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The most prevalent and devastating form of organ damage in systemic lupus
erythematosus (SLE) is lupus nephritis (LN). LN is characterized by glomerular
injury, inflammation, cell proliferation, and necrosis, leading to podocyte injury
and tubular epithelial cell damage. Assays for urine biomarkers have
demonstrated significant promise in the early detection of LN, evaluation of
disease activity, and tracking of reaction to therapy. This is because they are non-
invasive, allow for frequent monitoring and easy self-collection, transport and
storage. Podocyte injury is believed to be a essential factor in LN. The extent and
type of podocyte injury could be connected to the severity of proteinuria, making
podocyte-derived cellular debris and injury-related urinary proteins potential
markers for the diagnosis and monitoring of LN. This article focuses on studies
examining urinary biomarkers associated with podocyte injury in LN, offering
fresh perspectives on the application of biomarkers in the early detection and
management of LN.
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1 Introduction

1.1 Lupus nephritis (LN) and podocyte injury

Any organ in the body can be impacted by the chronic autoimmune disease SLE.
(Stanley et al., 2020). Among the major organs affected by SLE, the kidney is particularly
susceptible, with 30%–60% of SLE patients developing kidney involvement. (Davidson,
2016). Within 5 years of diagnosis, between 10 and 30 percent of these people develop end-
stage renal disease. (Gasparotto et al., 2020; Mok et al., 2023). Additionally, in these patients,
LN is substantially linked to higher rates of morbidity and death. (Mok et al., 2023). LN is
the most common immune injury following SLE involvement of the kidney and is linked to
significant renal lesions. It is mainly characterized by glomerular involvement, (Lichtnekert,
Anders, and Lech, 2022), including glomerular injury, as well as inflammation, cell
proliferation and necrosis, leading to podocyte injury and tubular epithelial cell
damage. Complement activation-induced immune complex deposition in various
glomerulus areas and subsequent innate and adaptive immune system component
activation are pathophysiological mechanisms of LN. (Bhargava et al., 2021). These
processes in the glomerulus can result in various clinical, biological, and histological
changes in renal function. Given the elevated death and morbidity rates of LN, particularly
in those suffering from combined end-stage renal failure, early diagnosis and supportive
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treatment are crucial for preserving renal function, reducing death
and morbidity rates associated with chronic renal failure and kidney
disease, and minimizing drug-related toxicity. (Moroni et al., 2018;
Gamal et al., 2023).

The podocyte is a highly specific, terminally differentiated cell
with numerous foot processes that extend from the podocyte body
and are linked by a slit diaphragm in the middle. A contractile
system consisting of microfilaments made of actin, myosin, talin,
vinculin, paxillin, and paladin mostly maintains the podocyte’s
structure. (Wang et al., 2022a). Podocytes, endothelial cells, and
the glomerular capillary basement membrane (GBM) make up the
glomerular filtration barrier. (Li et al., 2007). Podocytes regulate
glomerular filtration, contribute in local immunological and
inflammatory responses, and preserve the glomerular vascular
ring’s form. Additionally, Podocytes contribute to the GBM’s
formation and recycling (Ishii et al., 2020) and the generation of
paracrine substances that influence endothelial cell permeability and
proliferation, such as vascular endothelial growth factor (VEGF).
(Tufro and Veron, 2012). Podocyte malfunction is a major
contributor to the development of proteinuria and is involved in
the causes and progression of numerous renal disorders, including
LN. (Sakhi et al., 2019) (Figure 1).

The significance of podocyte (visceral epithelial cell) damage in
LN has been highlighted in numerous recent studies (Sakhi et al.,
2019). Immune complex deposition in LN can directly or indirectly
target podocytes, and podocyte dysfunction may contribute to the
growth of glomerular lesions in LN. It has been postulated that
podocyte damage happens early in the course of LN immune
complex deposition and precedes irreversible glomerular damage.
More than 30% of podocyte depletion leads to glomerular instability,
ultimately resulting in glomerulosclerosis, and correlates with the
severity of LN. (Bhargava et al., 2021). It seems that podocyte
damage is a major factor in LN. It entails a number of pathways,

such as interaction between immunological and parietal epithelial
cells and disruption of the podocyte actin cytoskeleton. A recently
discovered variant of LN called lupus podocytopathy can result from
podocyte damage. (Sakhi et al., 2019). There is increasing interest in
podocytopathy, which is defined on electron microscopy by the
extensive loss of podocyte foot processes and is a particular
histological feature in light microscopy. Therefore, It has been
suggested that this is a different kind of LN. (Chen and Hu,
2018). The degree of proteinuria may be correlated with the type
and extent of podocyte injury (structural or functional), and
podocyte lesions may be a severe manifestation of podocyte
change. (Yu et al., 2017). It has been shown that podocyturia is
associated with the progression of LN and that podocytes can be
found in the urine of LN patients, while healthy individuals or SLE
patients with adequate kidney function do not have podocytes in
their urine. Urinary podocyte count is associated with proteinuria
and hematuria excretion scores. (Cui and Xie, 2017).

