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Vascular calcification is a pathological chronic condition characterized by calcium
crystal deposition in the vessel wall and is a recurring event in atherosclerosis,
chronic kidney disease, and diabetes. The lack of effective therapeutic treatments
opened the research to natural products, which have shown promising potential in
inhibiting the pathological process in different experimental models. This study
investigated the anti-calcifying effects of Quercetin and Berberine extracts on
vascular smooth muscle cells (VSMCs) treated with an inorganic phosphate
solution for 7 days. Quercetin has shown the highest anti-calcifying activity, as
revealed by the intracellular quantitative assay and morphological analysis.
Confocal microscopy revealed downregulation of RUNX2, a key marker for
calcified phenotype, which was otherwise upregulated in calcified VSMCs. To
investigate the anti-inflammatory activity of Quercetin, culture media were
subjected to immunometric assays to quantify the levels of IL-6 and TNF-α, and
the caspase-1 activity. As expected, calcified VSMCs released a large quantity of
inflammatory mediators, significantly decreasing in the presence of Quercetin. In
summary, our findings suggest that Quercetin counteracted calcification by
attenuating the VSMC pathological phenotypic switch and reducing the
inflammatory response. In our opinion, these preliminary in vitro findings could
be the starting point for further investigations into the beneficial effects of
Quercetin dietary supplementation against vascular calcification.
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1 Introduction

Vascular calcification (VC) is a pathological condition characterized by the deposition of
calcium-phosphate crystals in the inner and medial layers of the valve and vessel wall (Lee et al.,
2020). Although VC is a pathological process related to aging (Pescatore et al., 2019), many other
chronic diseases, such as atherosclerosis, diabetes mellitus, hypertension, and chronic kidney
disease, are closely associated with VC occurrence (Palit and Kendrick, 2014; Nicoll et al., 2016;
Grootaert et al., 2018; Giha et al., 2022). Multiple mechanisms have been proposed to explain the
calcification within the vessel wall, including the osteogenic differentiation of vascular smooth
muscle cells (VSMCs) (Ceccherini et al., 2022). In healthy vessels, these contracting cells remain
quiescent, regulating the vascular tone and blood pressure. Several external stimuli, such as the
imbalance of calcium-phosphate homeostasis, drive the VSMC phenotypical switch into
osteoblast-like cells, characterized by the expression of specific osteochondrogenic markers
(i.e., osteocalcin (OCN), alkaline phosphatase (ALP), and osteopontin (OPN), runt-related
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transcription factor 2 (RUNX2)) and loss of contractile markers
expression (i.e., α smooth muscle actin). The osteoblast-like
phenotype, also called “calcified,” is responsible for the active
intracellular calcium deposition and extracellular matrix
mineralization (Demer and Tintut, 2008). The lack of effective
treatments has pushed research efforts towards natural extracts-
derived molecules such as Quercetin (Anand David et al., 2016;
Ceccherini et al., 2020; Aghababaei and Hadidi, 2023) and Berberine
(Ai et al., 2021; Li et al., 2023) for their anti-inflammatory and
antioxidant activity exerted in a broad variety of human pathologies,
including cardiovascular diseases. Berberine is an isoquinoline alkaloid
possessing ameliorative effects in experimental mouse models of VC by
activating the Akt signaling pathway, and inhibiting either endoplasmic
reticulum stress or inflammatory reaction (Li et al., 2022; Xiao et al.,
2023). Berberine also preserved arterial elasticity in spontaneously
hypertensive rats by increasing elastin fiber content (Zhang et al.,
2020). Quercetin is a bioflavonoid belonging to polyphenols
contained in many fruits and vegetables, and attracted attention for
the variety of its cardiovascular-related benefits in humans and animal
models, including the regulation of lipid metabolism, the anti-platelet
aggregation, and the vasoconstriction (Patel et al., 2018;
Papakyriakopoulou et al., 2022). However, limited in vitro studies
have investigated its potential activity on vascular cell calcification
(Beazley et al., 2013; Cui et al., 2017). Recent pieces of evidence
indicated that Quercetin could affect the osteogenic switch of
VSMCs, favoring the contractile phenotype. In particular, it would
appear that Quercetin induced the downregulation of several markers
related to calcified phenotype (i.e., β-catenin, Msh Homeobox 2 (Msx2),
Bone Morphogenetic Protein 2 (BMP2), and Osterix) and upregulation
of contractile proteins smooth muscle actin (SMA) and smooth muscle
protein 22-alpha (SM22a) (Beazley et al., 2013; Liang et al., 2018). VSMC
apoptosis is a cellular event that drives the calcification process, and
derived-apoptotic bodies could act as nucleating nodes for calcium
crystal formation (Proudfoot et al., 2000). Cui and colleagues highlighted
the anti-apoptotic activity of Quercetin in calcified VSMCs by inhibiting
the oxidative stress cascade and restoring proper mitochondrial activity
(Cui et al., 2017). These preliminary data are encouraging and have
pointed out the beneficial effects of Quercetin that could be useful in VC;
therefore, in this study, we evaluated the anti-calcifying ability of
2 selected natural extracts, among which Quercetin was found to
possess the highest potential. To elucidate the underlying
mechanisms, markers related to calcified phenotype (runx2 and
galectin-3) and inflammatory environment (interleukin-6 (IL-6),
Tumor necrosis factor-α (TNF-α), and caspase-1) were also evaluated
using confocal microscopy and immunometric assay.

