tuning existing molecules or commercially successful drugs
through quantitative structure-activity relationships and virtual screening. The
second approach involves generating new molecules through de novo drug
design or inverse quantitative structure-activity relationship. Bothmethods aim to
get a drug molecule with the best pharmacokinetic and pharmacodynamic
profiles. However, bringing a new drug to market is an expensive and time-
consuming endeavor, with the average cost being estimated at around
$2.5 billion. One of the biggest challenges is screening the vast number of
potential drug candidates to find one that is both safe and effective. The
development of artificial intelligence in recent years has been phenomenal,
ushering in a revolution in many fields. The field of pharmaceutical sciences
has also significantly benefited frommultiple applications of artificial intelligence,
especially drug discovery projects. Artificial intelligence models are finding use in
molecular property prediction, molecule generation, virtual screening, synthesis
planning, repurposing, among others. Lately, generative artificial intelligence has
gained popularity across domains for its ability to generate entirely new data, such
as images, sentences, audios, videos, novel chemical molecules, etc. Generative
artificial intelligence has also delivered promising results in drug discovery and
development. This review article delves into the fundamentals and framework of
various generative artificial intelligence models in the context of drug discovery
via de novo drug design approach. Various basic and advancedmodels have been
discussed, along with their recent applications. The review also explores recent
examples and advances in the generative artificial intelligence approach, as well
as the challenges and ongoing efforts to fully harness the potential of generative
artificial intelligence in generating novel drug molecules in a faster and more
affordable manner. Some clinical-level assets generated form generative artificial
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intelligence have also been discussed in this review to show the ever-increasing
application of artificial intelligence in drug discovery through commercial
partnerships.
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ChatGPT, de novo drug design, deep generative models, AlphaFold, variational
autoencoders, generative adversarial network, large language models, chemical
language models

1 Introduction

New medication development is an expensive and time-
consuming process. As a result of concerns about risk and
acceptability, the success rate is low. The pharmaceutical sector is
seeing a decline in productivity as the cost of developing and
bringing a new medicine to market continues to rise (Paul et al.,
2010; DiMasi et al., 2016). New processing hardware and novel and
improved deep learning (DL) algorithms have increased the success
of artificial intelligence (AI) in numerous areas, including computer
vision, autonomous vehicles, robotics, and others (von Ungern-
Sternberg, 2017; Coeckelbergh, 2020; Thierer et al., 2017; Collins
and Moons, 2019). In recent years, DeepMind has developed two
Go-playing AI algorithms (AlphaGo and AlphaGo Zero) that can
now compete and even win against the best human players (Singh
et al., 2017; Chao et al., 2018). Additionally, DeepMind has
developed AlphaFold to address the protein-folding challenge,
which has been regarded for a long time as a challenging
biological problem. AlphaFold 2 performed better than any other
technique in the 14th Critical Assessment of Protein Structure
Prediction (CASP) (Service, 2020). These advances show the
potential of AI to revolutionize basic research by drastically
speeding up the pace of research. Motivated by these promising
outcomes, medicinal researchers are exploring and utilizing how AI
may be used in the pharmaceutical industry. Many pharmaceutical
firms have partnered with AI startups and academic institutions or
launched in-house AI initiatives. Various biomedical and drug
discovery research branches have recently incorporated AI
approaches, such as developing deep neural networks using
transcriptional data to predict biologically active molecules
(Aliper et al., 2016), and generating new small molecule
therapeutic leads (Mamoshina et al., 2016). Ongoing studies
reveal that AI is being used to revolutionize every step of the
drug discovery process, from choosing targets to generating
ligands, planning synthesis, selecting trial participants to
repurpose existing drugs, analyzing cellular images, and making
predictions about molecules’ physicochemical and biological
properties.

Numerous criteria, including ADMET (absorption, distribution,
metabolism, excretion, and toxicity) and synthesis feasibility, must
be satisfied by each potential drug candidate. Therefore, predicting
molecular characteristics with high precision is crucial in the drug
development process. To save money on R&D, computational
studies might screen and enhance projected molecular features
before costly animal and clinical testing. For instance, predicting
the inhibition of human cytochrome 450 (CYP450) using a
multitask deep autoencoder was described by Li et al. (Li et al.,
2018a), paving the way for minimizing adverse effects and drug
interactions. To predict the aqueous solubility and logP of small

compounds, Tang and coworkers employed a deep self-attention
message-passing graph neural network (SAMPN) (Tang et al.,
2020). In addition, their SAMPN model identified the primary
structural characteristic for a target attribute, which shed
interpretable light on the DL “black box” issue. Leads may also
be found using neural networks trained to predict chemical
properties. For instance, Stokes et al. (Stokes et al., 2020), used a
deep neural network based on molecular graphs to predict antibiotic
activity in compounds structurally distinct from known antibiotics
and then validated it in experiments.

However, these methods have significant drawbacks in
common, including the need for colossal training datasets and
well-trained neural networks to learn the abstract representation
of molecules, molecular grammar, molecular properties, and
chemical aspects. Another point is that this prediction-based
approach cannot generate new compounds if the basic or
essential molecules are missing from the input chemical library.
Here lies the role of generative AI (GAI). GAI is a type of AI that uses
DL to generate novel content. GAI tools understand the patterns and
intricacy of their training data and then generate new data (either
similar or improved version per the user’s expectation). New data
can be text, images, audio, video, chemical molecules, etc., based on
patterns they have learned from training data. GAI is being used to
generate content in response to user-given prompts. GAI is different
from traditional AI systems, which are trained to examine data and
make predictions based on pattern recognition.

One of the most appealing features of GAI-driven drug
development is the ability of GAI models to produce completely
novel compounds. Generating unique or novel molecular structures
with desired features is known as de novomolecular generation. As a
result, GAI models often include neural networks capable of
predicting a given attribute. For example, in a representative
work, Popova et al. (Popova et al., 2018), presented ReLeaSE,
which associates a neural network (to predict molecular
property) with a deep generative neural network (to design novel
molecules with the necessary physicochemical and biological
characteristics). However, the GAI model developed by Popova
et al. was not verified by actual experiments. Subsequently, Merk
et al. (Merk et al., 2018a), trained a GAI model on natural products
to produce de novo ligands, and the resulting molecules were
empirically verified as new retinoid X receptor (RXR)
modulators. In another scientific breakthrough, to combat
fibrosis, Hongkong/New York-based Insilico Medicine developed
a GAI model GENTRL (Generative Tensorial Reinforcement
Learning) to identify novel kinase DDR1 inhibitors. They
performed biological tests to confirm the efficacy of the
GENTRL-generated compounds. Their research stood out
because they went from insilico to a successful preclinical phase
in only 21 days, an achievement that had never been accomplished
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before (Zhavoronkov et al., 2019). Korshunova et al. recently
employed RL, combining transfer learning with the policy
gradient algorithm, experience replay, and real-time rewards to
generate new EGFR inhibitors that have also been empirically
verified (Korshunova et al., 2021).

These amazing use cases of GAI models provide hope for
improved methods of producing novel therapeutic molecules
from scratch. These examples demonstrate the potential
effectiveness of a GAI-driven approach to the drug development
process. It should be noted, however, that there is currently no one-
size-fits-all approach to AI-driven drug development. For instance,
the hyperparameters, GAI frameworks, and model training for any
AI-driven drug discovery project may need to be fine-tuned
extensively. The biggest obstacles to AI-driven drug development
are the immense rounds of trial and error, the absence of a generic/
universal mathematical system, and the lack of adequate data.

Furthermore, given the complexity of biological systems, it is
unlikely that any of the aforementioned GAI models would continue
to be effective if the aim were changed. For instance, there may not
be enough data for the predictor and generator to produce drug-like
compounds if the target is altered from A to A1 or B. The quantity
and quality of the training sets determine the performance of the
predictor or classifier or generator. While GAI frameworks and uses
have been widely discussed among the core DL fraternity
(Salakhutdinov, 2015), their full potential is yet to be tapped (for
precise applications/successful use cases) in medicinal chemistry
research (Lavecchia, 2019). Even though the aforementioned chain
of events—from AI model training to molecular property prediction
to the generation of novel drug-like molecules to web lab synthesis
and biological validation—remains relatively rare in the scientific
literature, GAI-driven drug discovery is emerging as an exciting tool
for efficient de novo molecule generation. In this review, we
introduce various GAI frameworks, explore their uses in drug
development, highlight recent successes and challenges, and
detail ongoing efforts to address these issues to generate
customized needles rather than finding the ones in a haystack. In
the Recent Advances section, we have shared comprehensive data
about a few under investigation (clinical trial stage) molecules that
emanated from generative AI.

2 Generative AI

AI models (including machine learning-ML and DL) may, after
analyzing patterns/insights in the input data given to them,
categorize data (classification), predict numerical output
(regression), group data (clustering), and generate either
completely new data or data similar to input data. Most of these
tasks fall under the purview of either computer vision (which
employs the CNN, that is, convolutional neural network type of
DLmodel for analyzing imageries like medical images, other images,
and molecular structures in the form of molecular graphs) or natural
language processing-NLP (which employs the recurrent neural
network-RNN type of DL model for analyzing sequential data
like sentences or chemical structures in the form of strings).

The capacity of GAI models to generate/design new sets of data
(depending on the input data), such as photos, audios, phrases, films,
chemical compounds, etc., has recently attracted much interest,

mainly because of the success of large language model (LLM).
Depending on the GAI model used and the specifics of the work
at hand, the results might be exact copies of the inputs or improved
versions of inputs (Figure 1).

Since its release in November 2021, OpenAI’s ChatGPT (Chat
Generative Pre-trained Transformer) has been one of the most
talked-about examples of proprietary GAI. ChatGPT is driven by
the LLM (GPT-4) and designed and trained to generate natural-
sounding text. Similarly to other LLM-based GAI, it has been trained
on large datasets of text and code and can generate creative content,
translate languages, generate new text, text similar to the text it was
trained on, and answer user-provided prompts in an informative
way. ChatGPT, which models human conversation, is the most
advanced language simulator accessible today. Its state-of-the-art
GAI technology is a transformer architecture learned using large
online text datasets. DALL-E 2 (another invention from OpenAI
falling in the domain of GAI that allows users to generate new
pictures using text-to-graphics prompts) and Midjourney (an AI
tool that converts words to images and makes images depending on
user prompts) are two other prominent examples of proprietary GAI
products (Editorials, 2023; Patel et al., 2023; Shen et al., 2023; Stokel-
Walker and Van Noorden, 2023).