1.2 Biomarkers associated with podocyte
damage in urine may together form a
possible liquid biopsy modality for LN

Renal biopsy is considered the gold standard for the diagnosis,
prognosis, and treatment of LN tissue. It enables the pathological
groupings to be classified and the severity of renal involvement to be
assessed based on active and chronic lesions. (Fanouriakis et al.,
2020). However, it is an invasive and costly technique that is not
suitable for tracking the effectiveness of treatment or detecting
kidney pathology early on. The indications for repeat renal
biopsy are controversial (Moroni, Depetri, and Ponticelli, 2016).
Podocyte injury needs to be evaluated under an electronmicroscope,
and the lack of electronmicroscopy in somemedical institutions also

FIGURE 1
The glomerular filtration barrier is made up of perforated capillary endothelial cells, the GBM, and highly specialized, terminally differentiated cells
called podocytes. Under normal circumstances, certain plasma constituents are filtered into the renal capsule lumen through the perforated
endothelium, basement membrane, and podocyte fissure membrane. These membranes are incredibly permeable to water and small solutes, but
essentially do not allow albumin or other proteins of equal or greater molecular weight to pass through. Proteinuria can be caused by defective
podocyte shape and function, which can increase permeability to albumin and other proteins of the same size or greater. GBM: glomerular capillary
basement membrane.
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makes it difficult to assess podocyte injury promptly. Currently, low
plasma complement levels (mostly C3 and C4), anti-double-
stranded DNA autoantibodies (anti-dsDNA), proteinuria,
creatinine clearance, the urine protein/creatinine ratio, and other
laboratory indicators of LN are used for monitoring LN activity in
daily clinical routines. (Ligtenberg et al., 2022). Early detection and
timely treatment can significantly impact the morbidity and
mortality of LN. However, The diagnostic methods used now are
not the best for early detection. (Caster and Powell, 2019; Akhgar
et al., 2023). Therefore, further investigation into easily measurable
biomarkers of LN with high predictive value is needed. (Stanley
et al., 2020). Using non-invasive biomarkers to better monitor renal
inflammation may aid in determining which patients are vulnerable
for disease progression or therapy failure. (Radin et al., 2021).

Podocyte damage leads to molecular shedding from various
podocyte sources into the urinary cavity, which can then be used as
biomarkers of renal disease. In comparison to other sources of
biological samples (such as tissue or serum), urine sampling is non-
invasive, allows for regular monitoring, and enables self-collection,
transportation, and storage. Additionally, urine biomarkers derived
from urinary tissues, (Abedini et al., 2021), reflect the current
diseased state and appear to be more helpful in investigating LN
than serum markers. (Mok and Mohan, 2021). In conclusion, urine
is a non-invasive biological sample that accumulates changes in the
body’s biological systems and is not regulated by the body’s
homeostatic mechanisms, allowing it to reflect earlier and more
sensitive changes in the body caused by disease. The analysis of urine
samples will contribute to a deeper understanding of biomarkers.
Patients with active LN can be distinguished from those with
inactive illness using a number of urine indicators, (Lindblom,
Mohan, and Parodis, 2022), and various methods have been
employed in cross-sectional studies to identify groups of
biomarkers associated with LN. (Brunner et al., 2019; Tan
et al., 2021).

Here, we present the main urine indicators linked to podocyte
injury in LN that may serve as non-invasive biomarkers for the early
diagnosis of LN and monitoring LN activity. We concentrated on
indicators linked to podocyte injury because they may more
accurately indicate renal inflammation and hence, LN activity.

2 Urinary biological markers related to
podocyte injury

2.1 Urinary dedifferentiated podocytes

It has been studied how urinary podocyte shedding occurs in
LN. Prior studies have demonstrated urinary podocytes
predominantly survive but undergo dedifferentiation in patients
with active LN, and compared to healthy controls, the percentage of
apoptotic podocytes in urine is substantially lower. (Perez-
Hernandez et al., 2016). According to this study, individuals with
SLE, particularly those with active LN, had considerably higher urine
levels of podocalyxin, podocin, synaptopodin, nephrin, and WT-1
(measured by protein blotting). These levels also showed a strong
correlation with the degree of proteinuria and histological activity.
(Perez-Hernandez et al., 2016). Protein levels of these
dedifferentiated podocyte-associated molecules may serve as a

noninvasive marker of glomerular disease progression in SLE
patients. Associated proteins can be detected in SLE patients
without the development of proteinuria, and theoretically the
appearance of proteins from these dedifferentiated podocyte-
associated molecules precedes the development of conventional
proteinuria, but further experiments are needed to verify this.