2 Materials and methods

2.1 Cell cultures and phosphate-induced
VSMC calcification

Human coronary artery smooth muscle cells (HCASMC,
Lonza), hereafter abbreviated as VSMCs, were cultured in
Medium 231 with Smooth Muscle Growth Supplement (Lonza)
and Penicillin/Streptomycin for a final concentration of 100 I.U./ml
and 100 μg/mL, respectively. Cells were cultured at 37°C, 5% CO2,

and kept at low passages. To induce calcification, VSMCs were

treated with a calcification medium composed of 1.9 mMNaH2PO4/
Na2HPO4 (1:1) in DMEM high glucose (Holmar et al., 2020) for
7 days, replacing the medium following 72 h treatment.

2.2 Cytotoxicity of natural extracts

Quercetin (purity of 98.1%) and Berberine (purity of 97.2%)
extracts were dissolved in DMSO to obtain a 50 mM stock solution
for Quercetin and 25 mM for Berberine. These solutions were stored
at −20°C until use. In each experiment, stock solutions were diluted
1:10 in the culture medium and further diluted to reach the final
concentration required. To assess the cytotoxic effects, 1,000 VSMCs
were seeded in a 96-well plate and treated with the natural extracts in
a range of 1 and 500 μM, replacing the medium following 72 h
treatment. The viability test was performed following 7 days of
treatments using the CellTiter-Blue® Cell Viability Assay kit
(Promega), according to the manufacturer’s instructions,
measuring the fluorescence at 560/590 nm (Fernandes et al., 2023).

2.3 Anti-calcifying properties of
natural extracts

The nutraceutical concentrations showing viability higher than
70% (according to EN ISO 10993-5) were selected to evaluate their
anticalcifying properties. 1,000 VSMCs were seeded in a 96-well
plate and treated for 7 days with the calcification medium
supplemented with natural extracts, replacing the medium
following 72 h treatment. At the end of the experiments, VSMC
were washed twice with PBS, lysed by HCl 0.6 M treatment for 1 h at
4°C, and overnight at −20°C to complete the cell lysis. According to
the manufacturer’s instructions, the intracellular calcium content
was determined colorimetrically using the Calcium Colorimetric
Assay Kit (Sigma), measuring the absorbance at 575 nm.

2.4 IL-6 quantification

In the culture media, the IL-6 levels were determined using a
non-competitive chemiluminescent immunoassay (Roche Elecsys
IL-6 Kit), according to the manufacturer’s protocol.

2.5 Caspase-1 activity

The activity of caspase-1 was determined using the Caspase-
Glo® 1 Inflammasome Assay (Promega) according to the
manufacturer’s protocol. Briefly, 50 μL of culture medium was
treated with the same volume of Caspase-Glo® 1 Reagent and
incubated at room temperature for 1 h. The luminescence was
measured using a plate-reading luminometer.

