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Background: Collagen represents a prominent constituent of the tumor’s
extracellular matrix (ECM). Nonetheless, its correlation with the molecular
subtype attributes of clear cell renal cell carcinoma (ccRCC) remains elusive.
Our objective is to delineate collagen-associated molecular subtypes and further
construct diagnostic model, offering insights conducive to the precise selection
of ccRCC patients for immunotherapeutic interventions.

Methods: We performed unsupervised non-negative matrix factorization (NMF)
analysis on TCGA-KIRC samples, utilizing a set of 33 collagen-related
differentially expressed genes (33CRDs) for clustering. Our analysis
encompassed evaluations of subtype-associated differences in pathways,
immune profiles, and somatic mutations. Through weighted gene co-
expression network analysis (WGCNA) and four machine learning algorithms,
two core genes were found and a diagnostic model was constructed. This was
subsequently validated in a clinical immunotherapy cohort. Single cell
sequencing analysis and experiments demonstrated the role of core genes in
ccRCC. Finally, we also analyzed the roles of MMP9 and SCGN in pan-cancer.

Results: We described two novel collagen related molecular subtypes in ccRCC,
designated subtype 1 and subtype 2. Comparedwith subtype 1, subtype 2 showed
more infiltration of immune components, but had a higher TIDE (tumor
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immunedysfunctionandexclusion) score and increased levels of immune
checkpoint molecules. Furthermore, reduced prognosis for subtype 2 was a
consistent finding in both high and low mutation load subgroups. MMP9 and
SCGN were identified as key genes for distinguishing subtype 1 and subtype 2. The
diagnostic model based on them could better distinguish the subtype of patients,
and the differentiated patients had different progression free survival (PFS) in the
clinical immunotherapy cohort. MMP9 was predominantly expressed in
macrophages and has been extensively documented in the literature.
Meanwhile, SCGN, which was overexpressed in tumor cells, underwent
experimental validation, emphasizing its role in ccRCC. In various cancers,
MMP9 and SCGN were associated with immune-related molecules and
immune cells.

Conclusion: Our study identifies two collagen-related molecular subtypes of
ccRCC and constructs a diagnostic model to help select appropriate patients
for immunotherapy.

KEYWORDS

clear cell renal cell carcinoma, collagen, molecular subtypes, machine learning, diagnostic
model, immunotherapy

Background

In recent years, the incidence of kidney cancer, particularly renal
cell carcinoma (RCC), has been on the rise (Siegel et al., 2023). RCC is
the most prevalent renal malignancy, accounting for approximately 5%
of all cancer diagnoses in men and 3% in women (Capitanio et al.,
2019). Among the various pathological types, ccRCC is the most
common, constituting around 75% of all RCCs and presenting a
high mortality rate (Moch et al., 2016). For localized ccRCC, the
preferred treatment is surgery; when faced with postoperative
recurrence, metastasis, or advanced stages of ccRCC, targeted
therapy and immunotherapy are commonly employed (Ljungberg
et al., 2022). Despite these treatment modalities, a significant portion
of patients do not respond favorably to immune checkpoint blockade
(Díaz-Montero et al., 2020). Genomic investigations have unveiled
complex heterogeneity within and among tumors in ccRCC patients
(Li et al., 2023). To address these challenges, there is an urgent need to
enhance our ability to identify high-risk tumor subtypes and discover
more effective biomarkers (Barata and Rini, 2017).

Tumor heterogeneity is evident in the intricate tumor
microenvironment (Xiao and Yu, 2021). The non-neoplastic
ECM significantly influences this environment. Recent research
highlights the correlation between ECM composition changes
and immunotherapy response (Lim et al., 2019). As a major
ECM component, the role of collagen in tumors is gradually
being recognized (Necula et al., 2022). Studies demonstrate that
oncogenic collagen I homotrimers foster pancreatic cancer cell
proliferation, while their deficiency enhances anti-PD-
1 immunotherapy efficacy (Chen et al., 2022). Tumor derived
type III collagen sustains tumor dormancy, and its disruption
restores tumor cell proliferation through DDR1-mediated
STAT1 signaling (Di Martino et al., 2022). In breast cancer,
collagen promotes tumor growth and invasion through multiple
mechanisms (Maller et al., 2021; Li et al., 2023). COL4A1 accelerates
liver cancer progression, while XVII collagen drives metabolic
reprogramming in lung cancer (Wang et al., 2020; Hsu et al.,
2020). In urological tumors, Collagen VI can not only promote

the proliferation and invasion of bladder cancer, but also cause
integrin α1-deficient CD4+ T cells to accumulate in the prostate
tumor stroma, thereby inhibiting anti-tumor T cell responses (Piao
et al., 2021; Pruitt et al., 2023). However, there is currently an
inadequate comprehension of the relationship between collagen and
the heterogeneity of the tumor microenvironment in ccRCC.