Nephrin, podocin, and synaptopodin urine mRNA levels were
discovered to be considerably greater in active LN patients
compared to those with quiescent lupus, according to a later
investigation. Urine podocin mRNA levels were a separate
indicator of decreased renal function, whereas urine nephrin
mRNA levels were associated with proteinuria and global disease
activity but not to the histological category of LN. (Wang et al.,
2007). The expression of podocyte related molecules in LN urine
may reflect the activity of lupus. These markers can distinguish
active lupus nephritis from inactive lupus nephritis.

2.2 Urinary podocyte microparticles

When cells activate and undergo apoptosis, phosphatidylserine
(PS) externalizes from the plasma membrane, releasing a subtype of
extracellular vesicles known as microparticles (MPs). (Martínez and
Andriantsitohaina, 2017). In addition, it has been found that MPs of
podocyte origin play an important role in the etiology of several
glomerular and non-glomerular diseases and are a new early
indicator of glomerular cell injury. (Burger et al., 2014).
Extracellular vesicles (particles and exosomes) are recognized as
biomarkers for many diseases such as lupus nephritis, diabetic
nephropathy, preeclampsia, focal segmental glomerulosclerosis,
and IgA nephropathy. (Farzamikia et al., 2021). To date, there
have been no studies directly comparing the specificity of MP of
podocyte origin in detecting these nephropathies.

A cross-sectional study showed a significant increase in MPs in
urine samples from patients with SLE. Using flow cytometry, the
urinary annexin V podocalyxin MPs of each individual were
measured. In addition, anti-dsDNA antibody titers, proteinuria,
erythrocyte sedimentation rates, and SLE Disease Activity Index
(SLEDAI) scores were all positively connected with urinary
podocyte-derived MP levels. Patients with SLE who had modest
disease activity and those who had moderate or more disease activity
might be distinguished from one another using podocyte-derived
MP levels. More MPs generated from podocytes were excreted in the
urine in active LN. Urinary podocyte-derived MP levels were higher
in patients with LN than in those without LN, and multiple
morphologic podocyte lesions were present in different
pathological types of LN. The levels of urinary podocyte-derived
particles were closely related to the activity index and ultrastructural
changes of podocytes. Urinary podocyte-derived MPs were
subjected to Receiver Operating Characteristic (ROC) curve
analysis in order to distinguish SLE patients with active LN from
those without LN (AUC: 0.962 (95% CI 0.905–1)). Urinary
podocyte-derived MPs had an area under the ROC curve of
0.789 (95% CI 0.62–0.958) for the diagnosis of LN disease
activity. (Lu et al., 2019).

According to these results, variations in urine podocyte-derived
MP levels may be utilized to measure and track the activity of SLE
disease and to distinguish between SLE patients who have active LN
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and those who do not. (Lu et al., 2019). Measurement of 24-h
proteinuria in urine samples is a classic biomarker for the
assessment of LN, which in one way or another reflects the final
renal outcome. Proteinuria is partially consistent with changes in the
activity of histologic markers of LN, with a significant increase in the
level of MP of urinary podocyte origin observed with the severity of
histologic features. Some animal experiments have shown the
presence of podocyte-derived MP in the urine in the early stages
of diabetic kidney injury, and podocyte MPwas detected in the urine
before proteinuria, (Sullivan et al., 2021),but there are no studies on
whether or not podocyte-derived MP occurs before proteinuria in
patients with LN. The small sample size of this study may have
affected the reliability of the results, thus larger samples and studies
with prospective follow-up are required. Second, this study was
unable to link greater podocyte MP numbers to the progression of
renal illness, implying that more research is needed. It is still
necessary to investigate if MPs may be utilized as novel
biomarkers for the early detection and tracking of disease activity
in SLE and LN.

2.3 Urine soluble urokinase plasminogen
activator receptor (suPAR)

The suPAR receptor is for fibrinogen-activating enzymes and
converts fibrinogen to fibrinolytic enzymes. It is involved in a variety
of biological activities, including chemotaxis, cell adhesion,
endothelial cell function, and immunological modulation.
(Thunø, Macho, and Eugen-Olsen, 2009).