2.6 TNF-α quantification

TNF-α Human ELISA Kit (Thermo Fisher) was used for TNF-
α detection. Briefly, 50 μL of culture medium was incubated in a
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96-well plate containing immobilized monoclonal TNF-α
antibodies. Afterward, the biotin-conjugated anti-TNF–α and
the streptavidin–horseradish peroxidase were added to each
well. After that, the antibody–protein complex was detected by
adding tetramethylbenzidine and measuring the absorbance
at 450 nm.

2.7 Transmission electron microscopy

Following 7 days treatment with calcifying medium added to
Quercetin 100 μM and calcifying medium alone, VSMCs were
recovered using trypsin and centrifuged at 300 g for 5 min. VMSC
pellets were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate
buffer, pH 7.2, for 2 h at 4°C and postfixed in 1% osmium
tetroxide in the same buffer for 1 h at room temperature. Cells
were then dehydrated in a graduated series of ethanol, embedded
in Epon-Araldite, and polymerized at 60°C. Ultrathin sections

(60–90 nm), obtained with a Reichert-Jung Ultracut E
(Reichert-Yung, Wien, Austria) equipped with a diamond knife,
were collected on 200-mesh formvar/carbon-coated copper grids,
double stained with aqueous uranyl acetate and lead citrate, and
examined with a Jeol 100 SX Transmission electron microscope
(Jeol, Tokyo, Japan) operating at 80 kV. Micrographs were
obtained with an AMTXR80b Camera System.

2.8 Confocal microscopy

20,000 VSMCs were seeded on a 6-well glass coverslip and
treated for 7 days with the calcification medium supplemented with
natural extracts, replacing the medium following 72 h treatment. At
the end of experiments, VSMC were washed twice with PBS, fixed
with 4% paraformaldehyde for 30 min at 4°C, and permeabilized
with 0.1% Triton X-100 (diluted in PBS) for 10 min at room
temperature. A blocking solution containing 1% BSA and 0.1%

FIGURE 1
Cytotoxicity of Quercetin and Berberine extracts tested on VSMCs (A). VSMC viability in DMSO-treated cells; C refers to control cells (VSMC grown in
medium 231). *Q = Quercetin, B= Berberine (B). VSMC viability following treatment with Quercetin and Berberine extracts in a 1–500 µM concentration
range. Data represent the mean of 3 independent experiments. The dotted line corresponds to 70% of cell viability according to EN ISO 10993-5.
Statistical analysis was performed with one-way ANOVA and Dunnett multiple comparison test; p-value ≤0.05 was considered significant.
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Tween-20 in PBS was applied at room temperature for 1 h. The
primary antibodies (Galectin-3, Invitrogen, MA 1940; RUNX2,
Invitrogen, PA582787) diluted in blocking buffer were added and
incubated overnight at 4°C. The secondary antibodies (Alexa Fluor
594-labeled Goat Anti-Rabbit IgG and Alexa Fluor 488-labeled Goat
Anti-Mouse IgG, Invitrogen) diluted in PBS were then incubated
with the cells for 2 h at room temperature. DAPI staining was
performed for 5 min, followed by mounting with an anti-
fluorescence quenching mounting solution. A laser confocal
microscopy was used to capture images of the cells using
wavelengths of 405 nm, 488 nm, and 561 nm, and the zeta stack
function. Although quercetin possesses intrinsic fluorescence that
can be exploited to track its up-take and intracellular distribution,
this property does not invalidate the test considering the incubation
time used, the nutraceutic degradation andmetabolization processes
(Zhu et al., 2017; Ma et al., 2018; Cao et al., 2020).

2.9 Statistical analysis

The data analysis was performed using GraphPad Prism version
8.0 software (GraphPad Software, San Diego, CA, United States).
Data are presented as mean ± SD and analyzed using a one-way
ANOVA analysis of variance, followed by the Dunnett test for
multiple comparisons. A p-value ≤0.05 was considered
statistically significant.

