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Most of the government regulatory agencies, including the United States Food
and Drug Administration and the European Medicine Agency, demand that the
generic complex topical products prove pharmaceutical and bioequivalence. The
evaluation of bioequivalence for complex topical dermatological formulations is a
challenging task that requires careful consideration of several factors. Although
comparative clinical studies are still considered the gold standard approach for
establishing bioequivalence in most formulations, these studies can be costly and
insensitive to detect formulation differences. Therefore, significant efforts have
been made to develop and validate alternative approaches that demonstrate
bioequivalence and expedite the availability of high-quality generic topical
dermatological products. This article reviews the current methods for
determining the bioequivalence of topical formulations in humans, with
particular emphasis on recent advances in these methodologies. Most of the
alternativemethods are sensitive and reproducible, with the capability to ease the
financial burden of comparative clinical studies within a short delivery time. The
limitations associated with each technique are reviewed in detail.
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1 Introduction

Topical drug formulations are primarily designed to deliver drugs to certain skin layers.
These formulations include creams, gels, and ointments. The pharmaceutical market has
many topical innovator brands without generic products due to the complexity associated
with generic drug development and assessments (Li et al., 2018). In assessing topical generic
formulations, the regulatory authorities request a demonstration of the pharmaceutical and
therapeutic equivalence to establish bioequivalence (BE) between the new generic product
and the reference-listed drug (RLD) (Shah et al., 2015). BE studies may be conducted based
on the performance of comparative clinical trials, pharmacokinetic (PK) measurements,
pharmacodynamic (PD) measurements, and in vitro studies (Jalali and Rasaily, 2018).
Although comparative clinical trials are the gold standard for establishing BE, they usually
require many subjects (n > 500) and must have static relevance due to complex factors that
could impact skin permeation. Consequently, these studies are known to be the most
expensive part of the research and development of topical generic products. Regulatory
agencies may approve scientifically valid alternative methods to establish BE “for a drug that
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is not intended to be absorbed into the bloodstream,” which can
detect significant differences between the generic product and the
RLD (Food and Administration).

Many scholars have stated that comparative clinical trials are less
sensitive as a method for demonstrating BE (Yacobi et al., 2014; N Dri-
Stempfer et al., 2009; Navidi et al., 2008). These limitations have
encouraged regulators to explore alternative in vitro and in vivo
approaches for BE assessment of generic topical drugs and improve
the current approaches. The objective of this review article is to
summarize most of the BE testing methods for complex topical
generic products. The review discusses the strengths and limitations
of themost promising approaches and focuses on the suitability of these
methods in the demonstration of BE. It is expected that advanced
techniques in the field of pharmaceutical sciences will facilitate the
development of robust BEmethods for these complex dosage forms and
enable more efficient, accurate, and simple approaches to accelerate the
availability of high-quality generic topical products.

2 Topical drug classification system

The proposed topical drug classification system (TCS) distinguishes
generic formulations from the RLD based on the qualitative (Q1) and
quantitative (Q2) equivalence of the composition of the complex topical
dosage forms and the similarity of in vitro release (IVR), which reflects
microstructural sameness (Q3) (Shah et al., 2015). Four different classes
are presented for various scenarios that may arise, considering whether
a biowaiver is appropriate. In the case of TCS class 1, all three
parameters, Q1, Q2, and Q3, are the same between the RLD and
generic product. In this case, the generic product may be suitable for a
biowaiver. If they are not the same, then a biowaiver cannot be
provided, and additional studies will be required (Shah et al., 2016).
In TCS class 2, generic products have the same Q1 and Q2 as the RLD

but different Q3. In this case, the generic product is not eligible for a
biowaiver, and the applicant must ensure that the safety and efficacy
profiles of the product will not be impacted as per agency requirements.
In TCS class 3, there are Q1 or Q2 differences between the test product
and the RLD, and additional in vitro studies may be required, such as
the excipient component evaluation (Shah et al., 2015). However, the
product has a similar release from the vehicle and delivery through the
skin, resulting in Q3 similar to that of the RLD. These generic products
will be eligible for a biowaiver. In the case of TCS class 4, the generic
product is different in composition, resulting in a different
microstructure (Buhse et al., 2005).