In experimental models of focal segmental glomerulosclerosis
(FSGS), circulating suPAR has been shown to activate podocyte
β3 integrins in natural and transplanted kidneys, leading to loss of
podocyte foot processes, proteinuria and FSGS-like glomerulopathy.
SuPAR is not the direct source of podocyte injury in vitro or in vivo,
according to recent experimentalfindings on human podocytes and two
animalmodels. (Musiała et al., 2022). Nonetheless, by forming signaling
complexes with other transmembrane proteins, such as activating the
podocyte αvβ3 integrin, it does connect innate immune activity to the
preservation of the slit septum. Activation of this receptor and its
downstream pathway activates small guanosine triphosphatase, leading
to the loss of podocyte foot processes, proteinuria, glomerular damage
and loss of renal function. (Hladunewich et al., 2022). Prolonged
exposure to elevated levels of suPAR directly affects the kidneys
through pathological activation of αvβ3 integrins expressed in
podocytes, resulting in proteinuria. (Hayek et al., 2020).

Increased suPAR concentrations may serve as a specific
circulating risk factor for focal segmental glomerulosclerosis
(FSGS). (Musiała et al., 2022). Elevated suPAR levels have been
found in up to two-thirds of FSGS patients. (Musiała et al., 2022).
however, further clinical studies have observed increased suPAR
concentrations in other glomerular and proteinuric diseases,
suggesting that plasma suPAR accumulation is not a specific
biomarker for FSGS. Some studies have shown that SuPAR is a
biomarker that can be used to stratify patients and determine which
SLE patients are most likely to experience organ damage in the first
5 years of their illness. (Enocsson et al., 2020).

The levels of suPAR in the serum and urine were significantly
higher in SLE patients than in healthy controls. In addition, levels

were higher in LN patients than in non-LN patients. Moreover,
suPAR had a stronger correlation with disease activity, and showed
significantly higher expression in the kidney tissue of LN patients,
correlating with the activity of pathological lesions. (Wen et al.,
2018). Recent longitudinal cohort data studies show that urinary
suPAR levels correlate with changes in LN activity, with a significant
decrease in urinary suPAR levels as LN disease activity improves.
(Burcsár et al., 2021). Urinary suPAR levels are a promising
biomarker for non-invasively predicting LN activity.

2.4 T-cell immunoglobulins and mucins 1
(Tim-1)

Tim-1 is a crucial gene that regulates T helper cell development.
(Kong et al., 2020). Tim-1 is expressed by CD4+ T cells, which
facilitates T cell activation through co-stimulatory signals, starts
transcription during the early stages of antigen stimulation,
contributes to T cell proliferation and differentiation, and
prevents the onset of peripheral tolerance. (Li et al., 2020; Xu
et al., 2020; Zhou et al., 2020). These results indicate that Tim-1
is one of the more crucial genes that may regulate T cells and is
probably an immunological marker.

It has been demonstrated that LN activates inflammatory
responses, which in turn trigger autophagy. Tim-1 expression,
autophagy, and inflammatory responses are elevated in LN mice.
In an LN cell model, Tim-1 stimulates autophagy and reduces the
inflammatory response. In the same cell model, Tim-1 promotes
IgG-induced podocyte proliferation and inhibits apoptosis. Tim-1
also attenuates the inflammatory response in LN podocytes by
inducing autophagy. Furthermore, Tim-1 significantly promotes
IgG-induced podocyte proliferation by inhibiting apoptosis. In
IgG-treated podocytes, the autophagy inhibitor counteracted
Tim-1’s effects on inflammatory cytokines and autophagy-
associated proteins. (Yu et al., 2021). In summary, it can be
concluded that Tim-1 is a possible novel target for LN treatment
since it mediates autophagy, protecting podocytes from LN-
induced damage.

Because of its increased expression in the kidneys and urine
during renal injury, TIM-1 is a type I transmembrane protein that
was first known as the kidney injury molecule 1 (KIM-1). (Thomas
et al., 2016; Nozaki et al., 2023).

One study enrolled 61 SLE patients and 69 healthy controls, and
serum TIM-1 levels were measured by ELISA. The findings
demonstrated that serum TIM-1 levels in SLE patients were
considerably lower than in controls, and that there was not a
significant distinction in serum TIM-1 levels between patients
with and without LN. Additionally, Serum TIM-1 levels did not
significantly correlate with the activity of SLE illness. (Yuan
et al., 2016).