3 Results

3.1 Cytotoxicity of natural extracts

A cell viability assay was performed in a concentration range of
1µM and 500 µM of natural extracts to assess any potential cytotoxic

FIGURE 2
Anti-calcifying activity of Quercetin and Berberine extracts in calcified VSMCs (A). Intracellular calcium content in VSMCs cultured in calcifying
medium and treated with different concentrations (μM) of natural extracts (B). Quercetin concentration has shown the highest anti-calcifying ability in
calcified VSMCs C: control cells (VSMC grown in medium 231); CM: VSMCs grown in the calcifying medium. Data represent the mean of 3 independent
experiments. Statistical analysis was performed with one-way ANOVA and Dunnett multiple comparison test; p-value ≤0.05 was considered
significant.
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effects. The viability of VSMCs, treated with Quercetin and
Berberine extracts, was reported in Figure 1. For each
concentration tested, an equal amount of DMSO diluted in a
culture medium was used as additional control (Figure 1A). As
expected, DMSO didn’t affect the cell viability, except at 2%,
representing the amount contained in Berberine 500 µM. As
reported in Figure 1B, the cytotoxicity of Quercetin was globally
very low compared to non-treated cells, with a decrease in cell
viability at 500 µM probably related to the presence of 1% DMSO.

Interestingly, Berberine extract exhibited marked cytotoxic effects
for all the concentrations tested except 1 µM treatment.

3.2 Anti-calcifying properties of
natural extracts

To evaluate the anti-calcifying properties of natural extracts,
VSMCs cultured in calcifying media were treated with different
concentration of Quercetin (1–100 μM) and Berberine (1 μM) and,
the intracellular calcium was quantified (Figure 2). Globally, Quercetin
reduced the intracellular calcium amount at each concentration tested
(Figure 2A), although the greatest reduction (63.11%) was observed at
100 µM concentration (Figure 2B). Concerning Berberine, no
significant decrease in intracellular calcium quantity compared to
calcified VSMCs was detected at 1 μM, the only concentration
tested, being all the other toxic for the cells (Figure 2A).

3.3 Anti-calcifying properties of quercetin:
Morphological evidences

Since Quercetin was the most effective natural extract to reduce
the intracellular calcium amount, calcified VSMCs were treated with
100 μM Quercetin and processed cell pellets for Transmission
Electron Microscopy (TEM) observations to confirm the anti-
calcifying properties and verify the intracellular localization
(Figure 3). As reported in Figure 3B, TEM highlighted
intracellular calcium deposits as microcalcifications (see arrows)
located in the cytoplasm and inside vesicles, such deposits were
lacking in control cells (Figure 3A). Interestingly, the concomitant
treatment with Quercetin extract reduced the amount of
calcification, as shown in Figure 3C.

To further investigate the effects of Quercetin extract on VSMC
phenotype, we also performed immunofluorescence anaylses by
confocal microscopy. VSMCs were cultured in calcifyng medium,
treated with Quercetin, fixed and eventually incubated with anti-
RUNX2 and anti-Galectin-3 antibodies. (Figure 4). Galectin-3 and
RUNX-2 are well-known markers of VSMCs in their activated and
calcified phenotype. If Galectin-3 is equivalently expressed in calcified
(Figure 4A) and Quercetin-treated VSMCs (Figure 4B), on the other
hand, variations were observed for RUNX2, which is localised inside
the nucleous. Indeed, in calcifiedVSMCs, RUNX-2 nuclear expression
is evident (in every nucleus it co-localizes with DAPI). In Quercetin-
treated VSMCs some nuclei still maintain the positivity for the red
signal, but others show only the blue fluorescence for DAPI.
Moreover, when calcified VSMCs were treated with Quercetin
extract, an increased number of cells was noticed. This observation
was confirmed by the viability assay (Figure 4C), which showed a
significant increase in cell number when VSMCs were treated with
Quercetin extract compared to those quantified in calcified VSMCs.