As mentioned earlier, discovering and developing new
medications has been lengthy and expensive, but the industry has
dramatically changed with the introduction of GAI. The GAI
method can transform the sector entirely by automating many of
the tedious and labor-intensive activities associated with drug
development. The use of GAI models for developing therapeutic
candidates based on existing biological and chemical information
has recently been detailed. For example, NVIDIA’s BioNeMo,
Insilico Medicine’s Pharma. AI, etc., are a few examples of GAI
tools for the pharma sector (for drug development). NVIDIA’s
BioNeMo is a cloud-based GAI platform for the pharmaceutical
industry. It is a supercomputing framework for training and
deploying massive biomolecular language models. Researchers
can rapidly adapt and release scalable generative and predictive
biomolecular AI models built using NVIDIA cloud APIs. BioNeMo
also allows the implementation of GAI in the generation of protein
and biomolecule structure and function, which speeds up the
development of novel molecules in the quest for drug discovery.
The Pharma. AI platform has a total of three function-specific
platforms: PandaOmics, Chemistry42, and inClinico. Through a
patented network analysis system called iPanda that deduces
pathway activation or inhibition, uncovering linkages between
apparently distinct genes basis dysregulated biochemical
processes, PandaOmics is developed to allow multi-omics
identification of new targets. PandaOmics generates a ranked list
of prospective biological targets for a specific illness or subtype of
disease and then selects those target theories basis their originality,
approachability by small compounds, biologics, and safety. This
process yields a potential target score. The company claims that
users may discover new lead-like compounds using Chemistry42,
the second function-specific platform, which is an automatic, de
novo drug design and scalable tool. This discovery process can take
as little as a week. Chemistry42 employs GAI to generate novel small
drug-like molecules, fine-tuned for exact features by drawing on
many chemicals and molecular fragments. Chemistry42 establishes
standards for innovative compounds’ attributes, including
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molecular shape, chemical complexity, synthetic accessibility,
metabolic stability, etc. A newly generated molecule is first
annotated with its characteristics, including physicochemical
parameters, binding scores, and drug-likeness traits, before being
compared to other compounds in private libraries and vendor
catalogues to determine its uniqueness. inClinico is a platform
for a data-driven multimodal forecasts of clinical trials’
probability of success (PoS). It uses enormous amounts of data
about the targets, ailments, clinical trials, and even researchers
involved in the studies.

ChatGPT necessitates this much elaboration since this
groundbreaking LLM will shape and reform how existing GAI-
guided initiatives go towards de novo drug design (Liu et al., 2021;
Chakraborty et al., 2023; Chen et al., 2023). There has been one
recent publication on DrugGPT along the lines of ChatGPT. This is
covered in more detail later in this article. In the case of AI-driven
drug discovery, GAI may be divided into three classes based on how
they are used to generate novel compounds:

• Distribution-learning (Brown et al., 2019): The system
produces new molecules to fill the same chemical space as
the training set. Algorithms for learning distributions are
typically judged based on how well they reproduce the
characteristics of the training set, with metrics like the
Kullback-Leibler (Kullback and Leibler, 1951), (KL)
divergence (used, for example, to analyze the distribution of
calculated physicochemical features of the molecules) or the
Fre’chet ChemNet Distance (Preuer et al., 2018) (FCD), used
to quantify structural and functional similarity.

• Goal-directed generation (Brown et al., 2019): Molecules are
designed in goal-directed generations to optimize some
objectives. More specifically, scoring functions refine the
generated molecules over time. One method for doing this
is reinforcement learning (RL), in which the model is
encouraged to pursue strategies with higher likelihoods of
success in exchange for a reward. Resemblance to existing
active compounds, projected bioactivity, and estimated
physicochemical attributes are often used scoring systems
(Olivecrona et al., 2017; Blaschke et al., 2020).

• Conditional generation: When comparing conditional
generation to goal-directed (through a score function) and
distribution learning algorithms, molecular generation falls
somewhere in the middle. It takes on the challenge of
generating new molecules that meet specified criteria by
mastering a combined semantic space of attributes and
structures found via experimentation. The required qualities

may be used as a ‘prompt’ to generate potential molecules.
These algorithms enable goal-directed generation without the
requirement of scoring function engineering by establishing
latent representations covering required properties (such as
3D shape (Skalic et al., 2019a), gene-expression signature
(Méndez-Lucio et al., 2020), protein target (Skalic et al.,
2019b), and respective molecular structure in an end-to-
end manner (for instance, via a conditional RNN (Kotsias
et al., 2020). The next section elaborates on various
GAI models.

3 Generative AI models

Classifying GAI tools as either non-autoregressive or autoregressive
is a common practice. Some examples of non-autoregressive generating
models include generative adversarial networks (GANs), reversible flow
models, and variational autoencoders (VAEs) (Baillif et al., 2023; Xiao
et al., 2023). For example, to construct a graph, non-autoregressive
generative models generate both the edge-feature matrix and the node-
feature matrix at the same time. On the other hand, iteratively
improving an intermediate structure is how autoregressive generative
models construct a graph. RNN serves as a prototypical example of the
autoregressive generation model. GANs and VAEs are now the most
popular GAI models for designing new therapeutic compounds.
Transformers and LLMs/Chemical language models (CLMs) are
more sophisticated and advanced GAI models. Some of the most
fundamental elements of these GAI models include graph neural
networks (GNNs), GCN (graph convolutional network)/CNNs (for
processingmolecular representations in the form ofmolecular graphs or
images), and RNNs for processing molecular representations in the
form of sequences like simplified molecular input line entry system
(SMILES). In addition, RL is a valuable ML method in the GAI basket.
As with the training of robots, driverless automobiles, etc., RL is used to
optimize molecular characteristics, such as conditional VAEs and
others, to modify the generation of molecules in the desired
direction in real-time. In the below subsections, we will see these
models individually. Figure 2 shows some GAI models and the
general working of a GAI model from the viewpoint of drug
discovery via transfer learning.

3.1 VAEs

To build an autoencoder, one must first train a network to map
the input into a low-dimensional latent vector through the encoder

FIGURE 1
A simple flowchart of the generative AI model’ working.
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and then train a second network, the decoder, to map the latent
vector back into the input data. By reproducing the input, the
autoencoder generates a latent space. However, such basic
autoencoders cannot represent molecular structure (in latent
space) in a continuous manner. Overfitting and breaks in
continuity in the original autoencoders inspired the development
of VAEs. Unsupervised data compression using VAEs has become
one of the most often used GAI methods due to its success with a
wide range of input data types. Many complex data types, including
handwritten digits, segmentation, and faces, have been successfully
generated using VAEs (Doersch, 2016). VAEs are being used
extensively in the search for novel drug-like molecules. In reality,
current GAI-based drug development efforts are primarily focused
on VAEs. VAEs have two primary components: an encoding
network and a decoding network. The encoder network maps the
input data to a probability distribution, compressing it into a lower-
dimensional representation, the latent space. The input data is
reconstructed from a sample taken from the latent space by the
decoder network. The VAE seeks to learn optimal parameters to
provide the highest likelihood of reproducing the input data. This
allows VAEs to learn how to produce realistic samples in the latent
space, from which fresh data may be inferred. In the context of drug
development, VAEs maximize the similarity between the encoded
molecules and a previous distribution in the latent space while
minimizing the reconstruction loss during training. VAEs may
develop novel molecules with structural and chemical
characteristics comparable to the training data by sampling from
the learned latent space. Gomez et al.’s research publication on VAE
is one of the most often quoted and referred to representative pieces

(from the perspective of producing new chemicals) (Gómez-
Bombarelli et al., 2018). Several papers followed this seminal
work, all of which used VAEs or VAEs after some add-on to
generate novel small compounds in the hunt for drug-like
molecules. Figure 3 illustrates the functioning of a VAE.

While there are several documented variations of VAE (Blaschke
et al., 2018; Harel and Radinsky, 2018; Jørgensen et al., 2018; Kang
and Cho, 2018; Sattarov et al., 2019), the essential structure is
consistent across all of them. 3D grid-VAE, SMILES-VAE, and
Graph-VAE are the three main variants of VAE based on the
chemical representations they use. Owing to its simple
deployment, SMILES-VAE has gained widespread favour.
Additionally, due to their suitability for sequence data structures,
stacked GRUs (gated recurrent units) or LSTMs (long short-term
memory) are frequently used for both the encoder and decoder in
SMILES-VAE. Though effective, the SMILES-VAEs suffer from the
same issue that plagues most seq2seq models (namely, the inability
to produce 100% verified SMILES strings).

Research groups have shown (Li et al., 2018b; Liu et al., 2018;
Samanta et al., 2020; Jin et al., 2023a; Jin et al., 2023b; Jin et al.,
2023c), that molecular generators based on molecular graphs can
solve the 100% verified SMILES challenge. One such conditional
graph generator for multi-objective de novo molecule creation was
suggested by Li et al. In addition, Jin et al. revealed a string of studies
based on Graph-VAE, with the first being a “Junction Tree” VAE.
Each node of the junction tree stands in for a component of the
original molecule or a single atom. There are two phases involved in
making molecules. The first is a scaffolding over chemical
components designed as a junction tree. Phase two involves

FIGURE 2
(i) Some GAI models; (ii) De novo molecular design workflow (involving transfer learning to address data scarcity) for generating small molecules
against a pre-decided target. (A) Pre-trained deep generative model. (B) TL to learn the essential characteristics of small compounds concerning the
target receptor, and RL approach to enhance the molecular properties in the desired direction. (C) Various physicochemical property filters, structural
alerts, and virtual screening scores for selecting or ranking model-generated molecules for the next level.
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using a graph message-passing network (MPN), a specific kind of
GCN, to combine individual chemical building blocks into a whole
molecule basis the junction tree (Jin et al., 2023c). Although this
approach can keep the molecular representation chemically correct
at every stage, the model requires extra work to learn the encoding of
the tree structure and decoding the latent variable again to a new
tree, making it inefficient for molecular production. Lim et al.’s (Lim
et al., 2020), scaffold-based Graph-VAE is another seminal effort in
this area; it employs a technique of developing derivative molecules
that preserve a specific scaffold as a substructure. The method has
the potential to be too particular, rendering it less beneficial when
working on a novel, unrelated target protein. Three-dimensional
grid-based VAEs, which take cues from 3D image recognition, are
the third kind of cutting-edge VAEs (Ji et al., 2012). Inherently, grids
make learning from 3D spatial conformations via 3D convolutions
easier. This relies heavily on 3D-CNN for both the encoder and
decoder. The input data for a 3D grid-VAE model of molecules
should likewise be in 3D. However, there is a dearth of readily
accessible datasets for 3D Grid-VAE when compared to those
utilized for training SMILES-VAE or Graph-VAE. Because
bioactive conformations are not always similar to probable least
energy conformations, compiling a good 3D molecule database
labelled with bioactive data is challenging. Even though some
programmes can take 1D or 2D molecular structure data and
output it as a random 3D molecular conformation, the actual 3D
structure of the molecule, which may be connected to a molecular
feature like the IC50 of a particular target, would be lost in the

process (Sussman et al., 1998; Wang et al., 2005). These
programmes, which are mostly force-field based 3D molecular
conformation generators, can only ensure obtaining local
potential energy minimum conformations and not the bioactive
conformations that have been validated experimentally. In one of
the studies, Sunseri et al. (Sunseri and Koes, 2020), designed a
helpful toolbox called Libmolgrid, for encoding three-dimensional
molecules onto a grid, greatly simplifying the procedure. Libmolgrid
employs multidimensional grids to represent atomic coordinates to
maintain the spatial connections between the original input’s three
dimensions. It also supports contemporary GPU architectures. The
atoms are shown as continuous, Gaussian-like densities on a three-
dimensional grid with individual channels for every kind of atom.
The encoder, made up mostly of 3D convolution networks, takes 3D
chemical structures and encodes them into a latent space; the
decoder then attempts to decode the latent variable into a new
3D grid display. By expanding the function, which adjusts with the
atoms inside the lattice, and connecting the adjusted atoms with
suitable geometry, the novel 3D grid may be converted again to a 3D
version of a molecule. Although 3Dgrid-VAE shows promise, it has
not yet been perhaps used for a genuine drug development effort
that includes experimental validation. There have been reports of
other AI models for generating molecules in 3D coordinates
(Gogineni et al., 2020; Simm et al., 2023).