In this study, we developed a new subtyping system of ccRCC
based on prognosis associated collagens. We explored the two new
subtypes from multiple perspectives, and based on the core genes, a
diagnostic device to distinguish the two subtypes was constructed.

Methods

Data collection and sources of data

Collagen related genes (CRGs) were obtained from the Gene Cards
(https://www.genecards.org/), and genes with a correlation score greater
than 5 were selected (Stelzer et al., 2016). The gene expression RNA-seq
count data (535 tumor samples and 72 normal samples),
clinicopathological information and CNV (copy number variation)
data of TCGA-KIRC were all obtained from the xena website
(http://xena.ucsc.edu/) (Goldman et al., 2020). We downloaded the
tumor mutation data of TCGA-KIRC using the TCGAbiolinks package
(Version 2.27.2). We analyzed the PFS of patients treated with
Avelumab + Axitinib in the JAVELIN Renal 101 cohort to evaluate
the prognosis of immunotherapy (Motzer et al., 2020).

Differential analysis

EdgeR package (Version 3.38.4) and Deseq2 package (Version
1.36.0) were used to identify differential expression genes (DEGs)
between ccRCC tissue and normal kidney tissue. The identification
conditions of DEGs were set as | log2 (fold change) | >2 and
p-value <0.05. For the differential genes identified between the two
kidney cancer subtypes, EdgeR package (Version 3.38.4) and
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Deseq2 package (Version 1.36.0) were also used for differential
analysis, and the standards were also | log2 (fold change) | >2 and
p-value <0.05. In the analysis among patients of different ages, we
defined patients aged 60 and older as elderly patients (Siegel et al.,
2018; Motzer et al., 2019). Collagen related DEGs, differential genes
for typing, and differential genes between two ccRCC subtypes were
visualized with the pheatmap package (Version 1.0.12). We used the
tinyarray package (version 2.2.7) to draw the Venn diagram. The
ggpubr package (version 0.4.0) was used for the visualization of
boxplots after differential analysis, but the difference in mRNA
expression of MMP9 and SCGN in ccRCC tissues and normal
tissues was analyzed with UALCAN (https://ualcan.path.uab.edu/)
(Chandrashekar et al., 2017). The immunohistochemical image data
in this study came from the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/) (Sjöstedt et al., 2020).

Protein-protein interaction (PPI) network
construction and correlation analysis

We imported the 33CRDs obtained through univariate cox
analysis into the string tool (https://string-db.org/) for PPI
network analysis (Szklarczyk et al., 2021). Cytoscape software
(version 3.8.2) was used to further analyze the data exported in
string for constructing the PPI network. Hub genes and three
modules were respectively identified by Cytohubba and MCODE.

Copy number variation analysis

Using the downloaded ccRCC copy number variation data, we
analyzed the frequency of gain or loss of copy number for 33 genes
used for disease subtype identification. Afterwards, we visualized the
chromosomal loci where copy number variations occurred for these
genes using the RCircos package (version1.2.2).

NMF clustering algorithm was used to
cluster the KIRC samples

A NMF clustering algorithm was used to cluster the KIRC
samples. When using the NMF algorithm, we chose brunet for
clustering. We chose the number of iterations nrun to be 50. The
rank was set from 2 to 6 for calculation. Cophenetic was used to
determine the optimal number of clusters. The R package Rtsne
(version0.16) was used to downscale the samples of subtype 1 and
subtype 2, and the downscaling results were visualized with the R
packages paletteer (version1.5.0) and ggplot2 (version3.4.0).
Verification of clustering stability was completed based on the
RECA-EU ICGC cohort.