In brief, according to the TCS classification, generic topical drug
products in classes 1 and 3, which have similar profiles to the RLD, will
be eligible for biowaivers. Generic products in classes 2 and 4 must
conduct additional in vivo studies to demonstrate BE. A schematic
diagram of the TCS is presented in Figure 1. Additionally, the regulatory
requirements for documenting the BE of topical products differ between
the United States Food and Drug Administration (US FDA) and the
European Medicines Agency (EMA). The US FDA drafts specific
guidance for each product. In contrast, the EMA prefers a “one-size-
fits-all” approach. Several recent publications have discussed the
suitability of each draft guideline criterion in detail and compared
the agencies’ requirements (Ilić et al., 2021;Miranda et al., 2022; García-
Arieta et al., 2023).

3 Methods

3.1 Comparative clinical endpoint study

Comparative clinical endpoint studies are the traditional
approach to demonstrate BE to the RLD for most complex drug
products, such as creams, gels, and ointments. These studies are

FIGURE 1
Topical drug classification system (Shah et al., 2015).
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often designed as randomized, crossover, or parallel studies using a
prospective generic drug product (U.S. FDA a). Although clinical
endpoints provide direct therapeutic outcomes, they are also
associated with several challenges. Clinical endpoints can be
confounded by several factors, including high variability and
insensitivity due to environmental and pathophysiological factors.
In addition, the weak therapeutic efficacy of some topical drugs and
unstandardized doses can make testing challenging (Carroll et al.,
2004; Krejci-Manwaring et al., 2007). These factors can influence the
performance of a given topical product and make such studies less
efficient and less reliable. Generally, comparative clinical trials are
tedious to perform, costly, require large patient populations, and
may not efficiently detect formulation variabilities. For these
reasons, clinical scientists recommended developing standard
methods that are more reliable and sensitive surrogates for the
BE assessment of topical formulations (Chen et al., 2011;
Harris, 2015).

3.2 Pharmacodynamic study
(vasoconstriction assay)

An in vivo pharmacodynamic study, also called a
vasoconstriction assay (VCA), is limited to topical corticosteroid
(also known as glucocorticoid) products (Chang et al., 2013a). When
applied topically, corticosteroids produce a visible skin-blanching
response caused by vasoconstriction (Wiedersberg et al., 2008). The
blanching methodology, commonly referred to as the
Stoughton–McKenzie assay, employs the visual assessment of
blanching to evaluate the BE of topical formulations in healthy
volunteers based on a 0–4 intensity scale evaluated by professional
observers or via a quantitative method, such as thermography,
reflectance spectroscopy, or laser Doppler velocimetry (Aiache
et al., 1980; Ryatt et al., 1982; Andersen et al., 1993). The choice
of the assessment model of visual blanching or chroma meter is
discussed in the guidance (Singh et al., 1999). The
pharmacodynamic effect has been correlated with the clinical
efficacy of topical corticosteroid products. Thus, the FDA
currently accepts a VCA as a surrogate method to evaluate the
BE of glucocorticoid topical dosage forms (Chang et al., 2013a;
Chang et al., 2013b).

Although the method requires fine-tuning, the
pharmacodynamic approach works well with semisolid
formulations. A VCA is inexpensive and requires fewer healthy
volunteers than clinical endpoint studies. Although a VCA is
accepted by various regulatory authorities, from a practical
perspective, several limitations impact the intensity of skin
blanching, mainly the drug vehicle, concentration, location,
posture, and occlusion. The influence of vehicles based on their
characteristics, for example, high solubility and rapid delivery,
enhances drug response. Therefore, the vehicle may impact the
intensity of skin blanching. The uptake level of a topical formulation
depends on the concentration and duration of application, which
may influence the intensity and location of skin blanching. The
poorest blanching usually occurs within 1–4 cm of the wrist and
elbow. In addition, occlusive ingredients tend to show better drug
penetration and greater blanching intensity (Schwarb et al., 1999;
Fesq et al., 2003; Görne et al., 2007). Despite the high variability of

the assessment, this method has been successfully standardized and
recommended for use by the FDA when applying for a biowaiver for
glucocorticoid-containing topical products.