A total of 154 SLE patients (94% female) with active LN,
32 inactive LN, and 49 non-renal SLE were recruited from
Shanghai Jiao Tong University’s Renji Hospital as part of a
retrospective cohort research. The patients were all 18 years of
age or older. Controls compromised of 55 age- and sex-matched
healthy individuals. Levels of u-cystatin-C, u-MCP-1, u-KIM-1, and
u-VDBP were considerably higher in patients with active LN than in
those with SLE without renal involvement. Moreover, u-cystatin C,
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u-MCP-1, and u-KIM-1 levels were considerably higher in the active
LN group than in the inactive LN group. The present investigation
showed that KIM-1 more accurately represents renal disease when
used in conjunction with other UBM applications. (Liu et al., 2020).
Additionally, it has been demonstrated that KIM-1 plays a
significant role in a variety of urine biomarker combinations,
including those that are used to forecast alterations in renal
disease. (Brunner et al., 2016; Gulati et al., 2017; Ding et al., 2018).

In a recent study, a prospective urine analysis of 10 protein
markers standardized to urine creatinine, namely, ALCAM,
cystatin-C, hemopexin, KIM-1, MCP-1, NGAL, PF-4, Timp-1,
TWEAK, and VCAM-1 by ELISA, was conducted on 84 pediatric
patients who met ≥4 ACR criteria for SLE. Patients with active LN
had substantially higher urinary concentrations of ALCAM, KIM-1,
PF4, and VCAM-1 than to those with active non-renal SLE, inactive
SLE, and healthy controls. (Soliman et al., 2022). This suggests a
correlation between KIM-1 and lupus nephritis (LN) activity.

According to Yuji Nozaki et al., proteinuria and uKIM-1 levels
were higher in active LN than in inactive LN in patients with SLE,
and both uKIM-1 and proteinuria reduced as treatment intensified.
In renal disease, uKIM-1 levels were linked to the percentage of
glomerular crescent formation. Furthermore, at 12 months after
therapy, individuals who had increased baseline uKIM-1 levels had
substantially more intense eGFR and reduced LN disease activity.
According to these findings, there may be a relationship between
uKIM-1 levels and renal histological abnormalities as well as LN
disease activity, and they may also be a predictor of therapy
response. (Nozaki et al., 2023).

2.5 Calcium/calmodulin-dependent protein
kinase IV (CAMK4)

CAMK4, a CAMK family member, is a versatile serine/
threonine kinase that controls multiple components of the
immune response. (Koga and Kawakami, 2018). CAMK4 affects
podocyte motility by activating GTPases Rac1 and RhoA and
phosphorylating the scaffold protein 14-3-3β. This leads to the
release and degradation of synaptopodin and is directly involved
in multiple etiologies of podocyte injury. It is elevated in
nonautoimmune podocyte lesions as well as autoimmune
podocyte lesions in humans and mice. Additionally, through
downregulation of nephrin and synaptopodin expression, and
interfering with slit diaphragm function and cytoskeletal
dynamics, (Maeda et al., 2018), targeted delivery of
CAMK4 inhibitors preserved podocyte architecture, prevented
the progression of glomerulonephritis in mice predisposed to
lupus, and repaired mice’s podocyte damage brought on by
adriamycin. (Tsokos and Tsokos, 2019).

IgG from LN patients upregulates CAMK4 expression in
podocyte culture, and it has been shown that urinary podocytes
from patients with active LN stain positive for CAMK4. In addition,
in comparison to individuals who did not have renal involvement or
who had clinical improvements following treatment, total urothelial
CAMK4 mRNA expression was higher in active LN.
CAMK4 mRNA levels were elevated only in urinary podocytes
from patients with active LN, whereas urinary CAMK4 mRNA
expression was minimal in patients with a clinical response. The

finding that urinary podocyte CAMK4 mRNA can distinguish
between active and inactive LN introduces a potentially new
non-invasive method to observe the activity of LN disease.
(Bhargava et al., 2021).

2.6 The ubiquitin carboxy-terminal
hydrolase L1 (UCH-L1)

The UCHL1 gene, also known as neuron-specific protein gene
product 9.5, is located on chromosome 4 (4p14) and encodes a
peptide of 223 amino acids. (Yu et al., 2008). Liu et al. discovered
UCH-L1 in human IgA nephropathy and LN specimens using a pre-
embedding immunoelectron microscopy technique with gold and
horseradish peroxidase labeling in the cytoplasm and podocyte
protrusions in 2008.

It was found that UCH-L1 appears ab initio in LN and is linked
to podocyte injury, but not in the glomerular podocytes of healthy
kidneys. (Meyer-Schwesinger et al., 2009; Zhang et al., 2015).With
the exception of UCH-L1, no particular marker proteins that were
present in normal LN podocytes but lacking or elevated in sick
podocytes were found. Thus, UCH-L1 may predict prognosis or the
extent of podocyte injury and serve as an indicator of histological
distinction between healthy and sick podocytes. (Meyer-
Schwesinger et al., 2009).