Gene set enrichment analysis (GSEA)

The log2FC used in the enrichment analysis was based on the
Deseq2 package. Pathways in Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) were taken out for
GSEA. The clustetrProfiler package (version4.7.1.3) and the

org.Hs.eg.db package (version3.15.0) were used for GSEA, and
the enrichplot package (version1.16.2) and the ggplot2 package
were used for visualization of the results. The pathway screening
criteria were |normalized enrichment score (NES)| > 1,
p-value <0.05, and pathways meeting these criteria were defined
as significantly enriched pathways.

Immune landscape analysis

We used the estimate package (version1.0.13) to calculate the
immune score, stromal score, estimate score, and tumor purity. We
used the single-sample GSEA (ssGSEA) algorithm to calculate the
active level of immune cells and immune function for each sample.
We obtained the TIDE score for each sample at TIDE (http://tide.
dfci.harvard.edu/) (Sjöstedt et al., 2020; Fu et al., 2020). We
compared the expression of molecules related to immune evasion
and T cell exhaustion in subtype 1 and subtype 2, which included
PDCD1, TIGIT, LAG3, CTLA4, CD80, and CD86.

Mutation analysis

The acquisition of TCGA mutation data for ccRCC samples
relied on the TCGAbiolinks package (version 2.27.2). We performed
mutation analysis on the obtained data by maftools package (version
2.12.0) and then calculated the tumor mutation burden (TMB) for
each patient and compared TMB between subtype 1 and subtype 2.

WGCNA and machine learning model
screening for subtype markers

Using the gene expression matrix and subtype grouping
information as input data, an appropriate soft threshold β was
extracted to construct a co-expression matrix. We set the upper limit
ofmodule genes to 6000, set the lower limit ofmodule genes to 30, set the
height threshold of module merging to 0.25. Correlation coefficient
between themodules and subtypes was calculated. The samples involved
in subtypes identification were randomly divided into training set and
validation set according to 7:3 using the caret package (version6.0.93).
The randomForest package (version 4.7.1.1), kernlab package (version
0.9.32), xgboost package (version 1.7.3.1) and stats package (version
4.2.2) were used to train the four models of RF (random forest), SVM
(support vector machine), XGB (extreme gradient boosting) and GLM
(generalized linear model) respectively. We visualized the evaluation
results through residual reverse cumulative distribution plot (RCDP),
boxplot of Residuals (BPR) and gene importance plot. We calculated the
receiver operating characteristic (ROC) of the four machine learning
models using the pROCpackage (version1.18.0), and theAreaUnder the
Curve (AUC) value of each model was shown in the legend.

Build diagnostic models for subtypes

We constructed a diagnostic nomogram with the rms package
and drew a calibration curve to represent its calibration. ROC was
used to demonstrate the discrimination of the nomogram.
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Single-cell analysis

Single-cell transcriptome sequencing data of KIRC_GSE171306,
all from untreated ccRCC samples, were used for analysis. The
Tumor Immune Single cell Hub (TISCH) was used for single cell
analysis (Sun et al., 2021). The FindMarkers function in the Seurat
package was used to calculate DEGs. Subsequently, functional
enrichment analysis was performed using ClusterProfiler.
Monocle was used to perform pseudotime trajectory analysis
(Trapnell et al., 2014).

Cell culture and transfection

786-O and ACHN cells obtained from Procell Life Science &
Technology (Wuhan, China) were used in this study. The shRNAs
were purchased from GeneCopoeia (United States). 786-O was
cultured in RPMI-1640 medium containing 10% fetal calf serum
(Gibco; United States) and maintained in a humidified atmosphere
with 5% CO2 at 37°C. ACHN was cultured in MEM medium
containing 10% fetal calf serum (Gibco; United States) and
maintained in a humidified atmosphere with 5% CO2 at 37°C.
SCGN shRNA or shControl were transfected into 786-O cells
and ACHN cells with Lipofectamine 2000 (Thermo Fisher
Scientific, United States).

Quantitative real-time PCR (RT-qPCR)

The RT-qPCR method was reported previously (Ai et al., 2023).
RNA was extracted using TRIzol reagent (Thermo Fisher Scientific,
United States). RT-qPCR was performed by using a reverse
transcription kit and PCR kit (#RR037A PrimeScriptTM RT
reagent Kit, #RR430A, TB GreenTM Fast qPCR Mix, Takara Bio
Inc. Shigo, Japan) following the manufacturer’s instructions.
GAPDH served as the reference gene and the 2−ΔΔCT method was
used to quantify fold change. The primer sequences for RT-PCR
were provided in Supplementary Figure S1.