3.4 Anti-inflammatory activity of
quercetin extract

It has already been demonstrated that increased levels of pro-
inflammatory cytokines, such as IL-6, TNF-α and Interleukin-1β

FIGURE 3
Transmission electron microscopy (TEM) of VSMCs.
Representative TEM images of control VSMCs cultured for 7 days in
medium 231 (A), in calcifying medium (B) and in calcifying medium
supplemented with Quercetin extract 100 μM (C). In B, clusters
of microcrystals are scattered throughout the cytoplasm (see arrows),
sometimes inside vacuoles, and absent in the nucleus. When VSMCs
are treated with Quercetin, the cytoplasm is predominantly devoid of
clusters. GC: Golgi Complex; RER: Rough Endoplasmic Reticulum; N:
Nucleus; M: Mitochondrion. Scale Bar: 500 nm.
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(IL-1β) drive the VSMC phenotypic switch, thus triggering VC and
its pathological progression. Starting from this evidence, that
markers were quantified in VSMC culture media (Figure 5). As
expected, calcified VSMCs exhibited a significant increase in
inflammatory mediators IL-6 (Figure 5A), TNF-α (Figure 5B),

and caspase-1 (Figure 5C) compared to control cells. The
concomitant treatment with Quercetin 100 µM significantly
counteracted the pro-inflammatory environment associated with
VSMC calcification by reducing IL-6, TNF-α, and caspase-1
quantity approximately by 93%, 80%, and 99%, respectively.

FIGURE 4
Anti-calcifying properties of Quercetin extract. Representative confocal microscopy images showing the expression of Galectin-3 (green
fluorescence) and RUNX2 (red fluorescence) in VSMCs treated with calcifying medium (A) and with the concomitant treatment with Quercetin
extract (B). Cell nuclei were stained with DAPI (blue fluorescence). Scale bar is 10 μm (C). VSMC viability expressed as number of cells C: control
cells (VSMC grown in medium 231); CM: VSMCs grown in the calcifying medium; CM + Q100µM: VSMCs grown in the calcifying medium
supplemented with Quercetin extract (Q) at the indicated concentration. Data represent the mean of 3 independent experiments. Statistical
analysis was performed with one-way ANOVA and Dunnett multiple comparison test; p-value ≤0.05 was considered significant.

FIGURE 5
Analysis of the anti-inflammatory properties of Quercetin extract. The amount of IL-6 (A), TNF-α (B), and caspase-1 activity (C) was quantified in
VSMC culture media. C: control cells (VSMC grown in medium 231); CM: VSMCs grown in the calcifying medium; CM + Q100µM: VSMCs grown in the
calcifying medium supplemented with Quercetin extract at the concentration indicated. Data represent the mean of 3 independent experiments.
Statistical analysis was performed with one-way ANOVA and Dunnett multiple comparison test; p-value ≤0.05 was considered significant.
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4 Discussion

VC is a pathological condition characterized by the
deposition of calcium-phosphate crystals in the vascular
system, which occurs in the intimal and medial layers of the
vessel wall (Lee et al., 2020). Effective therapies for VC are scant,
thus, extensive research efforts have been dedicated to discover

new potential anticalcifying drugs. In recent years, natural
dietary compounds have emerged as useful candidates in VC
treatment (Chao et al., 2019; Ai et al., 2021). In the present study,
we tested the anti-calcifying ability of two different natural
extracts containing Quercetin (purity of 98.1%) and Berberine
(purity of 97.2%) using an in vitro model of calcified VSMCs. A
graphical overview of the experimental workflow is reported in