More and more researchers are paying attention to learning
disentangled representations for VAE, where the objective is to have
each latent variable in the latent vector capture a different

FIGURE 3
(i) Encoding and decoding an input molecule using a VAE. The encoder’s job is to translate a molecule deterministically into a Gaussian distribution.
Based on the generated mean (µ) and standard deviation (σ), a novel point is sampled before sending it to the decoder. Finally, the decoder’s job is to
generate a novel compound from the sampled point. (ii) A detail illustration of a VAE framework indicating how similar molecules lie in latent space.
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characteristic or aspect of the input (Mita et al., 2023). A molecular
feature may be altered independently of other qualities by modifying
the latent variables linked with that feature if disentangled VAE is
effectively implemented for generating the molecule. In conclusion,
there is no ideal framework for generative modelling, but there are
good reasons to consider using VAEs. Unlike a standard
autoencoder, a VAE’s latent space is continuous and organized,
allowing for more precise regulation of produced outputs and more
natural interpolation between samples. This is very helpful in fields
like drug design, where generating molecules with desired features is
essential. In addition, they are more stable and simpler to train than
GANs because they have a clearly defined optimization objective
and avoid problems like mode collapse (it means the generator will
only generate the most probable outputs it has found and will ignore
the other modes present in the training data, resulting in a lack of
variety in the produced samples.) and training instability. While
models like GANs need a large training set to get reasonable results,
VAEs may be made to learn in low-data regimes. A successfully
produced 3D coordinates may be utilized directly in further
molecular computations, including docking, molecular dynamics,
and quantum mechanical simulations. We foresee this 3D
technology being beneficial for AI-driven drug discovery
initiatives in the near future, as evidenced by rapid research and
fine-tuning of the models for better results. (Polykovskiy et al., 2018;
Kwon et al., 2019; Simonovsky and Komodakis, 2023).

3.2 GANs

There has been a surge of new GAI models with the
development of GANs (Goodfellow et al., 2020). GANs may be
trained to generate synthetic compounds with the required
characteristics via an adversarial training procedure. GANs have
two parts: a generator and a discriminator. By studying the
underlying distribution of actual/real/valid data, GANs may be
trained to produce synthetic/fake data such as pictures, movies,
and novel molecules. In a drug discovery scenario, expanding the
chemical space for prospective drug candidates, GANs may generate

novel molecules that are also chemically plausible. The GAN’s
generator module takes in noise and outputs a synthetic
molecular structure. In contrast, the discriminator module
attempts to tell the difference between real and synthetic
samples. The generator and the discriminator are trained
simultaneously in a competitive fashion, with the generator
learning to make more realistic molecules and the discriminator
improving its ability to tell them apart. Whereas GANs produce data
that is identical to existing data, VAEs generate data that is
statistically comparable to existing data. Because of this, they are
more suited to activities like designing novel therapeutic compounds
with improved characteristics. Figure 4 explains a basic
GAN structure.

ORGAN, ORGANIC, and MolGAN (Guimaraes et al., 2017;
Sanchez-Lengeling et al., 2017; De Cao and Kipf, 2018), are a few of
the GAN approaches that have been documented that use molecular
GAN. Both ORGAN and ORGANIC rely heavily on SMILES strings
and, therefore, suffer from the same issue of 100% validated SMILES
that plagues most seq2seq models. GANs’ training and performance
might be erratic and sluggish. Furthermore, training and
convergence for GANs are often more challenging. Additionally,
for optimal performance, hyperparameters must frequently be fine-
tuned. As mentioned earlier, another issue is mode collapse, which is
theoretically impossible to prevent (Su, 2018). Regularisation and
algorithmic combinationmay boost their performance. ORGAN, for
instance, combines the SeqGAN, as illustrated by Yu et al. (Yu et al.,
2016), and the Wasserstein GAN (WGAN) (Weng, 2019), in its
design. The team behind ORGAN also tweaked the traditional GAN
goal function by including an “objective reinforcement” component
in the reward function of generator RNN to encourage the RNN to
generate molecules with a specific objective attribute or collection of
qualities. Later, building on the foundation laid by ORGAN, the
ORGANIC algorithm was suggested to optimize a distribution
throughout molecular space in terms of a set of target qualities.
Three applications, including organic photovoltaics and melting
temperatures, were used to validate the effectiveness of ORGANIC.
A graph-based GAN (that uses molecular graphs, unlike ORGAN
and ORGANIC) is MolGAN. The computing burden of MolGAN is

FIGURE 4
A self-explanatory sample framework of a GAN comprises two modules (the generator and the discriminator) contesting with each other. While
training this deep generative model, the generative and discriminative losses are closely monitored.
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low, yet it can produce chemically viable structures with 100%
accuracy. With the fast acceptance of GANs as one of the most
advanced GAI tools for generating novel molecules, their uses in
drug discovery are becoming a commonplace. Researchers have used
various GAN flavours to aid drug development, and their results
have been reported in several distinct studies (Kadurin et al., 2017a;
Kadurin et al., 2017b; Putin et al., 2018; Bian et al., 2019; Lin et al.,
2020; Bai et al., 2021).

The recent summary of GANs by Tripathi et al. is worth reading
and analyzing (Tripathi et al., 2022). In this review, the authors
looked at research on drug development that uses several GAN
methods to assess molecular de novo design. In addition, they
explored various GAN frameworks for dimensionality reduction
of data during the preclinical phase of drug discovery. They also
demonstrated several studies using GAN frameworks in de novo
peptide and protein synthesis.

3.3 Flow-based models

Though they are being used widely, there is no explicit
modelling of the true probability density function in either VAE
or GAN. To assess the difference between valid (actual) molecules
and synthetic molecules, VAE optimizes an implicit lower limit on a
probability function, whereas GAN avoids modelling the
distribution and instead learns in an adversarial manner. By
capitalizing on normalizing flow, deep flow-based models can
overcome the intractable problem of explicit density estimation
(Rezende and Mohamed, 2023). A normalizing flow is an
invertible deterministic transformation between the latent and
raw data spaces. For instance, a new technique called MoFlow
learns a chain of transformations to map valid molecules to their
latent representations and a reverse sequence of transformations to
map the latent representations to valid molecules (Zang and Wang,
2006). Shi et al. presented GraphAF to generate graphs using a flow-
based autoregressive model (Shi et al., 2021). Using a breadth-first
search strategy, they determined the optimal sequence for adding a
molecule’s nodes and edges in the training data. The molecular
graph generation process was then broken down into parallelizable
one-step graph modification procedures. In the generation phase,
GraphAF generates a molecule by sampling it repeatedly, a
technique that permits the use of chemical domain knowledge in
valency testing. Even without chemical knowledge criteria, GraphAF
achieved a 68% validity rate on the ZINC data set, which increased to
100% with chemical rules. One significant drawback of flow-based
models is the time needed to complete the intricate hyperparameter
tuning. Introducing real-value noise into the molecule generation
flow may turn the molecular graphs into continuous data, allowing
the flow-basedmodels to be used to their full potential. More study is
needed in this area to compare these models with prevalent ones.

3.4 Diffusion generative models

Diffusion probabilistic models have recently been proven to
operate very well across a wide range of generating tasks, and a
growing body of research has applied these models directly to the
molecule discovery challenge. A series of photos are used to teach a

diffusion model. They can learn the statistical connections between
pixels in a picture and be used to produce new pictures with
comparable characteristics to those in the dataset. One may use
these models to get a sequence of interconnected data points. For
instance, the Abdul Latif Jameel Clinic for Machine Learning in
Health at MIT has developed a novel model called DiffDock that
helps hasten drug discovery while decreasing the possibility of side
effects. DiffDock employs a diffusion generative model to provide a
docking pose space for protein-ligand interactions. More than
100,000 protein-ligand binding postures were used to train this
model, all retrieved from the Protein Data Bank-PDB. This
technique may uncover possible harmful side effects at an earlier
stage in drug development and is more efficient than conventional
approaches (as judged by the PDBBind blind docking benchmark, a
typical benchmark for measuring the accuracy of molecular docking
methods). DiffDock’s potential benefits include lowered drug
research costs, faster drug development timelines, and reduced
risks to human subjects. DiffDock is still in the developmental
phase, but it might significantly alter how drugs are discovered
(MITNEW, 2023). Yet another research presents a novel drug
development strategy that uses a molecular fragment-based
diffusion model. Here, the model may produce compounds with
high binding affinity to the target protein and minimal toxicity. The
model may produce more varied, valid, and drug-like compounds
than other methods. The scientists found the diffusion model based
on molecular fragments valuable for finding new drugs (Levy and
Rector-Brooks, 2023). There must be more use cases for this strategy
in drug development before it can be thoroughly analyzed.

3.5 GNNs

Graphs are structured as 2D data representations without any
spatial connections between elements. However, it is possible to
encode 3D information, such as stereochemistry, into a graph
representation. A graph is defined as a tuple G = (V, E) of a set
of nodes V and a set of edges E, where each edge e ε E connects pairs
of nodes in V. Molecular graphs typically lack directionality,
resulting in unordered pairs in E. The concept of the molecular
graph representation involves mapping atoms and bonds in a
molecule into sets of nodes and edges. One possible approach is
to consider the atoms in a molecule as nodes and the bonds as edges.
However, alternative mappings are also worth considering. In
standard graph representations, nodes are typically depicted as
circles or spheres, while edges are represented as lines. In
molecular graphs, nodes are commonly represented by letters
corresponding to the atom type or by points where the bonds
intersect, specifically for carbon atoms. Each node in the graph
convolutional layer collects data from its neighbours, representing
the regional chemical environment (Bondy and Murty, 1976).

Numerous software packages, for instance can effortlessly
visualize the 2D and 3D depictions of graphs, ChemDraw (Reang
et al., 2023), Mercury (Macrae et al., 2020), Avogadro (Hanwell et al.,
2012), VESTA (Momma and Izumi, 2011), PyMOL (DeLano, 2002),
and VMD (Humphrey et al., 1996).

Graph-based data, such as molecular graphs, may be directly
processed by GNNs. The way these DL models handle molecular
inputs makes them advanced neural network. Machines read these

Frontiers in Pharmacology frontiersin.org08

Gangwal et al. 10.3389/fphar.2024.1331062

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1331062


molecular representations directly from the molecular graph
without requiring extensive modification or engineering by
human experts. Among the various varieties of GNNs, the CNN-
inspired graph convolution network (GCN) (Wu et al., 2022), and
the attention-based graph attention network (GAT) stand out. In a
typical molecular graph, atoms serve as nodes and chemical bonds as
edges to represent a molecule (Figure 5). To perform tasks such as
molecule synthesis, property prediction, and virtual screening,
GNNs successfully learn from and generate molecular graphs. To
update and disseminate data throughout a graph’s nodes and edges,
GNNs use message-passing mechanisms.

Because of their ability to learn association information across
heterogeneous and bipartite domains, such as the association
between patients and illnesses, GNNs are well suited for
generating novel drug-like molecules, predicting their properties,
identifying new drug targets, and predicting the interactions
between drugs and targets. Studies of GNNs from the perspective
of drug discovery and development have been published in recent
years by several research groups (Li et al., 2018b; Bradshaw et al.,
2019; Lyu et al., 2019; Madhawa et al., 2019).

In their study to predict molecular properties, Jiang et al. showed
that GNN was better than other property prediction methods (Jiang
et al., 2021). According to recent research, the characteristics of
compounds may be reliably predicted using a particular GNN
named Chemi-Net (Liu et al., 2019).