3.3 Pharmacokinetic study

Pharmacokinetic analysis can be performed in special cases to
evaluate BE for topical formulations where the drug displays
significant plasma/tissue levels, similar to the BE assessment of
oral dosage forms. A rare example of pharmacokinetic
application includes the draft guidance issued by the FDA for
lidocaine patches, followed by an approved drug (ANDA;
Nalamachu and Gudin, 2020). The pharmacokinetic study is
mostly used to establish the safety profile of topical products,
where the level in plasma is significant and in line with the
concentration at the site of action. However, the application of
this technique in BE assessment is very restricted.

3.4 Tape stripping
(dermatopharmacokinetics)

Tape stripping (TS), also termed dermatopharmacokinetics
(DPK), is a noninvasive approach to assess the local
bioavailability or BE in the stratum corneum (SC) layer using an
adhesive tape. This technique can be applied in vivo and in vitro
using skin models, including humans or animals such as pigs, rats,
and mice. After topical application and penetration of formulations,
the basic process of TS is involves placing adhesive tape on multiple
sites on the skin, followed by applying pressure using a roller or
pressure device. The adhesive tape is then removed and placed in a
vial to avoid folding. Then, the product concentration on each tape is
quantified individually. Penetration profiles may be reported as an
indicator of depth within the skin layer. The data obtained could be
used for evaluating different topical formulations to establish BE
(Escobar-Chavez et al., 2008). The rationale behind the TS approach
is that products targeting the SC layer must penetrate and reach
deeper skin layers, and the consecutive removal of SC layers allows
this technique to evaluate topical products in different layers of the
skin (Russell and Guy, 2009). The DPKmethod was under review by
the FDA, and a draft guideline was issued to establish BE for topical
formulations in 1998. However, due to contradictory results
obtained from independent laboratories regarding two generic
tretinoin products, the guidance was withdrawn in early 2002
(Mohan and Wairkar, 2021).

TS is a simple, robust, and minimally invasive method. Given its
simplicity, TS can be used in various research areas, such as
multiplex immunoassays and biomarker identification. However,
several limitations could affect the quality of the assessment. First,
the DPKmethod is only valid for drugs whose site of action is the SC.
Second, the current guidance lacks clear instructions on the amount
or depth of the SC that should be collected and analyzed. Third, and
perhaps the most complex limitation, the guidance requires a
complex validation process involving many participants and
replicate application sites. In addition, there are technical factors
that could eventually alter the outcomes of the assessment. These
factors, which include skin surface contamination, must be
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addressed by limiting the use of topical products prior to the
experiment. Unfortunately, inconsistencies in the TS procedure
may lead to an uneven amount of product being absorbed
into the SC.

3.5 Dermal microdialysis

Dermal microdialysis (DMD) is an in vivo sampling technique
that can analyze the cutaneous pharmacokinetics and
concentrations of pharmaceutical products in dermal tissue.
DMD sampling is also called dermal, intradermal, or cutaneous
microdialysis. When a topical formulation is applied to the skin, the
unbound products in the dermal interstitial fluid (ISF) diffuse into
the lumen of the membrane due to a concentration gradient. The
concentration of the drug in the extracellular space of the skin can be
measured using a thin probe containing small perfused membrane
systems filled with a skin-compatible sterile buffer, which collects
samples within the dermis layer (Anderson et al., 1991; Benson and
Watkinson, 2012). A critical advantage of this technique is its
capacity to measure topical products penetrating both healthy
and diseased skin (Gao et al., 2014). The method is quite
inexpensive because the probes can be easily manufactured.
However, DMD has a certain intrinsic limitation: its relatively
invasive technique may induce inflammation (Kreilgaard et al.,
2001). It is also necessary to use associated, suitable internal
standards for drug concentration determination (Ao and Stenken,
2006). A recent study by Senemar et al. (2019) corroborated the
feasibility of using DMD to establish the BE of topical products
containing metronidazole by comparing the area under the curve
(AUC). DMD was sufficient to discriminate differences in
bioavailability between different formulations with a power
greater than 90%, providing scientific evidence that DMD can be
used as a promising alternative for comparative clinical
endpoint trials.