Colony formation assays and
transwell assays

Colony formation assays were used to observe cell proliferation
ability. The cells counted and diluted were plated on a six-well
plate and cultured for 12 days. Next, paraformaldehyde fixation
and crystal violet staining were performed. Grouped as follows:
786-O (NC, shSCGN #1, shSCGN #2), ACHN (NC, shSCGN #1,
shSCGN #2). According to the same grouping method, we
conducted transwell assays to observe the changes of invasion
ability. 24-well plates and transwell chambers were used for
transwell experiments. Add the serum-free diluted cells to the
Transwell chamber (2 × 104 cells per well), add 500 μL 10% FBS
culture medium to the well under the chamber, and place it in a
37°C, 5% CO2 incubator for 20 h. The next day, they were fixed
with methanol for 30 min and stained with 0.1% crystal violet for
30 min. Finally, the results can be obtained by taking pictures
and counting.

Statistical analysis

We used the Wilcoxon test to determine the difference between
the two groups, as well as p-value calculations. For survival analysis,
the log-rank test and Kaplan-Meier (KM) curve were performed.
Univariate Cox regression analysis was used to assess prognostic
factors and calculate hazard ratios (HR). The experimental data were
presented as the mean ± standard deviation (mean ± SD). GraphPad
Prism 5 software was used for calculation of experimental data,
Student’s t-test was used to compare values between two groups.
One-way analysis of variance (ANOVA) and Tukey’s multiple
comparison were used to compare values between more than two
groups. Difference was considered statistically significant when the
p-value was less than 0.05. The significance of the differences was
indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001; not
significant, p > 0.05.

Results

33CRDs required for subtype identification
were found

Differentially expressed genes between tumor tissue and normal
tissue were intersected with 307 collagen-related genes, and finally
56 genes were identified (Figures 1A, B). Subsequently, by univariate
Cox analysis, we obtained 33 genes associated with prognosis,
among which 6 genes were protective factors and the other
27 genes were risk factors (Figure 1C). The PPI network and hub
genes of the 33 genes were shown in Figure 1D. The CNV was
common among 33CRDs (Figure 1E). Figure 1F showed the CNV
locations on the chromosome for 33 genes.

Two new collagen-associated subtypes
in ccRCC

The cophenetic correlation coefficient was used to determine k,
which represented the optimal number of clusters. The optimal
number of clusters was determined to be 2 (Figure 2A). We named
the two molecular subtypes identified as subtype 1 and subtype 2, as
shown in Figure 2B. Subtype 1 and subtype 2 showed significant
differences in distribution (Figure 2C) and Overall Survival (OS)
(Figure 2D). The expression of the 33CRDs between subtype 1 and
subtype 2 was shown in Figure 2E. The clustering result of RECA-
EU ICGC samples and 33CRDs showed that they can still be
clustered into subtype 1 and subtype 2 (Supplementary Figure
S2A). Subtype 1 and subtype 2 showed significant differences in
OS (Supplementary Figure S2B) and distribution (Supplementary
Figure S2C), which was consistent with the results based on TCGA.

Functional differences between subtype
1 and subtype 2 in pathways related to
immunity and tumor progression

Differential genes between subtype 1 and subtype 2 were shown
together with TNM stage, clinical stage, sex and age (Figure 3A).
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GSEA was performed on the pathways in GO, and pathways related
to immunity and protein secretion were enriched (Figure 3B). GSEA
of KEGG related pathways revealed that subtype 1 and subtype

2 mainly differed in Cell cycle, Cytokine-cytokine receptor
interaction, IL-17 signaling pathway, NF-kappa B signaling
pathway and Wnt signaling pathway (Figure 3C).

FIGURE 1
Screening and analysis of 33 CRGs required for subtype identification. (A, B) CRGs Differentially expressed between tumor tissues and normal
tissues. (C) 33CRDs correlated with OS in ccRCC. (D) PPI network, core network and core genes of 33CRDs. (E) Frequencies of CNV gain, loss, and non-
CNV among 33CRDs. (F) Circus plots of chromosome distributions of 33CRDs. CRGs, collagen-related genes; 33CRDs, 33 collagen-related DEGs; OS,
overall survival; CNV, copy number variation.
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Subtype 1 and subtype 2 had different
immune characteristics

As shown in Figures 4A–D, the immune score, stromal score and
estimate score of subtype 2 were higher than those of subtype 1, but
the tumor purity of subtype 2 was lower than that of subtype 1.
Subtype 2 was associated with more immune cell infiltration
(Figure 4E). In terms of immune function, most of the immune
functions of subtype 2 were stronger than those of subtype 1
(Figure 4F). TIDE analysis showed that the TIDE score of subtype
2 was significantly higher than that of subtype 1 (Figure 4G),
predicting that subtype 2 had poorer immunotherapy efficacy.
Compared with subtype 1, subtype 2 had higher expression of
PDCD1, TIGIT, LAG3, CTLA4, CD80, and CD86 (Figure 4H–L).