While GNNs are among the most cutting-edge approaches to
molecular DL setup, they have flaws. For example, GNNs have
unique challenges, such as over-smoothing. When too many layers
are stacked on top of one another, it becomes impossible to discern
between the characteristics of individual nodes in a network,
devastatingly affecting model performance. Because of this
restriction, modern GNNs typically have no more than four
layers. However, as the model becomes more comprehensive, its

representational power will grow in tandem. It has been shown that
ultradeep neural networks may be helpful in computer vision.
Current state-of-the-art CNNs often include over 100 layers (He
et al., 2016; Hu et al., 2018). To advance point cloud semantic
segmentation, Li et al. (Li et al., 2020a), recently constructed a 56-
layer GNN that outperformed prior art by 3.7%. They proved that
ultradeep GNN stacking is feasible and showed the benefits of such
networks. However, a crucial part of their approach to building such
a deep GNN included randomly rearranging the edges of the graph,
which does not apply to networks with fixed edges like molecules. As
a result, research into techniques for constructing more
sophisticated GNNs for molecular learning is also warranted
from drug discovery and property prediction.

In addition, numerous types of molecules cannot be adequately
described using the graph model. Any structure that includes
delocalized bonds, like coordination compounds and molecules
with polycentric bonds, ionic bonds, or metal-metal bonds, falls
under this category. In the case of molecules with dynamic and ever-
changing atomic arrangements in three-dimensional space, the
graph representation may lack significance, particularly when
bonds between atoms continuously break and form or when the
structure undergoes frequent rearrangements. Another challenge in
working with graph representations is their lack of compactness. A
molecular graph can be represented in various ways, such as an
image, a tuple of matrices, lists, or tables. However, these
representations are typically more challenging to search through
compared to a more concise linear representation, like a string
encoding a structure ID. As the size of the graphs increases, they
become increasingly burdensome, and their memory usage grows
exponentially with the number of nodes (David et al., 2020). The
issue does not arise with linear notations, as they utilize the graph
framework to generate more condensed and memory-efficient
representations for molecules (O Boyle, 2012). Linear notations

FIGURE 5
Graph neural networks for automated de novo drug design.
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offer the benefit of being suitable for use as entries in a table and are
easily searchable, particularly for identity search rather than
substructure search, in cases where a matrix representation is
impractical.

Xia et al., in their review, beautifully explained the intricacies of
GNNs from the viewpoint of de novo drug design (Xia et al., 2019).
Another recent study briefly introduced GNNs and their
applications in de novo drug discovery, including compound
scoring, molecule generation and optimisation, and synthesis
planning. Readers who need in-depth records may refer to these
two review articles (Xiong et al., 2021). For more details on
molecular graphs, readers may refer to an exhaustive review
article on this subject matter (David et al., 2020).

LLMs have made notable progress in the field of NLP,
particularly in terms of their reasoning capabilities. They are
primarily intended for the analysis and interpretation of textual
data. Nevertheless, there are practical situations in which textual
data is linked to intricate graph structures or where graph data is
combined with textual information. A thorough investigation by Jin
et al. presents a detailed examination of scenarios and techniques
pertaining to LLMs on graphs. The study categorizes these scenarios
and techniques into three distinct types: pure graphs, text-rich
graphs, and text-paired graphs. The paper explores various
techniques for utilizing LLMs on graphs, including LLM as
Predictor, Encoder, and Aligner. It also provides a comparative
analysis of different models, highlighting their respective advantages
and disadvantages. The paper also discusses practical applications
and includes open-source codes and benchmark datasets (Jin
et al., 2023d).

3.6 CNNs

CNNs are a sort of artificial network that can automatically
extract features from graph or image input by convolutional,
pooling, and fully connected layers (LeCun et al., 1998; Rifaioglu
et al., 2020; Sun et al., 2020). Running a short window across the
input feature vector as a feature detector is a crucial component to
the success of CNNs when applied to image processing (LeCun et al.,
2015). This method enables a CNN to learn features from the input
independently of their location in the feature vector, significantly
improving its generalization ability. CNN and 2D molecular
structure graphs come together in DeepScaffold (Li et al., 2019)
to provide a complete scaffold-based de novo drug design solution. A
wide variety of scaffold definitions may be used with this approach
to build molecules, from cyclic skeletons to Bemis-Murcko scaffolds.
One of the benefits of this approach is the ability to generalize the
chemical principles for adding bonds and atoms to a given scaffold.
By molecular docking of DeepScaffold-generated molecules to their
corresponding biological targets, researchers were able to determine
whether this method has potential for use in drug development. In
another development, DeepGraphMolGen (Townshend et al., 2020)
was developed using a graph CNN with RL to generate molecules
with desired features. Since 2D graphs are a more natural molecular
representation than SMILES strings, they were used in this
technique for property prediction and molecular generation.
Finally, a novel graph-based approach for drug design from
scratch was developed. Figure 6 shows how a CNN works.

The CNN excels with atomistic geometry; hence, it is often used
with the voxel (Townshend et al., 2020), (a voxel is a graphic data
unit depicting a location in three-dimensional space). There have
been several developments involving CNN. For instance,
DEEPScreen (Rifaioglu et al., 2020), used a 2D representation of
the molecule to predict the drug-target interaction (DTI), while
RoseNet (Hassan-Harrirou et al., 2020), AK-score (Kwon et al.,
2020), DeepDrug3D (Pu et al., 2019), and DeepPurpose (Huang
et al., 2020), each transformed the receptor and ligand into a voxel
for the same task. Although DeepConv-DTI (Lee et al., 2019), and
transformer-CNN (Karpov et al., 2020), used the CNN framework
for sequential input data to develop QSAR models, CNNs are
(Karpov et al., 2020), not well suited for sequential expression
strategies like SMILES (simplified molecular input line entry
system) or protein building blocks.

In multimodal DTI prediction, a discriminative feature
depiction of the drug-target pair plays a key role. Dehghan et al.
proposed a novel multimodal method called TripletMultiDTI that
leverages triplet loss and task prediction loss to accomplish this goal.
This method provides a new framework that fuses the multimodal
knowledge to predict interaction affinity labels. TripletMultiDTI
also offers a novel loss function based on the triplet loss to learn
more discriminative depiction. Using this model, researchers
improved prediction results, as evident from the proposed
approach’s evaluation on three putative datasets (Dehghan
et al., 2023).

Palhamkhani et al. introduced DeepCompoundNet, a
sophisticated model that employs DL to combine protein
characteristics, drug properties, and various interaction data to
predict chemical-protein interactions. This novel model surpassed
the most advanced techniques in predicting compound-protein
interactions, as evidenced by performance evaluations. The
results of this study emphasize the synergistic relationship
between various interaction data, which goes beyond the
similarities in amino acid sequence and chemical structure.
DeepCompoundNet achieved superior performance in predicting
interactions between proteins and compounds that were not
detected in the training samples (Palhamkhani et al., 2023).

3.7 RNNs

The RNN is the most basic model for molecular GAI models.
Perhaps the first team to use RNNs to generate compounds was
Bjerrum et al. [ (Bjerrum and Threlfall, 2017). The concept came
straight from the AI’s NLP subfield (Chowdhary and Chowdhary,
2020). The process of generating new molecules is recast as the
creation of new, unique sequences of characters. These similar
sequence models are sometimes called “seq2seq” (Sriram et al.,
2017), because both the input and the output are sequences.
Sequences from high-dimensional molecules are first reduced to
a single dimension in the seq2seq procedure. Many programmes
can do this. Owing to its long usage history and human legibility
(Tang et al., 2020), the simplified molecular-input line-entry
system (SMILES) is among the most used sequence string
pattern for describing chemical structures. By modelling the
molecule generation process as a series of phases (like phrase
construction in a language translation job) and sampling from the
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network at each stage, it is possible to generate molecules that are
likely genuine and chemically equivalent or improved versions of
the training compounds (Olurotimi, 1994). An RNN may acquire
the common associations between chemical building blocks after
training on a known-molecule database. After training, the
network can predict the degree of similarity between two atoms

or functional groups. These probabilities will shift depending on
whatever portion of the molecule the network has seen before.
Attaching an extra model (like RL) as a property optimizer also
yields unique compounds. Each input value impacts the
subsequent output value when sequential data are fed into the
RNN step by step.

FIGURE 6
(i) Illustration of the basic framework of a plain CNN (deployed to analyze an image, here a heart) consisting of convolutional layers, pooling layers,
and a fully connected layer (ii) In the case of molecular design, a CNN input includes molecular structures or atom distances from molecular graphs.

FIGURE 7
(i) The elementary framework of an RNN showing input unit (x), hidden unit (s), and output unit (o). Different weightmatrixes are U (for the shift from x
to s), V (for the shift from s to s), and W (for the shift from s to o). (ii) Structure generation from RNNs as part of DL-driven de novomolecular design in a
sequential manner.
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Figure 7i illustrates an elementary RNN framework. The left side
of this illustration indicates a folded RNN with a self-loop, which
means the hidden layer s is used to modify itself depending on the
input x. The right side of the illustration shows an unfolded RNN as
a sequential framework to show its working. Sequential data x1, x2, .
. , xt are fed to the RNN as input values, where at every step t, xt is a
d-dimensional feature vector. For instance, if the model gets a group
of words as input, then every word wi is shown as a vector xi. At
every time-step t, the result from the preceding step, st-1, with the
subsequent word vector in the document, xt, are leveraged to modify
the hidden state st as st = f(Wst-1+Uxt) where f is the nonlinear
activation function and U andW are the weights of inputs xt, and st-
1 respectively. st, the hidden state, is the feature depiction of the
sequence up to time t for the sequential input data. The opening
states s0 are typically started as all 0. Thus, one can use it to
accomplish various assignments like sentence building, document
cataloguing, etc.

A similar idea may be used for generating molecules, as shown in
Figure 7ii. The upper part of this Figure shows how an RNN applies
logic to handle and process the information to generate the structure
(right bottom). The y-axis displays all potential tokens that may be
picked at each step; the color reflects the conditional probability for
the character to be chosen at the current stage considering the
previously picked characters, and the x-axis displays the character
that was sampled in this case. The actual working of an RNN in
structure-generation mode is shown in the bottom left part of the
Figure. At every stage, a character is sampled based on the
conditional probability distribution derived from the RNN, and
the newly generated character will be utilized as the input for the
next character to be generated.

Nonetheless, the fundamental RNN has a not-so-complex
structure and has performance restrictions for uses in diverse
contexts. The vanishing gradient problem is the most pressing
issue. As the size of the input series increases, the influence of
things distant from the presently inputted item decreases
exponentially, resulting in low performance for lengthy data
like proteins and other big molecules (Hochreiter, 1998).
Moreover, training time is proportional to sequence length
since the same operation is performed many times. Even in
cases where the elements in sequential data have intricate
associations, the features of these elements are not effectively
learned. To address this vanishing gradient problem (which
prevents the weights from being updated), the theory of long
short-term memory (LSTM) was developed years ago and
recently adopted extensively (Yu et al., 2019). In contrast to
standard RNNs, the LSTM still performs well on longer data
sequences. Several LSTM variants have been developed since its
inception, and lately, gated recurrent units (GRU) with a
simplified internal framework have also seen widespread use
(Cho et al., 2014a; Mouchlis et al., 2021). Feeding a target
protein sequence may be utilized for de novo drug discovery
by arbitrarily generating small molecules (Jastrzębski et al., 2016).
The LSTM and GRU outperformed the conventional RNN and
are commonly used in drug discovery; however, there is still scope
for newer methods to address the vanishing problem more
effectively, especially for very long sequence data (Guimaraes
et al., 2017; Popova et al., 2018; Martinelli, 2022). Validity,
novelty, and variety improved when RL was coupled with a

stacked RNN (Olivecrona et al., 2017; Gupta et al., 2018;
Segler et al., 2018; van Deursen et al., 2020).