The intensity of UCH-L1 in the kidney is correlated with
metabolic activity and is broadly dispersed in the epithelial cells
of the glomerulus, tubules, and collecting ducts. (Zhang et al., 2013).
Recent research has shown that a number of glomerulonephritis
types, including membranous nephritis, IgA nephropathy, and LN
in kidney biopsies from different human nephritis cases, are linked
to a significant elevation of UCH-L1 in podocytes. (Liu et al., 2009).
Through its ability to cause structural disruptions in the
cytoskeleton of podocytes, UCH-L1 could be a major player in
the pathogenesis of glomerulonephritis. (Zhang et al., 2016).

UCH-L1 may not directly regulate RhoA/synaptopodin, but
rather harm the podocyte cytoskeleton by regulating plakoglobin,
which may be a viable target for kidney disease therapy later on.
(Fang et al., 2020). By regulating the quantity of proteases, UCH-L1
controls the breakdown of proteins in the kidneys. When
proteasome abundance is out of balance, renal cells, especially
endothelial cells and podocytes, become more liable to damage.
(Radón et al., 2018).

Renal biopsies samples from LN patients showed elevated and
positively linked expressions of UCH-L1 and NF-κB. UCH-L1
expression is upregulated when NF-κB is activated, which is
followed by changes involving additional podocyte components
such nephrin and snail. (Zhang et al., 2013). Elevated NF-κB and
UCH-L levels in human kidney biopsies positively linked with the
frequency of sick podocytes in a number of cases of immune
complex-mediated membranous glomerulonephritis, including
LN. (Zhang et al., 2015).

UCH-L1 may predict the level of podocyte injury or the
prognosis and serve as an indicator of histopathological
distinction between podocytes in health and those in sickness.
Additionally, UCH-L1, a significant NF-κB downstream target
gene, might offer a targeted treatment for LN. However, high
expression of UCH-L1 is seen in human β-cells and neurons,
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and cutting it down could make diabetes, Parkinson’s disease, or
Alzheimer’s disease more common. Therefore, targeted reduction of
UCH-L1 in the kidneys alone is important for patients with LN;
moreover, care should be used when using UCH-L1 as a treatment
drug for LN. (Cui and Xie, 2017). According to the current work,
UCH-L1 expression is regulated by A20 via signaling pathway of
NF-κB, and A20 deficiency could be a significant factor in the
pathophysiology of lung disease. (Sun et al., 2020). Furthermore,
there is currently no research on urinary UCH-L1 in LN patients,
making it a potential candidate as a non-invasive urinary biomarker
for this condition.

2.7 Metabolic fingerprints

Metabolic fingerprinting is closely related to genomics and
proteomics because metabolites are the end-products of gene
expression, metabolites at the end of the pathway can accurately
indicate a patient’s status in real-time, andmetabolic profiling can be
easily constructed without the need for costly or cumbersome
sequencing/immunoassays, (Nemet et al., 2020), and solves the
problem of delayed diagnosis and high cost of current
biomarkers for genomic and proteomic biomarkers, metabolic
biomarkers provide a more distal characterization of the
pathology and physiological processes, which are more sensitive
to slight changes in the state of health. (Wang et al., 2022b).

A recent study constructed a discovery cohort of 731 individuals,
including 357 SLE patients and 374 healthy controls (HC), and a
validation cohort of 184 individuals (SLE/HC, 91/93). Each SMFwas
directly recorded by nano-assisted laser desorption/ionization mass
spectrometry (LDI MS) using 1 μL of serum within 1 min Sparse
learning of SMFs enabled SLE identification with a sensitivity/
specificity and area under the curve (AUC) of up to 86.0%/92.0%
and a discovery cohort of 0.950. The great degree of consistency
revealed by sparse learning in the discovery and validation cohorts
has demonstrated SMF’s superiority in the diagnosis of SLE. The
investigation was based on an optimized diagnostic model that
included four metabolite groups: imidazoleoleoleacetic acid, 2-
hydroxyadipic acid, glucose, and pseudouridine. The group was
validated further in a small sample of SLE versus RA patients. These
four putative biomarkers did not correlate with SLEDAI, implying
that they are targeted toward SLE diagnosis, however, the ability to
assess biomarkers is limited. (Li et al., 2023).

Machine learning of serum metabolic fingerprinting (SMFs) was
developed in another study to identify SLE activity in pregnant women.
The hollow cobalt oxide/carbon (Co3O4/C)-composite assisted laser
desorption/ionization mass spectrometry (LDI MS) platform was used
to directly extract smf. The EN method was optimized to develop a
diagnostic model that differentiated between active SLE, inactive SLE,
and HC in pregnant women using metabolic fingerprints derived from
approximately 0.1 L of serum in 1 s without enrichment. The mean
AUC values for distinguishing active SLE from inactive SLE and healthy
controls were 0.985 and 0.990, respectively. To simplify the direct
investigation of SLE episodes, the study created a simpler metabolite
panel (acetoacetic acid, glucose, alanine, α-ketoisovalerate). (Wang
et al., 2022b).