Tumor mutation characteristics of subtype
1 and subtype 2

TMB did not differ significantly between subtype 1 and subtype 2
(Figure 5A). Compared with subtype 1, in subtype 2, VHL had a
higher proportion of missense mutation, and PBRM1 had a higher
proportion of frameshift deletion (Figures 5B, C). The prognosis of the
low TMB group was significantly better than that of the high TMB
group (Figure 5D). Combined with the identified two subtypes of
ccRCC (Figure 5E), it can be concluded that the prognosis of subtype

2 was worse than that of subtype 1 nomatter in the high—TMB group
or the low - TMB group. Moreover, the prognosis of high - TMB +
subtype 2 was significantly worse than that of low - TMB + subtype 1.

MMP9 and SCGN were screened as core
gene markers of two ccRCC subtypes

No outliers were detected during sample clustering. Aminimum soft
threshold value of 5 for building a scale-free network was finally extracted
(Figure 6A). We prohibited gene redistribution within modules, and
constructed a co-expression network. A dendrogram (Figure 6B)
containing the module colors was drawn to show the module division
results of the gene co-expressionnetwork. Themodules (pinkmodule and
turquoise module) with |correlation coefficients|≥0.5 were selected for
further analysis (Figure 6C). We built machine learning models using the
training set data and validated its performance in the validation set.When
|residual|≤1, the curves of RF, SVM and XGB closed to 100%, almost all
observations were covered, and the prediction accuracy of the models
were high (Figure 6D). In BPR, RF, SVM and XGB had smaller box
ranges which indicated better predictive performance (Figure 6E). The
AUCs of RF, SVM, XGB and GLM were 0.963, 0.956, 0.962, and 0.581,
respectively (Figure 6F). We selected the top 10 most important genes in
each model (Supplementary Figure S3). Taking the intersection of the
genes selected from the three models with the best performance, it was
found that MMP9 and SCGN were the genes they shared (Figure 6G).

FIGURE 2
Identification of collagen subtypes in KIRC. (A) The cophenetic correlation coefficient is for optimal number of subtypes. (B)Consensusmatrix of the
molecular subtypes: subtype 1 and subtype 2. (C) t-SNE scatterplot supports ccRCC subtypes based on mRNA expression profiles. (D) Kaplan-Meier OS
curves for subtype 1 and subtype 2. (E) Expression differences of 33CRDs between subtype 1 and subtype 2.
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Diagnostic nomogram could distinguish
patients receiving immunotherapy into
subtype 1 and subtype 2, whose PFS
were different

The expression level of MMP9 in subtype 2 was higher than that in
subtype 1, and the expression level of SCGN in subtype 2 was lower than
that in subtype 1 (Figures 7A, B). We quantified the magnitude of the
molecular changes and found that the magnitude of changes was greater
in SCGN than inMMP9 (Supplementary Figure S4A).We constructed a
diagnostic nomogram based on the expression of MMP9 and SCGN to

distinguish subtypes (Figure 7C). The AUC of this nomogramwas 0.951
(Figure 7D). The calibration curve indicated good calibration
(Figure 7E). Patients treated with avelumab + axitinib in the
JAVELIN Renal 101 cohort were distinguished by our nomogram
into subtype 1 and subtype 2. The expression level of MMP9 was
increased in subtype 2, while the expression level of SCGNwas increased
in subtype 1 (Figures 7F, G).We quantified themagnitude for changes of
molecules (Supplementary Figure S4B). There was a significant
difference in prognosis between subtype 1 and subtype 2 starting at
9 months of treatment. (Figure 7H). In the immunotherapy cohort,
immune cell infiltration was similar to that in TCGA (Figure 7I).