3.8 Reinforcement learning

In RL, an agent learns to make successive choices in an
environment to maximize a cumulative reward signal. In drug
development, RL may optimize molecular characteristics in real-
time throughout the design process if coupled with a GAI model. A
drug discovery RL agent interacts with a representation of the
chemical space, and at each step, it chooses an action (such as
changing a molecule structure) that best fits its current situation.
The generated molecule’s projected activity, binding affinity, and
other attributes provide a reward signal to the agent. In this way, an
RL algorithm, coupled with a GAI model, may generate compounds
with desired qualities or optimize particular molecular attributes by
iteratively exploring and utilizing the chemical space. Figure 8
indicates how an RL approach is used for generating
optimized molecules.

Optimizing an agent’s ability to exert influence over its
environment is made possible by RL theory, which offers a
normative explanation based on psychological and neuroscientific
views of animal behaviour (Mnih et al., 2015). The RL algorithm
ensures that the GAI model is always optimized by constantly
interacting with the environment and adopting actions to
maximize predicted cumulative rewards. Unlike supervised and
unsupervised ML, in which performance is limited by the
availability of human previous knowledge and training data, RL
is unconstrained by these factors and may provide superior results.
The methodmay be used for various settings and issues (Chen, 2016;
Li and Du, 2018; Zhu et al., 2018; Holcomb et al., 2019; Vázquez-
Canteli and Nagy, 2019). AlphaGo is the most well-known
application of RL algorithm ever since it beat human Go
champions. REINVENT, developed by AstraZeneca researchers,
is perhaps the first study linked to an RL-based model
(Olivecrona et al., 2017), for applications in drug development.
Drugs against dopamine D2 receptor, and analogues of the
COX2 inhibitor, celecoxib, were generated, and their activities
were predicted using this REINVENT. In developing
REINVENT, a basic generative model based on RNNs was
trained first; then, it used the RNN that had already been trained
as a model for the agent network (Pal et al., 2018).

ReLeaSE (Popova et al., 2018), is another RL-based RNN model
that uses a Markov decision process (MDP) to describe the
generation of SMILES strings. It has fundamental RL
components. In contrast to REINVENT, ReLeaSE employs a fully
connected network prediction model as a reward function, which
also requires pre-training. Both generative and predictive networks
are crucial to ReLeaSE’s success. The authors behind ReLeaSE
showed that ReLeaSE may be used to produce a library of
JAK2 inhibitors. It may be challenging for the RNN to generate
bioactive SMILES if the predictor is not trained appropriately.
Motivated by the findings presented by Mnih et al., in 2015
(Mnih et al., 2015), Zhou et al. (Zhou et al., 2019), developed a
generative model called Molecule Deep Q-Networks (MolDQN) by
combining RL with chemical rules to circumvent issues with
SMILES-based RL models. MolDQN guarantees complete
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chemical validity by specifying alterations to molecules in terms of
adding or removing specific atoms or chemical bonds. Because
MolDQN does not need specific training data, it is immune to
biases introduced by the dataset on which it is used. The MolDQN
model differs from the seq2seq models in that it describes the
alteration of a compound as a molecular Markov decision
process (MDP) (Van Otterlo and Wiering, 2012), and employs
the deep Q-Networks (DQN) (Hester et al., 2017), to answer this
MDP with the essential attributes as rewards. However, MolDQN’s
performance while generating molecules is subpar. The stated
modification only contains three distinct kinds (atom addition,
bond removal, and bond addition); hence, it takes at least six
steps for MolDQN to build a benzene molecule, for example,. All
generated compounds have chemical significance; however, they
may be too challenging to synthesize or have unfavourable drug-
like qualities.

Covalent inhibitors to take on the SARS-CoV-2 major protease
(a significant therapeutic target for COVID-19) were developed by
Tang et al., in 2020 using an advanced deep Q-learning network with
fragment-based drug design (ADQN-FBDD) (Tang et al., 2022).
ADQN-FBDD is more effective at building molecules than
MolDQN since it uses fragments rather than individual atoms.
The DQN agent, guided by the reward function, picks out
rewarding pieces to affix to the right spots in the current state
(the intermediate structure). ADQN-FBDD generates more drug-
like compounds because it considers chemical reaction laws and the
three-dimensional shape of the binding site. As a result, ADQN-
FBDD can effectively probe the chemical space around the
given target.

The capacity of RL-based models to perform distributed
computations is their greatest strength since this drastically
shortens training times in many scenarios. When several
computers are deployed, even the vast chemical space may be

investigated efficiently (Horgan et al., 2018). However, the quality
of the representation of the training data might significantly impact
the performance of the models mentioned above. In contrast to
efficient representations, which capture the most relevant
information, ineffective representations lose key aspects while
training AI models. Exciting new AI algorithms are being studied
to fill this gap. For instance, researchers merged RL with variational
inference in one of the studies to get better results (Fellows
et al., 2019).

3.9 Transformer

Relevance and meaning may be taught using a specific type of
GAI called a transformer by tracing the links between sequential
data, like the words in this statement. Transformer models apply to
any input data as long as they use sequential text, picture, or video
data. A transformer is used, for instance, whenever a person searches
for something on search engine like Google, Bing, etc. GPT-4, BERT
(Bidirectional Encoder Representations from Transformers),
RoBERTa, XLNet, and Megatron-Turing NLG are all examples of
transformers. To find how seemingly unrelated data points in a
sequence impact and rely on one another, transformer models are
used by leveraging a growing body of mathematical techniques
collectively referred to as attention or self-attention. Transformers,
first detailed in a Google study published in 2017 (Vaswani et al.,
2017), are cutting-edge and highly effective GAI models. Nowadays,
text and voice are being translated in real time by transformers,
allowing a wider range of people, including those with hearing
impairments, to participate in meetings and classes. In the medical
field, transformers are being tried to assist scientists in deciphering
gene and protein chains to expedite drug development. Technically,
transformer models are huge encoding/decoding building

FIGURE 8
Demonstration of a basic RL model for de novomolecular design (i) A benzene ring at state St at iteration t, and an initial reward Rt at iteration t, (ii)
the agent picks an action At which attaches a methyl group to benzene (iii) The environment takes this knowledge for generating a subsequent response
that is St+1 state and a new reward Rt+1. This sequence of events goes on until the episode ends.
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components like most neural networks. The special power of
transformers comes from the careful arrangement of their
building components. Transformers use positional encoders to
assign tags to data packets entering and leaving the network. The
attention units then use these tags to create an algebraic map of the
relationships between the various components. In multi-headed
attention, attention inquiries are often conducted in parallel by
computing a matrix of equations. Computers can now recognize
patterns just as humans can with the help of these programmes
(Monteiro et al., 2022).

The most common forms of DL only 5 years ago—CNNs and
RNNs Networks—are being supplanted by Transformers. Seventy
percent of the AI studies submitted to arXiv in the last 2 years make
reference to transformers. This contradicts the findings of an IEEE
research from 2017 that found RNNs and CNNs to be the most
widely used models for pattern recognition. Before transformers
were designed, users had to train neural networks to create large,
labelled datasets, which was time-consuming and costly.
Transformers eliminate this necessity by discovering
mathematical patterns between portions of the billions of
pictures and petabytes of text material stored in the internet and
business databases. In addition, transformer mathematics is well-
suited for parallel processing; therefore, these models are quick to
execute. Popular performance leaderboards like SuperGLUE, a
benchmark created in 2019 for language-processing systems, are
now dominated by Transformers (Dosovitskiy et al., 2020).

A year later, another Google team tried processing text
sequences both forward and backward with a transformer. This
enhanced the model’s capacity to comprehend the meaning of a
phrase by capturing more links between words. Their BERT model
broke 11 records and was included in the Google search algorithm.
Text is one of the most typical data kinds that businesses have;
therefore, within weeks, researchers all across the globe were
modifying BERT for use cases across various languages and
sectors. BERT is especially adept at comprehending the context
of words in a phrase since it was trained on a large text sample. A few
activities that BERT is helpful for are sentiment analysis, named
entity identification, and question-answering. Most information in
the pharmaceutical industry is based on the structures of small
molecules and comparatively larger molecules (receptors, amino
acids, antibodies, etc.). The representation of these structures may
take the form of strings or other sequences. For instance, DeepMind
(an Alphabet-owned company) used a transformer known as
AlphaFold2 to increase our knowledge of proteins. It processed
amino acid sequences like text strings to establish a new watermark
for characterizing how proteins fold. In another development,
AstraZeneca and NVIDIA created MegaMolBART, a transformer
specifically designed for drug discovery. It is a scaled-up version of
the MolBART transformer developed by the pharmaceutical
industry and trained on a sizable, unlabeled library of chemical
compounds using the NVIDIA Megatron framework for creating
large-scale transformer models. The academic health centre at the
University of Florida also worked with NVIDIA researchers to
develop GatorTron. This transformer model seeks to speed
medical research by gleaning insights from vast clinical data
(Devlin et al., 2018).

For generating drug-like compounds, Bagal et al. trained a
transformer-decoder on the next token prediction task with

masked self-attention, inspired by GPT models’ success in
producing meaningful text. In terms of producing valid, unique,
and innovative compounds, their model, dubbed MolGPT,
performed on par with other recently suggested current ML
frameworks for molecular generation. They also showed that the
model may be taught conditionally to influence specific
characteristics of the synthetic compounds. MolGPT may be
utilized to build molecules with the desired scaffolds and
property values by conditioning the molecule generation on
scaffold SMILES strings with required scaffold chemical attributes
(Bagal et al., 2021).

A recent finding emphasizes the growing interest in exploring
bioactive molecules in cancer cell lines. The study proposes a novel
DL-based approach called DeepTraSynergy for predicting drug
combination synergy, recognizing the enhanced efficacy of
multidisciplinary drugs in cancer treatment. The approach
utilizes transformers to learn feature representations of drugs and
incorporates multimodal input, including protein–protein
interaction, drug–target interaction, and cell–target interaction.
DeepTraSynergy employs a multitask strategy, predicting three
outputs: toxic effect, drug–receptor interaction, and drug
combination synergy, with synergy being the primary task. Three
loss functions are defined:, toxic loss, synergy loss, and drug–protein
interaction loss. DeepTraSynergy surpasses conventional and
advanced models in predicting synergistic drug combinations on
DrugCombDB and Oncology-Screen datasets, achieving accuracy
values of 0.7715 and 0.8052, respectively. The evaluation of each
component of DeepTraSynergy demonstrates its effectiveness,
particularly highlighting the significance of incorporating
protein–protein interaction networks in improving the prediction
of synergistic drug combinations (Rafiei et al., 2023).

In conclusion, the attention technique analyses historical data
concurrently, enabling the application of correlation with distant
tokens without reduction, in contrast to the RNN, where only one
hidden state is available. Furthermore, BERT have been used in drug
discovery endeavors and have greatly improved natural language
presentation by employing DL (Devlin et al., 2018). For DTI
applications, the transformer model may be easily included in the
prevalent RNN-based QSAR modelling. Pharmacological action
predictions were made by Karpov et al. (Li et al., 2019) using a
model that applied CNN to a transformer and used as input SMILES
strings. For instance, by combining the protein sequence with CNN
and the chemical structure with BERT, researchers proposed a
molecular transformer DTI (MT-DTI) technique to estimate
ligand-receptor binding affinity (Shin et al., 2023). In a similar
vein to MT-DTI, but using BERT for protein and molecular
structures, another group of researchers proposed a GCN-based
method (Lennox et al., 2021). The goal of the transformer (in the
context of chemical compounds) is to learn the connections between
atoms, just as LLMsmay learn the links between words in a sentence.