FIGURE 6
Schematic overview of the experimental workflow.
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Figure 6. We first evaluated the cytotoxic potential of
nutraceuticals in a concentration range of 1 µM–500µM,
showing overall low cytotoxicity, except for Berberine, which
induced a marked reduction in cell viability. Quercetin was
effective in reducing the intracellular calcium quantity by
63%. This finding was confirmed by TEM analysis. Indeed,
VSMCs treated with a calcifying medium for 7 days exhibited
micro-calcifications in the cytoplasm and inside vesicles, greatly
reduced following Quercetin treatment. Intracellular calcium
deposition is a cellular active process of VSMCs undergoing the
phenotype change towards an activated osteogenic phenotype
(Speer et al., 2009). Published data have correlated this
phenotypic switch to the increased expression of several
markers, including RUNX2 (Lin et al., 2016; Cobb et al.,
2021) and Galectin-3 (Tian et al., 2017; 2021). RUNX2 is a
member of the transcription factor family that has been found
upregulated in calcified VSMCs, and whose knockout reduced
the expression of its downstream osteogenic targets Osterix,
Osteocalcin, and Bone sialoprotein, thus attenuating
calcification (Sun et al., 2012; Lin et al., 2015; Lin et al., 2016;
Cobb et al., 2021). Like RUNX2, Galectin-3-deficient VSMCs
exhibited defective expression of osteogenic transcription
factors and disorganized mineralization (Menini et al., 2013;
Tian et al., 2015). The analysis of these effectors with confocal
microscopy confirmed the nuclear presence of RUNX2 and a
detectable signal for Galectin-3 in calcified VSMCs. In
Quercetin-treated VSMCs, we detected a marked reduction in
RUNX2 expression, but no noticeable changes in Galectin-3
expression. Interestingly, cell number increases with Quercetin
treatment and the viability assay confirmed this observation,
showing an increase in Quercetin-treated VSMCs compared to
calcified ones, albeit slightly lower than the viability of control
cells, indicating a healthy and proliferative cell state. It has
already been demonstrated that inflammation is a key
condition that drives the VSMC phenotypic switch, thus
triggering VC and its pathological progression (Lee et al.,
2021). For example, IL-6 mediates VSMC mineralization
through the expression of heat shock protein 70 (HSP70),
BMP2, Tissue Non-Specific Alkaline Phosphatase (TNAP),
and osteopontin (OPN) (Yao et al., 2009; Sun et al., 2017). Of
interest, Zickler and colleagues demonstrated that TNF-α
regulates IL-6 secretion through AP-1/c-FOS signaling and
promotes VSMC phenotypic transition through increased
TNAP activity (Zickler et al., 2018). TNF-α also promoted
VSMC apoptosis and the accumulation of apoptotic bodies
that promote the pathological deposition of
microcalcifications (Proudfoot et al., 2000; Aikawa et al.,
2007; Shanahan, 2007). Interleukin-1β (IL-1β) is an important
pro-inflammatory mediator synthesized as a biologically
inactive polypeptide and processed by caspase-1 to generate
the pro-inflammatory cytokine (Sutterwala et al., 2006).
Interestingly, IL-1β upregulation has been observed in
calcified VSMCs, both in vitro and in vivo studies (Wen et al.,
2013; Awan et al., 2016; Ceneri et al., 2017; Shobeiri and
Bendeck, 2017). According to this evidence, we quantified IL-
6 and TNF-α levels, and caspase-1 activity in calcified VSMC

culture media both in the presence and absence of Quercetin
extract. Our data confirmed the increase of inflammatory
mediators IL-6, TNF-α, and caspase-1 during cell calcification
compared to the amount quantified in controls. Interestingly, in
Quercetin-treated VSMCs, we detected a significant reduction in
marker expression (greater than 80%) compared to the levels
quantified in VSMCs cultured in calcifying medium.
Collectively, our data demonstrated that Quercetin extract
was effective in reducing VSMC calcification. A possible
explanation for its anti-calcifying properties can be found in
the interplay between VSMCs phenotypic switch and
inflammation. Indeed, Quercetin treatment reduced the
inflammatory response, which is a direct inducer of
osteogenic transition, thus attenuating the pathological
phenotypic switch. The reduction of RUNX2 expression, a
marker for calcified phenotype, would support this
hypothesis. Moreover, Quercetin restored VSMC viability,
possibly interfering with cell apoptosis which represents a key
event in the deposition of calcium crystals. Although quercetin has
been largely investigated in several in vitromodels, the novelty of our
study concerns the use of primaryHCASMCs as screening platform to
assess the potentiality of quercetin in vascular calcification. Indeed,
published data derived from in vitro model HCASMCs-based are
scanty, and the majority were obtained in Coronary Artery-SMCs
derived from rat (Cui et al., 2017) and in human/rat aortic-SMCs (Lu
et al., 2012; Beazley et al., 2013). In our opinion, these preliminary
in vitro observations could be the starting point for new investigations
on the beneficial effects of Quercetin dietary
supplementation against VC.
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