FIGURE 3
Difference analysis and GSEA between subtype 1 and subtype 2. (A) DeSeq2 differential analysis heatmap and corresponding clinical information
between subtype 1 and subtype 2. (B) GSEA results on pathways in GO, including BP, MF and CC. (C) GSEA results on pathways in KEGG. GSEA, gene set
enrichment analysis; GO, gene ontology; KEGG, Kyoto-encyclopedia of genes and genomes; BP, biological process; MF, molecular function; CC, cellular
component; *p < 0.05; **p < 0.01; ***p < 0.001; not significant, p > 0.05.
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Single cell distribution characteristics of
MMP9 and SCGN were different

Through the analysis of KIRC_GSE171306, we performed
dimensionality reduction on the data (Figure 8A). MMP9 was
highest expressed in monocytes/macrophages (Figures 8B, D).
SCGN was highest expressed in malignant cells (Figures 8C, E).

Because our subsequent functional experiments were conducted
on SCGN, we selected SCGN for further single-cell transcriptome
studies. We further classified the malignant cells where SCGN
was located (Supplementary Figure S5A) and found that SCGN
was highly abundant in subgroup 3 (Supplementary Figure S5B).
We performed molecular function enrichment analysis, and the
results showed that subgroup 3 was related to the transmembrane

FIGURE 4
Immune infiltration analysis of collagen-associated ccRCC subtypes. The immune score (A), stromal score (B), ESTIMATE score (C) and tumor purity
(D) between subtype 1 and subtype 2. Comparisons of immune cells (E) and immune functions (F) between subtype 1 and subtype 2. (G) The differences in
the TIDE score between subtype 1 and subtype 2. (H–M) Differences in expression of six molecules related to Immune evasion and T cell exhaustion
compared between subtype 1 and subtype 2. TIDE, tumor immunedysfunctionandexclusion.
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transport of multiple substances (Figure 8F). We conducted an
enrichment analysis and subgroup 3 had the highest enrichment
of metabolism-related pathways (Figure 8G). We performed
pseudotime analysis in repartitioned cells and mapped the cell
differentiation trajectories (Supplementary Figure S5C).
Unfortunately, the expression of SCGN in malignant cells at
different stages of differentiation did not change
(Supplementary Figure S5D).

SCGN increased the proliferation and
invasion ability of tumor cells

The role of MMP9 in ccRCC had been thoroughly studied.
Therefore, we performed validation on SCGN. At both the mRNA
and protein levels, the expression of SCGN in tumor tissues was
higher than that in normal tissues (Figures 9A, B), which was
confirmed by IHC staining of HPA (Figure 9C). We performed

FIGURE 5
Analysis of TMB characteristics. (A) Comparison of TMB between subtype 1 and subtype 2. Waterfall maps of the somatic mutations in the subtype
1 (B) and the subtype 2 (C). (D)Difference inOS between high TMB and low TMBgroups. (E)Difference inOS based on TMB and two subtypes. TMB, tumor
mutation burden. OS, overall survival.
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FIGURE 6
Identification of core genes that differentiate subtypes. (A) Scale independence and mean connectivity analyzes are used to determine the optimal
soft threshold. (B) Gene dendrogram as a result of clustering, where colored rows below the dendrogram indicate different modules. (C) Heatmap of
correlations between modules and two subtypes. (D) RDCP for RF, SVM, XGB, and GLM, each curve represents a model. (E) BPR for RF, SVM, XGB, and
GLM, each boxplot represents a model. (F) ROC represents the discriminative performance of the four machine learning models for subtype 1 and
subtype 2 in the validation set. (G) The most important top ten genes of the three models with significantly high and similar predictive performance are
intersected. RDCP, reverse cumulative distribution plot; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting; GLM,
generalized linear model; BPR, boxplot of Residuals; ROC, receiver operating characteristic.
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knockdown of SCGN and verified the effect by RT-qPCR
(Figure 9D). In addition, transwell experiments showed that the
invasion ability of tumor cells was weakened after SCGN

knockdown (Figure 9E). Through colony formation assays, we
observed that tumor cell proliferation was weakened after SCGN
knockdown (Figure 9F).