3.10 LLMs and CLMs

As was previously noted, the groundbreaking product ChatGPT
is making inroads, thanks to LLMs. Such LLMs are often constructed
with the help of transformers. The latest version of ChatGPT has
significantly increased interest in LLMs. It should be noted, however,
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that LLMs had already made substantial contributions in fields like
voice recognition, machine translation, and part-of-speech tagging
long before this. Hundreds of millions of users utilize ChatGPT, and
there are other systems like Google’s Bard. Such systems have a
straightforward method of operation. The user inputs a query, and
the AI system responds with a string of words (technically tokens) in
an autoregressive fashion, with each word feeding into the prompt
for the next word’s generation.

Specialized transformers with hundreds of billions or, more
recently, trillions of computable parameters exist behind the hood of
an LLM. This model is then trained on enormous datasets taken
from digitally accessible human-generated text such as that found on
the internet. The cost of training such a hugemodel is high because it
requires the employment of thousands of specialized pieces of
computing hardware called graphics processing units (GPUs) to
do the necessary trillions of mathematical calculations. The next-
generation LLM GPT4 is more capacious and proficient in text and
picture processing than its predecessors. It is probably not an
exaggeration to state that LLMs like ChatGPT have effectively
split times into two parts: before and after ChatGPT. Such
models will undoubtedly inspire and inform future upgrades and
advancements in GAI-driven drug development. The idea of
analyzing sequence data and then producing new sequences
(based on the grammar of these data) has been met with
tremendous success, and it is currently being applied to chemical
structures. In this sense, molecules may be seen as the building
blocks of a chemical language (Figure 9) (Bralley, 1996).

There is a prescribed grammar for chemically valid
compounds, just as in human language, in which discrete
components (atoms, like words) may link (form bonds) only in
specific ways. Different high-level features (such as
physicochemical, biological, and toxicological) arise from the
presence and arrangement of molecules’ constituent parts,
giving rise to the concept of “semantic properties. De novo drug
design (Elton et al., 2019), tackles the challenging topic of how to
construct compounds afresh that are chemically valid (that is,
syntax) and contain desirable pharmacokinetic and
pharmacodynamic qualities (that is, semantics), making
knowledge of the chemical language essential. The chemical
cosmos that de novo designers must work with is enormous,
with as many as 1060 tiny molecular entities to consider
(Bohacek et al., 1996). This number is so high that it would be
impractical to attempt a comprehensive enumeration. In
particular, GAI has benefited de novo drug design domain from
the current AI revival (in the form of DL) (LeCun et al., 2015).
Chemical language models (CLMs) (Yuan et al., 2017; Segler et al.,
2018), have been at the forefront of AI-driven de novo design. Since
CLMs may theoretically synthesize many molecules in a single shot
without expert-engineered rules, they show significant potential
for navigating chemical space and exploring sparsely occupied
places (Skinnider et al., 2021; Flam-Shepherd et al., 2022). CLMs
use algorithms already established for NLP to understand chemical
language. Simplified Molecular Input Line Entry Systems (SMILES
(Weininger, 1988)), strings are an example of a string notation that
enables this. Bioactive substances generated by CLMs and verified
in investigations (Yuan et al., 2017; Merk et al., 2018b; Moret et al.,
2021), show that this class of GAI may explore uncharted
biochemical areas. DL algorithms have spurred a revival

(Wiswesser, 1985; Öztürk et al., 2020), in using sequential
molecular representations, initially developed for storing large
databases and identifying molecules in the sequence processing
field. The most popular molecular string representations for de
novo design are:

• Simplified Molecular Input Line Entry Systems (SMILES)
(Weininger, 1988): SMILES strings are created by
transforming H-depleted molecular graphs into a series
where respective atomic symbols signify the atoms, symbols
represent the bonds and branching, and numbers represent
the opening and closing of rings. SMILES are not
unambiguous since they may be found by travelling
through the molecular graph in any direction and starting
from any non-H atom. Canonicalization procedures are
required to produce a univocal SMILES string (Weininger
et al., 1989; O Boyle, 2012). The use of numerous SMILES to
represent the same molecule (Bjerrum, 2017; Arús-Pous et al.,
2019), for artificially growing the number of samples (in case
of inadequate data) to train CLM, commonly known as data
augmentation, has been proven to have positive effects in
several investigations. Data augmentation is a method for
making a dataset seem larger than it is.

• DeepSMILES: To fix erroneous syntax caused by imbalanced
parentheses and ring closure pairs, DeepSMILES (O Boyle and
Dalke, 2018), was suggested to enhance SMILES. Applications
of DeepSMILES for predicting drug-target binding affinity
(Öztürk et al., 2019), have been made, although the complexity
of its syntax makes it less amenable to molecule creation than
SMILES strings (Arús-Pous et al., 2019).

• Self-referencing Embedded strings (SELFIES) (Krenn et al.,
2020): SELFIES are constructed from semantically limited
graphs, allowing each symbol to be utilized to generate a
different graph from the series. Every SELFIES string, unlike
SMILES, is equivalent to a legitimate chemical graph. Though
most SELFIES strings are valid, in certain circumstances, the
validity is assured by post hoc string shortening (Gao
et al., 2022).

Every representation may be seen as a separate chemical
language with its own grammatical conventions that must be
followed to produce chemically sound molecular entities. It has
been noted that SELFIES can avoid the requirement to learn
chemical grammar (since these strings always match genuine
molecules) (Krenn et al., 2022). According to recent research,
knowing the syntax of SMILES strings makes identifying and
maintaining de novo designs that fit the target chemical space
easier than SELFIES (Skinnider et al., 2021). This aligns with
research in the NLP field (Russin et al., 2019), which emphasizes
the advantages of syntax learning to provide improved semantical
features. Overall, it seems that the improved performance of
SMILES, SELFIES, or DeepSMILES is application-dependent,
with generally modest differences (Chithrananda et al., 2020;
Skinnider et al., 2021). InChI representations (explaining
chemical compounds through layers of information separated by
"/") were also employed with CLMs; however, their performance was
very poor compared to SMILES. Compared to the complexity of
structures like graphs, the simplicity of text generation makes
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molecular strings an appropriate representation for molecule
generation. However, linear notations have other limitations,
such as that atoms close together in the molecular graph may be
far apart in the equivalent string (because of rings and branches).
This may be the case since CLMs have been demonstrated to benefit
from both bidirectional learning procedures (Flam-Shepherd et al.,
2022) and the incorporation of language information (Kusner et al.,
2017; Grisoni et al., 2020). Many flavours of GAI have been used for
chemical language modelling (Liu et al., 2020; Öztürk et al., 2020).

Similarly, RNNs with memory cells (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014b), have found widespread
usage (Brown et al., 2019; Polykovskiy et al., 2020; Flam-Shepherd
et al., 2022), in drug discovery research. RNNs are often taught to

create a single character at a time, with each character being
informed by the characters that came before it in the molecular
string. This allows them to be used to generate new molecular
strings (Suresh et al., 2022). Other popular CLM architectures, as
seen earlier in this review, are a) VAE, constituted by an encoder
that converts molecular strings to latent vectors and a decoder that
converts latent vectors back to molecular strings, and b) GANs,
constituted by a generator network that produces novel molecular
strings and a discriminator network aiming to distinguish between
the de novo designs and existing molecules. Alternative DL
approaches have been proposed for de novo design, for instance,
molecular graph generation (Li et al., 2018b; Zhou et al., 2019) or
fragment-based assembly (Jin et al., 2023c), but they have not been

FIGURE 9
(i) An illustration showing the working of CLM on the basic framework of LLM; (ii) Principles of chemical language models (CLMs). (a) Example of a
molecular structure (Kekulé structure) and a corresponding SMILES string. (b) CLMs are trained to iteratively predict the next SMILES character based on
the preceding string characters. (c) Multinomial sampling can be used to generate new SMILES strings from trained CLMs, where SMILES characters are
sampled with a weighted random sampling of probability distributions learned by the CLM.
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shown to outperform CLMs (Brown et al., 2019; Polykovskiy et al.,
2020; Flam-Shepherd et al., 2022). Looking at the current progress
and capabilities of powerful LLMs like ChatGPT and Bard, these
CLMs can be used in various ways to assist drug discovery
scientists, as mentioned below (Xue et al., 2023).

• Screening large datasets of molecules: LLMs may be used to sift
through data sets to find compounds with required features.
To achieve this goal, molecular descriptors, numerical
representations of a molecule’s chemical structure, may be
generated using LLMs. Descriptors may be used to group
molecules with similar characteristics or to pick out
compounds that fulfil certain requirements, such as binding
to a specific protein.

• Generating new drug candidates: LLMs may be employed to
generate potential novel molecules. After training, LLMs may
be used to produce synthetic molecules resembling those in
the training dataset.

• Interpreting research data: LLMs may be used to both
understand patterns in experimental data from drug
discovery research and create hypotheses about the
underlying mechanisms of action. This strategy holds great
promise for assessing the efficacy and safety of drug
candidates.

• Communicating with stakeholders: Reports, presentations, and
other documents developed with the help of LLMs may be
shared with relevant parties such as scientists, doctors, and
regulators. These models may help make decisions and answer
questions from interested parties.

• Repurposing existing drugs: LLMs may be used to locate
existing therapies that might be repurposed for new uses
by analyzing the chemical structure of pharmaceuticals
and finding potential new targets for commercially
hit drugs.

• Interpreting clinical trial data: Using data from clinical trials,
LLMs may be used to make hypotheses about the underlying
mechanisms of action, assess the efficacy of existing drugs, and
identify potential new therapeutic targets.

The large language model developed by the MIT/Tufts team
(ConPLex) can match target proteins with potential drug
molecules without performing the computationally intensive
step of calculating the molecules’ structures. ConPLex can
leverage the advances in pretrained protein language models
(“PLex”) and use a protein-anchored contrastive coembedding
(“Con”) to outperform state-of-the-art approaches. One recent
review summarizes advances in AI-powered LLMs and their
potential to aid drug discovery and development (Liu et al.,
2021). Another review highlights opportunities for AI-powered
LLMs in target identification, clinical design, regulatory decision-
making, and pharmacovigilance (Chakraborty et al., 2023). To
conclude, transformer, LLMs, GPT, BERT, and diffusion models
are all interrelated in the context of generative AI. They are all
based on the transformer architecture, a neural network
architecture well suited for NLP tasks. The following Table 1
compares these GAI tools:

Frequent GAI, research in non-pharma domains, rapid
adoptions of this in the pharma domain, and ongoing findings

indicate that various shades of basic and advanced autoencoders and
transformers will keep coming for better results emanating
from GAI.