3.6 Dermal open-flow microperfusion

Dermal open-flow microperfusion (dOFM) is a sampling
technique that allows the evaluation of dermal PK and PD
parameters via continuous sampling of ISF from the dermis. The
main advantage of dOFM over the DMD is the 0.55-mm-diameter
probe design, an open mesh made from polyetheretherketone
(PEEK) that enables direct sampling of high molecular weight
compounds and provides access to the tissue milieu directly
(Schaupp et al., 1999). The main strength of dOFM is its ability
to assess any topical drug regardless of its molecular size,
lipophilicity, or the formulation that is used for its delivery
(Bodenlenz et al., 2016; Kolbinger et al., 2017; Birngruber et al.,
2022). dOFM studies have demonstrated low intra-subject
variability, and none of the methodological factors contributed to
that variability (Bodenlenz et al., 2020). Furthermore, due to the
highly standardized dOFM setup, BE can be determined with a
smaller number of healthy participants (20–30) than in comparative
clinical endpoint studies (hundreds to thousands of participants) for
long sampling intervals using the wearable pumps (Zhu and Sun,
2019; Birngruber et al., 2022).

3.7 In vitro release testing

In vitro release testing (IVRT) is a valuable tool that can compare
the in vitro release rates of the test and RLD. IVRT analyzes the drug
after its release from the vehicle into the receptor medium, which is
separated by a synthetic membrane (Rath and Kanfer, 2020). Many
diffusion systems have been used for IVRT, such as flow scatter,
immersion cell, Franz, vertical, horizontal, static, and side-to-side
diffusion cell systems (KHATANA et al., 2022). A Franz cell or
vertical diffusion cell (VDC) system employing cadaver skin is well
known in the pharmaceutical industry and among drug researchers
working in the dermatology field. IVRT is a well-established and
sensitive method that can reflect changes in the physicochemical
properties of topical products, such as drug solubility, rheological
properties, and particle size. IVRT is an easier BE assessment
approach than in vivo testing. Continuous sample collection is
not necessarily required as its operation can be automated, and
only a small amount of product is needed (Supe and Takudage,
2021). IVRT provides a benefit compared to the manual diffusion
method because it provides fast, reproducible, and accurate
sampling. A recent study by Tiffner et al. (2018) highlighted the
essential components of the test system, with a focus on IVRT
parameters and specific acceptance criteria.

3.8 In vitro permeation test

An in vitro permeation test (IVPT) is also called an in vitro skin
penetration test, and it provides a cost-effective BE assessment of
topical drugs. Typically, ex vivo human skin is used in combination
with cell diffusion techniques that are considered the optimal
techniques for assessing skin pharmacokinetics (Yacobi et al.,
2014). IVPT is recognized by the FDA and the EMA as a
regulatory method for determining the BE of locally acting
topical drugs. Numerous studies have demonstrated that correctly
implemented IVPT methodologies can yield the same results as in
vivo clinical endpoint studies for the BE of two semisolid drugs.
Lehman and Franz (2014) concluded that IVPT with cryopreserved
human skin was more accurate and less variable than an equivalent
pharmacodynamic study and strongly supported the application of
IVPT in determining the BE of complex topical products. Moreover,
a novel experimental design for the generic acyclovir 5% cream was
published based on FDA guidance to reduce the sample number
required to establish BE (Lim et al., 2023). The recently accepted
strategy for the assessment of BE in topical products using the IVPT
technique is only applicable to drugs that rapidly penetrate human
skin, allowing for the evaluation of drug permeation profiles.