According to one study, urine metabolic fingerprints (UMFs)
may be extracted using polymer@Ag-assisted LDI-MS, and

supervised machine learning techniques like sparse learning can
be used to diagnose LN. We quickly and easily acquired LDI-MS
metabolic fingerprints of natural pee using just 1 mL of urine,
without the need for enrichment or purification, by optimizing
polymer@Ag. This study suggests a new diagnostic paradigm to
identify clinical kidney disease subtypes by fusing UMFs and urine
protein levels (UPLs). For patients with active LN, the model is
known as a two-step noninvasive diagnostic model. First, we
separated individuals with renal illness from a control group with
an AUC of 1.00 by using UPLs (>0.5 g/24 h), which is the gold
standard for clinical diagnosis of renal disease. Instead of using UPLs
with an AUC of 0.52 to distinguish patients with active LN kidney
disease from those with active non-LN kidney disease, we employed
UMFs with an AUC of 0.89 in the second phase. It is important to
remember that the first and second phases’ AUCs of 1.00 and 0.89,
respectively, depend on the sequential analysis method. (Yang
et al., 2020).

3 Conclusions and perspectives

The study of urine as a non-invasive information source for
people with LN is gaining popularity. In LN studies, urine
biomarkers appear to have an advantage over serum markers
because they can guide treatment selection by characterizing
intrarenal biology, tracking treatment response longitudinally,
and determining the type or activity of nephritis non-invasively.
Furthermore, urine biomarkers can offer real-time information on
biological pathways and include data on the entire kidney, not just
the tissue sampled at biopsy. As a result, these features have the
potential to replace renal biopsy as a liquid biopsy method.
Currently, the study of urinary markers in lupus nephritis mainly
focuses on a portion of immune-related cytokines and proteins. LN
is a type of glomerulonephritis caused by immune complex
deposition, and its main pathogenesis is that immune complexes
are deposited to the tunica, subendothelium, or subepithelium
causing inflammation, which leads to impaired renal filtration
barrier and produces proteinuria. The filtration barrier consists of
the vascular endothelium, the glomerular basement membrane, and
the podocytes, which are the last layer of the filtration barrier.
Internationally, LN is categorized into six types of LN by the
deposition of immune complexes to different locations in the
kidney, and each type of LN can cause damage to the podocytes.
Biomarkers directly associated with podocyte cell injury may be
more relevant to these specific pathologic processes. Podocyte-
associated biomarkers have some advantages in kidney diseases
such as lupus nephritis (LN) because they provide more direct
information about the extent of podocyte injury and the functional
status of the kidney. Despite these advantages of podocyte-
associated biomarkers, more studies are still needed to validate
their accuracy, reliability, and clinical utility in clinical
applications. In addition, a combination of multiple biomarkers,
as well as other clinical and laboratory parameters, may be the most
effective way to evaluate patients with LN.

Numerous investigations have highlighted the significance of
podocyte damage in LN, and certain urinary markers associated
with podocyte injury have been examined in part, such as urinary
depolarized podocytes, urinary podocyte particles, suPAR, TIM-1,
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and CAMK4. However, urinary UCH-L1 in patients with LN has not
yet been intensively investigated (Table 1), and the existing studies in
this area are still relatively limited, focusing mainly on a small
number of markers. Current studies are able to measure many
proteins in urine that are involved in LN pathophysiology, and
patients with acute LN can be distinguished from those with quiet
illness by a number of proteins in their urine. (Fawzy et al., 2022).
However, there are few longitudinal investigations, and those that
are have not yet shown biomarker combinations that are more
accurate at forecasting LN outcomes than standard clinical criteria.
(Hoover et al., 2020). and larger prospective studies are necessary to
validate these findings. The relationship between podocyte
biomarkers and kidney function impairment and LN disease
activity has been the subject of numerous investigations. Urine
biomarkers could contain certain proteins, cytokines, compounds,
etc. Physicians may be able to gain a better understanding of a
patient’s condition and make early modifications to treatment plans
by noninvasively monitoring changes in these markers.
Nevertheless, additional investigation and verification are still
required to incorporate podocyte indicators into the clinical LN
treatment process. It is also necessary to create and enhance
guidelines for clinical use and standardized assessment techniques.