4 Data requirement for GAI in
drug discovery

To succeed, the design of a new drug must account for a wide
range of chemistry and biology parameters, including the drug’s on-
target potency, specificity with respect to off-targets, physical
qualities, and more. The standard approach of scientists sifting
through a huge chemical space to find promising candidate
compounds and then proving their worth experimentally is
inefficient. The widespread use of GAI models is attributable, to
a great extent, to their efficiency and accuracy in generating novel
bioactive and synthesizable compounds. The downside is that GAI
models are famously data-hungry, and drug discovery databases are
infamously tiny (e.g., in the range of 101 to 104 known biologically
active molecules). Transfer learning has been widely used for
chemical space exploration to make the most of limited data sets.
It is a two-step process with the goal of applying skills learned while
completing one activity to another. First, during pre-training, GAI
models are typically trained (for example, for predicting the next
character in a molecular string) on a massive dataset comprising 105

to 106 molecules. The second phase involves refining this pre-trained
generic GAI model using a select group of molecules with the
necessary characteristics (such as bioactivity towards a specific
pharmacological target). In low training data regimes, GAI
models have shown potential for various applications, including
generating bioactive compounds inspired by natural products and
simultaneously learning many attributes. Multi-factor interaction is
required for GAI to explore the chemical space successfully. Target
molecule complexity affects the minimal number of molecules
needed to train a reliable model. More complex and
heterogeneous molecules need more training data. The breadth of
the chemical space explored is proportional to the structural variety
of the training molecules, for instance, in terms of molecular
frameworks and structural assortment. Despite evidence that
fine-tuning with 101–102 molecules may result in empirically
proven biologically active designs, doing so may need more
stringent post hoc ranking processes to evaluate just high-quality
structures exclusively. Augmenting SMILES can improve the CLM
performance, although this benefit decreases when the
augmentation factor is increased (e.g., after a 10 to 20-fold
augmentation, as shown in. Small training sets of molecules (not
more than 10,000) benefit the most from SMILES augmentation,
whereas its impact does not change massively for bigger sets of data
of structurally complicated molecules (more than 500,000), perhaps
with the danger of over-enumeration and decline in quality. Though
hyperparameter tweaking may have minimal influence on the
CLMs’ performance, the number of epochs required for
refinement alters the semantical quality of the output and is
dependent on the size and variety of the dataset (Moret et al., 2023).

Active learning, multitask learning, one-shot learning,
federated learning (a sort of ML in which the model is trained
by utilizing separate private data held in multiple places without
sacrificing data privacy), etc., are many other methods (other than
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transfer learning and data augmentation) that may be used to
make the most of the insufficient data. The originality and
reliability of the resulting molecule from GAI are affected by
several variables, including the nature of the data and the GAI
model used. A few recent, well-drafted review articles might be
helpful to readers in this respect (Goldman et al., 2022).
Evaluating GAI models and the quality of their output is often
more difficult and time-consuming than AI-based predictive
models. This is because GAI tools sometimes need users to
prioritize competing goals simultaneously (such as increasing
the resemblance to known bioactive compounds while
simultaneously increasing structural uniqueness). Accordingly,
doing a thorough case-by-case analysis of the structures is
recommended by drawing on both domain experience and
supplementary computational methods (such as
pharmacophore models and molecular dynamics). One obstacle
to a comprehensive assessment of GAI tools is the time and money
needed for chemical synthesis. Rapidly navigating the chemical
space using GAI models will be possible in the future with the help
of self-driving laboratories (Schneider, 2018).

5 GAI in drug discovery:
recent advances

Though at relevant places, we have discussed applications of
GAI in molecular property prediction and de novo drug design, in
this section, we will see a few recent applications of GAI in drug
discovery. GAI models with a track record of effectiveness in other
areas are finding growing use in the study of molecular generation.
One recent work, probably the first to build on the success of
ChatGPT, used the autoregressive model to create a tool called
DrugGPT for ligand creation, emphasizing protein-ligand
discovery and chemical space exploration (Li et al., 2023). To
find new compounds that can associate with specific proteins,
researchers in this work used the DrugGPT model to learn from a
large quantity of protein-ligand binding data. The GPT-2 model
was trained and optimized to meet the needs of the pharmaceutical
industry. To accommodate the unique properties of proteins and
ligands, they discarded the original tokenizer in favor of a BPE-
based redesign and started training the GPT-2 model from scratch.

DrugGPT can better record and comprehend drug compounds’
chemical rules and structural details with this update. It also
improves its ability to interpret data on the interactions
between proteins and ligands, which might lead to the
development of novel therapeutics. To prevent the training
process from becoming unstable due to the Mode Collapse
issue of GANs, DrugGPT uses the back-propagation approach
during model training. In addition, DrugGPT’s design philosophy
gives it robust generalization capabilities, allowing it to learn and
adapt to new tasks. GAI may be a new catchword lately, but Insilico
Medicine, a drug development company, has used it for years.
Early investment in DL is paying off for the firm, as a drug
candidate found using its AI platform is moving forward into
Phase 2 clinical trials for treating idiopathic pulmonary fibrosis.
This rare respiratory condition causes a gradual deterioration in
lung function. Insilico employed GAI throughout the preclinical
drug development process to achieve this breakthrough, from
identifying a new target to generating novel drug candidates to
assessing the binding affinity of these candidates to the target to
predicting the success of clinical trials. Using standard procedures
would have required spending over $400 million and taking up to
6 years. Contrarily, Insilico could do these tasks using GAI in a
third of the time and for a 10th of the expense, completing the first
phase of clinical trials in little over two and a half years. In yet
another study, the benefits of quantum GANs in generative
chemistry were investigated. The authors presented a quantum-
classical GAN hybrid for finding small molecules. The model’s
quantum part is a variational quantum circuit (VQC), a quantum
computer software suitable for molecular computations. The
physicochemical features of the generated molecules and the
model’s performance in a goal-directed benchmark were only
two ways the authors demonstrated that the quantum GAN is
superior to its classical counterpart. Based on their findings, the
scientists think quantum GANs might be helpful in the field of
drug development. In addition to being more effective than
traditional GANs, the molecules they generate have superior
characteristics. Nonetheless, the scientists acknowledge several
remaining hurdles to overcome before quantum GANs are
routinely employed in drug development. The scarcity of and
the need for more sophisticated VQCs are contributing factors.
Overall, the findings of this article are intriguing and show promise

TABLE 1 Different types of GAI models.

Model Description Example applications

Transformer A type of neural network developed by Google Machine translation, text generation, question answering

LLM Type of neural network that is trained on a massive dataset of text Generation and translation of text, question answering, analysis of sentiment,
named entity recognition

GPT A LLM developed by OpenAI. Capable of generating and translating languages, writing various unique content,
and providing insightful answers to users’ prompts

BERT A LLM developed by Google AI. Particularly good at understanding the situation of words in a sentence. It can be
used for sentiment analysis, named entity recognition, and question answering

Diffusion
model

Type of LLM that is trained on a dataset of images It can generate new images similar to those in the dataset.

Flow-based
model

Type of generative model that explicitly models a probability
distribution by leveraging normalizing flow

Image generation, density estimation, anomaly detection
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for using quantum GANs in the pharmaceutical industry.
However, whether or not this promise may be realized requires
more study (Mao et al., 2023).

Another study suggested a GAN based on a transformer for
developing antiviral drugs. Researchers introduced a unique data-
driven self-supervised pre-training generative model named
“TransAntivirus” to perform select-and-replace edits on organic
compounds and transform them into the necessary attributes for
generating antiviral candidate analogues. The scientists proposed
that molecular structures might be encoded in a more informative
fashion by using transformers. They demonstrated that the
transformer-based GAN is superior to previous GAN-based
models in combating viruses. As a result of using this paradigm,
it is possible to produce molecules with desirable characteristics like
high binding affinity to the target protein and low toxicity. The
model was also deemed more original, credible, distinctive, and
varied than its baseline counterparts. As this is simply a proof-of-
concept study, further investigation is required to evaluate whether
transformer-based GANs can be utilized to identify novel
medications in a realistic scenario. In addition, the scientists here
only examined a tiny sample of compounds. It may be even more
effective if the model were trained on a more extensive data set (Yu
et al., 2023).

In another study, researchers detailed how they used generative
models and structure-based drug design (SBDD) to find the
macrocyclic CDK2 inhibitor QR-6401 more quickly. The
scientists employed a generative model called FBVAE to
develop a unique and proprietary lead CDK2 chemical 10 from
previously reported CDK inhibitors. After using SBDD to improve
compound 10 further, researchers isolated the macrocyclic
inhibitor QR-6401. An IC50 of 0.46 nM was observed for QR-
6401, indicating that it is highly active and selective against CDK2.
The anti-cancer activity and oral bioavailability in an
OVCAR3 ovarian cancer xenograft model were similarly
promising. By combining generative models with SBDD, the
scientists found that they could speed up finding novel
medications. With QR-6401 as a proof-of-concept, generative
models and SBDD are expected to be employed to find other
effective drugs (Ren et al., 2023).

AlphaFold was recently employed to hasten the identification of
a new CDK20 inhibitor. Before determining the exact fold of
CDK20, the authors utilized AlphaFold to make educated
guesses. The team then utilized this model to create a library of
synthetic chemicals with binding predictions for CDK20. After
synthesis and in vitro testing, it was shown that one of these
compounds, ISM042-2-048, inhibits CDK20 activity in a
particular and effective manner. AlphaFold, the scientists believe,
may hasten the identification of novel medications by offering high-
quality protein structures for use in generating computational
compounds. Compared to conventional drug discovery strategies,
their strategy only took 30 days to uncover a new CDK20 inhibitor.
AlphaFold predictions may be used to create virtual molecules,
which can then be utilized to discover new therapeutic targets.
AlphaFold’s precise protein structures aid in discovering new
therapeutic targets and quickening the pace at which new
medications are brought to market (Drugdiscoveryonline, 2022).

A comprehensive review by Bai et al. delves into the
application of DL and molecular docking in the field of de

novo drug design. This method entails training a DL model to
produce a molecular SMILES library. The generated molecular
structures are then transformed into 3D ligands for docking with
receptor targets. Binding affinity prediction for de novo drugs is
conducted through virtual screening using DL models. Several
tools, including SyntaLinker, Ligdream, GCPN, MolDQN, and
others, utilize different DL techniques for molecular generation
and optimization. Various models, including DeepDTA,
Pafnucy, OnionNet, AttentionDTA, and GraphDTA, use deep
CNNs and attention mechanisms to achieve precise binding
affinity predictions between drugs and targets (Bai et al., 2022).

Below Table 2 shows some of the under investigation (clinical
trial stage) molecules that emanated from AI:

6 GAI in drug discovery: challenges and
opportunities

AI has recently taken the drug development industry by
storm, allowing researchers to generate entirely novel
compounds from scratch. The crucial driving force (Bickerton
et al., 2012) of the international pharmaceutical business
remains small molecules; therefore, GAI technologies are here
to stay and reshape the current ways to discover or design drug
molecules. There is growing evidence that GAI may be used to
investigate hitherto undiscovered areas of chemistry. This is
mainly due to the simplicity with which molecular strings (in the
case of CLMs) can be generated and used and the breadth of
tasks to which they can be put. We anticipate that future
developments in LLMs/NLP algorithms and the addition of
medicinal chemistry skills will further drive GAI’s capabilities
in drug discovery. Despite GAI’s potential, many obstacles must
be overcome before it can be extensively used in drug
development. Optimizing toy yardsticks (such as molecular
weight, octanol-water partitioning coefficient, or the
quantitative estimation of drug-likeness (Renz et al., 2019), is
a common way to assess the efficacy of GAI models. These goals
capture the capability to generate compounds that meet set
criteria, but they do not do justice to the complexity of actual
drug development (and their exact behaviour/fate in biological
system) and may result in simplistic answers (Merk et al., 2018b;
Moret et al., 2021). Although they do not entirely address the
quality of the generated compounds, existing de novo design
benchmarks (such as GuacaMol (Brown et al., 2019) and MOSES
(Polykovskiy et al., 2020), provide a way to ensure comparison
across techniques developed separately.