3.9 Confocal Raman spectroscopy

Confocal Raman spectroscopy (CRS) is a noninvasive approach
that has been widely used in human skin research. CRS allows for real-
time monitoring of topical product penetration through the skin
(Caspers et al., 1998; Chrit et al., 2007). CRS quantifies the rate and
extent of substance uptake and its clearance via a laser beam directed at
the skin layer (Kezic, 2008). Distinct Raman spectra are recorded for
specific molecules. CRS offers a nondestructive, accurate, and
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reproducible method for obtaining a topical product’s bioavailability.
However, amajor challenge of CRS is the lack of absolute quantification
capabilities (Herkenne et al., 2008). Recently, several proof-of-concept
studies applied CRS to measure topical product concentration.
Iliopoulos et al. (2023) explored the feasibility of the CRS method to
assess the BE of topical products. The permeation of two marketed
ibuprofen gel formulations was investigated in vivo. Mohammed et al.
(2014) studied the in vitro permeation of seven different niacinamide
vehicles with in vivo uptake in human skin models. The results
demonstrated that the niacinamide signal was directly proportional
to niacinamide permeating results in vitro. These studies suggested that
CRS can validate the BE of dermal drugs.

3.10 Near-infrared spectroscopy

Near-infrared spectroscopy (NIRS) has been widely used as a
noninvasive approach to assess product permeation across the skin
layers. The principle behind NIRS is as follows: near-infrared (NIR)
waves can penetrate the skin and quantify product diffusion by
measuring the corresponding IR absorption, followed by linear
multivariate statistical computation (Mak et al., 1990). NIRS is an
advanced, rapid, and noninvasive technique that provides in vivo real-
time monitoring signals. NIRS is superior to other approaches due to its
capability to analyze volatile drugs. For these reasons, the FDA has
provided guidance documents for the development, validation, and use of
NIRS in 2021. Medendorp et al. (2006) monitored the in vivo
concentration of several products in hairless guinea pig skin using
NIRS. SAKIRA et al. (2021) used NIRS combined with multivariate
data analysis to develop chemometric models for the classification and
quantification of metronidazole. Taken together, NIRS and CRS are
promising techniques due to their nondestructive properties. Their future
applications in complex topical BE assessments need to be optimized.

3.11 In vitro–in vivo correlation

The FDA defines in vitro–in vivo correlation (IVIVC) as “a
predictive mathematical model describing the relationship between
an in vitro property of a dosage form and a relevant in vivo
response” (Lu et al., 2011). The establishment of IVIVC has been
promising in the fields of pharmaceutical product development and BE,
aiming to use in vitro drug release performance to predict in vivo drug
behavior. Various drug parameters such as physiological,
physicochemical, and biopharmaceutical properties must be taken
into consideration to establish an IVIVC of topically applied drug
products, as well as in vitro parameters, such as IVRT or IVPT and in
vivo parameters, such as data obtained from TS or VCA (Shah, 2005).
Until now, no regulatory IVIVC guidance for a topical complex
formulation has been drafted. However, the principles described in
the FDA’s documents for ER oral dosage forms have been used to
establish IVIVC for topical products. Generally, establishing an IVIVC
model involves mathematical modeling and data analysis, which are
reviewed in detail by Lu et al. (2011). A successfully developed IVIVC
model can be used as a surrogate method for BE studies to obtain a
biowaiver. IVIVC can also be used as a guide during topical formulation
product development to ensure the safety and efficacy of the final
product. Although establishing a meaningful IVIVC for complex

topical products is quite challenging due to the complexity of BE
processes, one recent study has shown promising results. A study
conducted by Rath and Kanfer (2023) established the IVIVC of
topical metronidazole creams following IVRT and TS in healthy
human participants, respectively, with good qualitative and
quantitative correlations for the reference and test products.

3.12 Physiologically based
pharmacokinetic modeling

Physiologically based pharmacokinetic (PBPK) modeling and
simulation are quantitative approaches that can predict the
pharmacokinetic profile of the active ingredient in humans. The
method considers many intrinsic (e.g., age, genetics, and organ
dysfunction) and extrinsic (e.g., drug–drug interactions) factors
in a mechanistic manner. More specifically, dermal PBPK models
describe skin permeation at or near the site of action and support
alternative BE approaches through virtual screening of healthy
individuals and patients in special populations (e.g., pediatric and
pregnant populations) at the regulatory level (Hamadeh et al., 2021;
Yun et al., 2022). The particular advantage of the PBPK models in
the context of topical formulations lies in their ability to include
inter- and intra-subject variability in skin physiology parameters
such as skin thickness, blood flow, and skin pH.