The dependability of podocyte-associated biomarkers is
significantly impacted by sample variability and assay
consistency. Different laboratories, different periods, or various
methodologies may yield inconsistent results. The primary causes
of sample variability are variations in the sources and methods of
sampling. There may be variations in biological samples between
patients due to individual, genetic, and environmental factors. These
variations could cause patient-to-patient variability in biomarker
levels. Variations may also be introduced by different sampling
strategies. The way urine is collected and the conditions under which
it is handled and preserved, for instance, may affect the assessment
of foot cell biomarkers. The primary factors that define assay
consistency include variations in batches, laboratories, etc. Results

from multiple laboratories using various experimental techniques,
tools, or reagents may not always agree. Such disparities can be
minimized by using standardized laboratory procedures and
technologies. There could be some variation across batches of
reagents or equipment even within the same laboratory.
Consistent measurements can be maintained with routine
calibration and observation using quality control samples. We
can create and implement standardized procedures for sample
collection, processing, and measurement to overcome these
problems and guarantee consistent outcomes over time and
between laboratories. To maintain uniformity throughout the
laboratory, quality control samples are used for routine
laboratory calibration. To gain a better understanding of how
sample variability and assay consistency affect outcomes, do
research at several medical facilities. Assay consistency is mainly
characterized by laboratory differences, batch differences, etc.
Different laboratories may use different experimental methods,
instruments or reagents, which may lead to inconsistent results.
Standardized laboratory methods and processes can reduce such
differences. Within the same laboratory, there may be some
variability in different batches of reagents or instruments. Regular
calibration and monitoring with quality control samples can help
maintain consistent measurements.

Future studies should aim to identify additional biomarkers and
improve their sensitivity and specificity in detecting podocyte injury
and inflammation in LN. Advances in high-throughput sequencing
and proteomics may help identify novel biomarkers with greater
accuracy and specificity. (Aljaberi et al., 2019; Fava, Raychaudhuri,
and Rao, 2021). In addition, a combination of multiple biomarkers
may improve the accuracy of diagnosis and increase the predictive
value of these tests. It would be valuable to examine the connection
between the activity of diseases and urine biomarkers at different
stages of LN. Further studies are required to find the best time and
frequency of sampling for these biomarkers and their utility in
predicting treatment response and guiding treatment decisions.

TABLE 1 Summary of urine markers associated with LN podocyte injury.

Urine biomarkers Diagnostic value Prognostic utility

urinary dedifferentiated podocytes Urinary mRNA levels of nephrin, podocin and synaptopodin were
significantly higher in patients with active lupus nephritis than in
patients with quiescent lupus Perez-Hernandez et al. (2016)

Urinary nephrin mRNA levels are associated with proteinuria and
systemic disease activity, and urinary podocin mRNA levels are an
independent predictor of decreased renal function Wang et al.
(2007)

urinary podocyte microparticles Changes in urinary podocyte-derived MP levels can be used to
differentiate SLE patients with active lupus nephritis Burger et al.
(2014)

Can be used to assess and monitor SLE disease activity

Urine soluble urokinase
plasminogen activator receptor

Serum and urine levels of suPAR were significantly higher in SLE
patients than in healthy controls, and higher in LN patients than in
non-LN patients Wen et al. (2018)

suPAR has a strong correlation with disease activity and correlates
with the activity of pathological lesions Wen et al. (2018)

T-cell immunoglobulins and
mucins 1

Serum TIM-1 levels were significantly lower in patients with SLE
compared to healthy subjects Yuan et al. (2016) and urinary TIM-1
levels were significantly higher in active LN compared to SLE
patients without kidney involvement Brunner et al. (2016)

uTIM-1 levels were significantly elevated in the active LN group,
Brunner et al. (2016) uTIM-1 has been shown to be an important
component of several different urinary biomarker combinations,
including for predicting pathological changes in the kidney
Brunner et al. (2016), Ding et al. (2018), Gulati et al. (2017)

Calcium/calmodulin kinase IV
(CaMK4)

Elevated total urocyte CAMK4 mRNA expression in active LN
compared to patients with clinical response after treatment and
patients without renal involvement Bhargava et al. (2021)

Urinary podocyte CAMK4 mRNA can distinguish active and
inactive LN Bhargava et al. (2021)

The ubiquitin carboxy-terminal
hydrolase L1 (UCH-L1)

UCH-L1 is not expressed in glomerular podocytes of normal kidneys, but is expressed de novo in lupus nephritis and associated with
podocyte injury, no lupus nephritis urine-related studies are available
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With more studies focusing on podocyte injury, new non-invasive
urine biomarkers are likely to emerge soon, providing new ideas for
early diagnosis of LN, monitoring treatment response, and selection
of treatment options, with a significant impact on the quality of life
of patients with LN.
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