FIGURE 7
Diagnostic model based on MMP9 and SCGN can predict immunotherapy efficacy. (A, B) The expression level of MMP9 and SCGN in subtype 1 and
subtype 2. (C) Nomogram of diagnostic model. (D) ROC of nomogram. (E) Calibration curve of nomogram. (F, G) In the JAVELIN Renal 101 cohort, the
expression level of MMP9 and SCGN in subtype 1 and subtype 2. (H) In the JAVELIN Renal 101 cohort, patients treated with avelumab + axitinib are
classified as having low PFS in subtype 2. PFS, progression free survival. (I) Immune cell infiltration of subtype 1 and subtype 2 in the
immunotherapy cohort.
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Diagnostic genes were associated with
prognosis of patients in ccRCC and with
immunity in pan-cancer

We further explored the expression levels and prognosis of
diagnostic molecules in ccRCC. MMP9 was upregulated in ccRCC
tissues compared with normal tissues (Supplementary Figure S6A).
Patients with high expression levels of MMP9 in ccRCC tissues had
worse prognosis (Supplementary Figure S6B–F). SCGN expression
was downregulated in ccRCC tissues compared with normal tissues
(Supplementary Figure S6G). Patients with high expression of SCGN

in ccRCC tissues had better prognosis (Supplementary Figure
S6H–K). MMP9 and SCGN not only played regulatory roles in
ccRCC, they had also shown value in pan-cancer. Compared with
normal tissues, the expression levels of MMP9 and SCGN generally
changed in pan-cancer (Supplementary Figure S7A). MMP9 and
SCGN were generally associated with OS in pan-cancer, including
ccRCC (Supplementary Figure S7B). In pan-cancer, both MMP9
(Supplementary Figure S8A) and SCGN (Supplementary Figure
S9A) were associated with a variety of immune regulatory
molecules, including chemokines, receptors, MHC molecules,
immunosuppressive molecules, and immune activating molecules.

FIGURE 8
Single-cell expression analysis of MMP9 and SCGN in ccRCC. (A)Cell clustering of GSE171306. (B)Distribution of MMP9 in different cell populations.
(C)Distribution of SCGN in different cell populations. (D) Expression levels of MMP9 in different cell populations. (E) Expression levels of SCGN in different
cell populations. (F)Molecular function enrichment analysis of SCGN in different subpopulations of malignant cells. (G) Enrichment analysis of metabolic
pathways of SCGN in different subpopulations of malignant cells.
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In pan-cancer, both MMP9 (Supplementary Figure S10A) and SCGN
(Supplementary Figure S10B) were associated with multiple immune
checkpoint molecules. MMP9 and SCGN were poorly associated with
microsatellite instability (MSI) in pan-cancer (Supplementary Figures
S10C,D).MMP9 and SCGNwere associatedwith a variety of immune
cells (Supplementary Figures S11A, B).

Discussion

The advent of immunotherapy has undoubtedly enhanced the
prognosis of ccRCC patients. However, a significant proportion of

patients remain unresponsive to immunotherapy, warranting the
identification of patients suitable for immunotherapy (Luo
et al., 2019).

Collagen, being a major protein component of the ECM,
plays a multifaceted role in both intracellularly and
extracellularly (Phang et al., 2008; Wu et al., 2021). Previous
studies have shown that clear cell renal cell carcinoma can be
divided into different subtypes from different perspectives (Bai
et al., 2021; Yang et al., 2023). However, the contribution of
collagen to ccRCC classification remains unknown. Our study
distinguishes two distinct ccRCC subtypes, named subtype
1 and subtype 2.