Due to the computational difficulties inherent in assessing the
quality of de novo designs, experimental validation represents the
gold standard. Thus far, only a handful of potential GAI applications
have been published (Li et al., 2020b; Grisoni et al., 2021; Moret
et al., 2021). Implementing GAI into practical use will need
cooperation amongst DL experts, cheminformaticists, and
medicinal chemists. Although automated synthesis platforms may
restrict the chemical space available for synthesis, they may be a
viable alternative to speed up de novo design driven by GAI (van
Tilborg et al., 2022).

Though BERT and GPT models have been used to
comprehend molecular structures in the case of chemical

Frontiers in Pharmacology frontiersin.org19

Gangwal et al. 10.3389/fphar.2024.1331062

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1331062


TABLE 2 Some DL-derived, under investigation (under clinical trials) drug candidates.

Organization (s) involved* Name of under-investigation
compound (code name of

clinical-stage assets)

Detail Refs

Exscientia and Sumitomo Dainippon Pharma
(which has expertise in GPCR drug discovery)
[Centaur Chemist]

DSP-1181 (in clinical trial phase I) A potent full serotonin 5-HT1A receptor
agonist with a lengthy half-life against
obsessive-compulsive disorder

Mullard, (2017); Burki
(2020)

DSP-0038 (in clinical trial phase I) A dual-targeted agonist/antagonist for the 5-
HT1a and 5-HT2a receptors against
Alzheimer’s psychosis

Shimizu et al. (2022)

Exscientia and Evotec [Centaur Chemist] EXS-21546 (in clinical trial phase I) An adenosine A2a receptor antagonist for
immuno-oncology therapy for several tumor
types

Shimizu et al. (2022)

Exscientia and one co-owner GTAEXS617 (in clinical trial phase I) A selective and highly potent inhibitor of
CDK7, being investigated against
transcriptionally addicted cancers

Besnard et al. (2022),
Businesswire, (2023b)

Exscientia and Bristol Myers Squibb EXS4318EXS4318 (in clinical trial phase I) Against Inflammatory Diseases Businesswire, (2023b);
Businesswire, (2023c)

Exscientia, under a collaboration with
Sumitomo Pharma, referred to as design as a
service or DaaS

DSP-2342 Phase I clinical trial will commence
soon

A bispecific small molecule dual 5-HT2A and
5-HT7 antagonist with broad potential in
psychiatric disease

Exscientia (2023)

Recursion [Recursion OS] REC-2282 (Phase 2/3 Trial) A possibly first-in-disease, orally active,
central nervous system penetrant small
molecule histone deacetylase (HDAC)
inhibitor to treat progressive
neurofibromatosis type 2 (NF2)-mutated
meningiomas

Jayatunga et al. (2022)

REC-4881 An orally effective, non-ATP-competitive
allosteric small molecule against MEK1 and
MEK2

Jayatunga et al. (2022)

Insilico Medicine 3 [Pharma.AI platform
(PandaOmics3.0 for novel target discovery,
Chemistry42 2.0 for molecule generation and
optimization with ADMET prediction,
InClinico 1.0 for clinical trial prediction)]

ISM001-055 and INS018-055 (in clinical trial
phase I and II, respectively)

Compounds against idiopathic pulmonary
fibrosis

Kirkpatrick (2022), Nagra
et al. (2023)

ISM3091 (in clinical trial phase I) A ubiquitin-specific protease 1 (USP1)
inhibitor that can potentially improve the
result of cancer therapy by decreasing
survivin levels and increasing DR5 through
miR-216a-5p

BB (2023)

ISM8207 (Phase I) (with Fosun Pharma) A potentially first-in-class small molecule
inhibitor of QPCTL for the treatment of
advanced malignant tumors

Eurekalert (2023)

Verge Genomics 4-5 [CONVERGE] VRG50635 (in clinical trial phase I) The
company only took 4 years to bring this
compound from research to the clinical phase

As mentioned in the text Businesswire (2022)

BenevolentAI [Benevolent Platform] BEN-2293 (in clinical trial phase I) For atopic dermatitis Richardson et al. (2020),
Bess et al. (2022),

Jayatunga et al. (2022)

BenevolentAI [Benevolent Platform] and
Sheffield Institute for Translational
Neuroscience (SITraN) at the University of
Sheffield

BEN-34712 (company progresses this
molecule for amyotrophic lateral sclerosis

An oral, potent, and selective brain penetrant
RARɑb (retinoic acid receptor alpha beta)
biased agonist

Benevolent (2023)

Relay Therapeutics [Dynamo Platform] RLY-1971/RG-6433 (in clinical trial phase I) For solid tumors Jayatunga et al. (2022)

Relay Therapeutics [Dynamo Platform] FGFR2 (in clinical trial phase I) For FGFR2-driven cancers

Nimbus Therapeutics NDI-010976/GS-0976 (in clinical trial
Phase II)

For nonalcoholic steatohepatitis (NASH)

Pharos iBio [Chemiverse] PHI-101 (in clinical trial phase I) For acute myelogenous leukemia, platinum-
resistant refractory ovarian cancer, and other
cancers

As far as DSP-1181 is concerned, as per the information on the internet, further research (clinical studies) on it in Japan has been stopped since the Phase I study did not meet the

encouraging output (Schneider, 2018; Company Bap, 2022). Similarly, the clinical trials of BEN-2293 (a clinical-level asset from BenevolentAI) led to inclusive efficacy against atopic

dermatitis, as per multiple websites. According to information on the company website, the company is currently evaluating the results of this trial for further processing of this drug

candidate (Adcreviews, 2023; Benevolenet, 2023; BenevolentAI, 2023; Businesswire, 2023a; Clinicaltrialsarena, 2023).
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compounds, their effect on drug development has not been
particularly noteworthy thus far. Predicting DTIs
computationally is another hurdle. The lack of labelled data is
a significant challenge in training models working with peptides
or proteins rather than small compounds. However, if LLMs can
handle peptide and protein sequences as text, they may be able to
make a difference in this field. In addition, with the latest
advancements in DL, we can now predict which medication
combinations will be most successful against complicated
illnesses by gaining insight into the interaction between small
compounds and genetic alterations. This demonstrates the
promise of building GAI models that integrate data from
many linked domains, such as chemical structures and gene
expression. Large CLMs may be developed similarly to LLMs
by learning from existing examples of such models.

The importance of conditional generation algorithms is
predicted to grow in the coming years. These techniques may
enable the generation of molecules designed to meet specific
requirements, potentially overcoming the limits of current
scoring systems (for instance, because of non-additivity,
activity cliffs (Kwapien et al., 2022; Özçelik et al., 2022). A
promising structure-based design may address de novo design
for as-yet-undiscovered macromolecular targets (Volkov et al.,
2022), by producing molecules that match specific binding sites’
electrostatic and shape properties. Potential shortcomings and
bias in available protein-ligand affinity databases may account for
the lacklustre practical implementation of structure-based de
novo design (Graff et al., 2021). There is untapped potential in
fields like polypharmacology and selectivity that might benefit
significantly from fine-grained control over various aspects of de
novo designs. Exorbitant expense (of GAI setup) and biased GAI
models are further obstacles. If drug candidates are generated
using biased models, they may be unsafe, ineffective, or reflect the
biases of the experts. Cloud computing is one option to overcome
the problem of high processing costs. Thanks to cloud computing,
researchers no longer need to invest heavily in expensive
computer gear to access extensive computing resources. The
time and money required to train GAI models (and address
the issue of inadequate data) may be cut drastically. As
previously said, another option is to use transfer, active, and
federated learning. Alternatively, one might try several data
augmentation methods. As a result, GAI models may be less
susceptible to bias due to data noise. Debiasing methods are
another option since they may be used to either discover and
eliminate biased features from the data or to alter the model’s
weights to lessen the bias (Taly et al., 2019; Abdel-Aty and
Gould, 2022).

Future applications of GAI models are anticipated to be
bolstered by few-shot learning methodologies paired with
large-scale pre-trained CLMs (Gao and Coley, 2020). The
practical usefulness of CLMs in drug development is also likely
to grow as their capacity to suggest synthesizable compounds is
enhanced (Krenn et al., 2022). Expanding chemical languages to
include increasingly complicated molecular entities, such as
proteins and peptides with non-natural amino acids, also holds
considerable promise for expanding the use of GAI tools in
chemistry. Recent discussions (Bender and Cortés-Ciriano,
2021), have gone further on how SELFIES may be further

developed to tackle the problems with existing molecular
string representations, and these ideas could inform new
iterations of SMILES and DeepSMILES as well. The function
of GAI models in the drug development process is anticipated to
grow in importance. GAI will improve time and cost efficiency by
accelerating our ability to explore undiscovered parts of the
chemical space and to create and test fascinating new scientific
ideas for drug discovery. Experts in AI, chemistry, and biology
will be able to work together in the future to create cutting-edge
algorithms infused with scientific information and to acquire AI-
powered novel insights into human biology. In their two reviews,
Bender et al. (Gao and Coley, 2020; Bender and Cortés-Ciriano,
2021), explained what has been achieved and what lacunas are
hindering major fruits in AI-driven drug discovery. Readers are
referred to these two articles for an in-depth analysis of why other
domains are getting more benefits from AI versus biological and
chemical domains, primarily the drug discovery domain (Zhang
et al., 2023).

7 Summary and future directions

The development of GAI has had a profound impact on
finding novel drugs. This article examines where GAI models
are and how they may help researchers find new drugs. The
molecular generators based on simple CNNs, GNNs, and RNNs
may be somewhat efficient. All VAE, GAN, and related methods
use a variational inference strategy. RL differs from variational
inference because it allows real-time process tuning to produce
the unique molecules of interest. There is great potential for these
GAI methods, together with highly effective and modern
transformers and LLMs, to profoundly alter the area of drug
development. However, GAI models need vast and varied
datasets of compounds to learn to produce new molecules
with desirable features, even though current development and
quick advancements in the algorithm imply that the future of
GAI in drug discovery is quite promising. However, getting
access to such databases may be time-consuming and costly.
Although many techniques exist for dealing with insufficient
data, new methods need to be developed so that GAI may be used
to its full potential, just as in other fields. Research into various AI
applications (such as autonomous vehicles, computer vision, and
NLP) may be used for AI-driven drug development since the
underlying algorithms are universal and need domain-specific
adjustments to meet the particular requirements of chemical
compounds and biological macromolecules. More and more
scientists, enabled by today’s technology, are beginning to
appreciate parallel and distributed computing for its many
benefits. Furthermore, GAI models need to be interpretable to
be helpful for drug development. This necessitates that
researchers know why and how the model creates certain
chemicals. There must be a high degree of data robustness in
GAI models. This is because the training data for these models is
often imperfect and contains noise. Despite these limitations,
GAI models are promising to revolutionize drug discovery. These
models can potentially speed up and lower the overall cost of drug
development by automating the generation of novel compounds.
There is a good chance that GAI models will play a crucial part in
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developing novel drugs as technology advances and GAI models
become more sophisticated and as the difficulties of data
insufficiency, model interpretation, bias, and computational
expense are overcome. We are certain that GAI will
revolutionize the drug discovery process and that, when
combined with more conventional methods, we will see
remarkable advances in the generation of life-saving compounds.
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