PBPK models utilize a computer simulation system that reduces
time and associated costs compared with a comparable BE study and
have been extensively used during generic development,
construction of a safe space, and approval processes. Virtual BE
studies have been carried out to speed the generic filing for a
biowaiver on a case-by-case basis (Tsakalozou et al., 2021). The
FDA has recognized the role of PBPKmodeling and simulation as an
alternative BE method, and the first grant in the field of topical
dermatological drugs was awarded in 2014, with several to follow
(Lionberger, 2019; Zhao et al., 2019). On 16 May 2019, the FDA
granted the first abbreviated new drug application (ANDA)
approval for generic diclofenac sodium topical gel 1%, where the
applicant incorporated a PBPK model to demonstrate BE
(Tsakalozou et al., 2021). A collaborative scientific effort is
required to further enhance these PBPK modeling and simulation
methodologies for complex topical dermatological products.

4 Future opportunities

In this scientific review, we have explained the progress of several
promising alternative BE approaches for topical dermatological products
and their limitations, which are summarized in Table 1. The high cost of
comparative clinical endpoint studies makes it necessary to develop
efficient approaches that may facilitate the development, registration,
and approval of complex topical products. The future direction of BE
assessment for topical products would be toward the refinement and
standardization of the existing methodologies for regulatory purposes.
Additionally, the integrated use of multiple approaches may be sufficient
to demonstrate BE, as the limitations of these approaches are not
identical. In conjunction with in vitro studies, the use of PBPK
modeling may adequately benefit studies with detailed
characterization for topical dermatological products.
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TABLE 1 Summary of advances and limitations of bioequivalence testing methods for complex topical generic products.

Method Advantage Disadvantage

Comparative clinical endpoint
study

• Consonantly required for topical BE assessment • High variability

• Eliminate the need for further studies (Yacobi et al., 2014) • Costly and time consuming (Yacobi et al., 2014)

Pharmacokinetic trials • Provides safety profile (Chow, 2014) • Limited application (Chow, 2014)

Vasoconstriction assay • Cost effective (Lehman and Franz, 2014) • High variability

• Limited to corticosteroid drugs (Lehman and Franz,
2014)

Dermal microdialysis • Real-time monitoring (Holmgaard et al., 2010) • Limited to short-duration studies

• Required experience personnel

• Minimal invasiveness (Holmgaard et al., 2010)

Tape stripping • Efficient and simple method • Lack a standardized method

• Painless and allows multiple sampling (Au et al., 2010) • Not ideal for volatile chemicals (Au et al., 2010)

Dermal open-flow microperfusion • Reduction of inter-subject variability • Short sampling time (Bodenlenz et al., 2017)

• Real-time continuous data monitoring

• Can be used with patients experiencing dermatologic diseases (Bodenlenz
et al., 2017)

In vitro release testing • High sensitivity • Limited correlation to in vivo studies (Dandamudi,
2017)

• Simple and easy to use method (Dandamudi, 2017)

In vitro permeation test • Suitable for micro sampling • Biological variability

• Highly sensitive (Lehman and Franz, 2014) • Assay complexity (Lehman and Franz, 2014)

Confocal Raman spectroscopy • Noninvasive • Low penetration depth

• Real-time penetration monitoring (Iliopoulos et al., 2023) • Long acquisition times (Iliopoulos et al., 2023)

Near-infrared spectroscopy • Noninvasive • Complicated model development (Narkar, 2010)

• Real-time penetration monitoring (Narkar, 2010)

In vitro–in vivo correlation • Cost reduction • Model complexity (Burmeister Getz et al., 2021)

• Improvement of product quality (Burmeister Getz et al., 2021

Physiologically based
pharmacokinetics

• Decreases the reliance on human trials • Model complexity (Tsakalozou et al., 2021)

• Cost-effective method

• Predicts drug–drug interactions. (Tsakalozou et al., 2021)
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