FIGURE 9
SCGN increases the proliferation and invasion ability of tumor cells. (A, B) SCGN protein and mRNA expression levels in normal and tumor tissues,
from UALCAN (https://ualcan.path.uab.edu/). (C) Comparison of IHC staining of SCGN in tumor tissue and normal tissue, from HPA (https://www.
proteinatlas.org/), Anti-body:CAB068232. (D) After knocking down SCGN in 786-O and ACHN cell lines, the relative expression of SCGN decreased. (E)
Cell invasion was attenuated after knockdown of SCGN in 786-O and ACHN cell lines. (F) Knockdown of SCGN in 786-O and ACHN cell lines
weakened cell proliferation. IHC, Immunohistochemistry.
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Results of enrichment analysis show that the differences
between the two subtypes are mainly in immunity and
tumorigenesis, so we continue the analysis. Subtype 2 exhibits
higher infiltration of immune cells and stromal components
compared to subtype 1. High levels of exhausted immune cell
infiltration are associated with poorer prognosis in ccRCC
patients (Peng et al., 2020; Braun et al., 2021). Prior studies
have indicated elevated cytotoxic T lymphocyte (CTL) levels and
an enrichment of T cell dysfunction in ccRCC, leading to
enhanced tumor immune evasion through a more severe
degree of T cell dysfunction (Jiang et al., 2018). It has also
been shown that in ccRCC, CXCL13+CD8+ T cell abundance
impairs total CD8+ T cell function, and CXCL13+CD8+ T cell
infiltration indicates poorer clinical outcomes in ccRCC patients
(Dai et al., 2021). Our further analysis reveals that subtype
2 exhibited higher TIDE score and expressions of molecules
related to immune evasion and T cell exhaustion.
Consequently, we hypothesize that despite subtype 2’s higher
immune cell infiltration, immune escape may prevail due to
immune cell dysfunction and overexpression of immune
checkpoint. In the immunotherapy cohort, even though
immune cells in subtype 2 are widely infiltrated, the prognosis
of subtype 2 is poor. This also illustrates the stability of immune
cell infiltration in different subtypes. Regardless of the TMB level
(high or low), the prognosis of subtype 1 is superior to that of
subtype 2. The new subtypes we identified can be a good addition
to patient selection.

Based on subtype 1 and subtype 2, using core genes to build a
diagnostic model makes it easier to determine the patients’
subtype. The discrimination and calibration of our model are
relatively good. Although the analysis of immune-related
indicators of the two subtypes indicates that subtype 2 is
prone to immune escape, clinical evidence is lacking.
Clinical cohort validation shows that subtype 2 patients
receiving anti-PD-L1 therapy have shorter PFS. We believe
that in the absence of differences in tumor mutational
burden, tumor heterogeneity between the two subtypes
partially contributes to differences in the immune system’s
ability to kill tumor cells.

MMP-9 is upregulated in ccRCC (Ma et al., 2020). In ccRCC,
an increasing number of studies have shown that
MMP9 promotes tumor invasion and migration (Wu et al.,
2019; Wang J. et al., 2020; Zhang et al., 2022). High
expression level of MMP9 is associated with poor prognosis in
patients with ccRCC (Niu et al., 2018). MMP9 affect the survival
of circulating tumor cells in clear cell renal cell carcinoma by
adapting to tumor immune microenvironment (Guo et al., 2023).
Besides, a study shows that in ccRCC, MMP9 can regulate tumor
immunity (Xu et al., 2021). The inhibition of MMP2/MMP9 by
SB-3CT prolongs survival time by promoting anti-tumor
immunity (Ye et al., 2020). Yiming Lu et al. find the MMP9+
macrophages to be terminally differentiated tumor-associated
macrophages (TAMs) (Lu et al., 2022). Our single-cell
transcriptome analysis also showed that MMP9 is mainly
expressed in monocytes/macrophages. Secretagogin (SCGN), a
calcium-sensor protein, promotes the expression of matrix
metalloprotease 2 (MMP2) in neurons (Qin et al., 2020). Loss
of SCGN can lead to activation of inflammation (Liu et al., 2023).

In the context of cancer, SCGN has emerged as a novel marker for
cervical neuroendocrine carcinoma and has been linked to
sorafenib resistance in hepatocellular carcinoma (Yu et al.,
2021; Wang et al., 2022). SCGN protein is detected in kidney
cancer samples but not in normal tissues (Kim et al., 2010). One
study shows that SCGN is associated with tumor metastasis in
ccRCC (Ilhan et al., 2011). Recent study has shown that SCGN
has the potential to become an indicator for ccRCC subtype
classification (Lai et al., 2023). Metabolites such as amino acids
secreted by tumor cells can affect the status of immune cells in the
microenvironment, but the impact is complex (Mellman et al.,
2023). Our results indicate that SCGN may affect tumor response
to immunotherapy by regulating various metabolisms of
tumor cells.

The pan-cancer analysis we performed also shows that the
diagnostic molecules are associated with many immune
molecules and immune cells, but not with MSI. Both in ccRCC
and other tumors, the diagnostic molecules are associated with
immune-activating and immunosuppressive molecules or cells,
suggesting that they may be involved in complex immune
regulation within the tumor.

Conclusion

In summary, we construct two new molecular subtypes of
ccRCC and a diagnostic model based on subtype-specific marker
molecules to define the subtype to which patients belong. These
may help doctors to select more suitable patients for
immunotherapy.
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