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Introduction: For assessing drug safety using spontaneous reporting system
databases, quantitative measurements, such as proportional reporting rate (PRR)
and reporting odds ratio (ROR), are widely employed to assess the relationship
between a drug and a suspected adverse drug reaction (ADR). The databases
contain numerous ADRs, and the quantitative measurements need to be
calculated by performing the analysis multiple times for each ADR. We
proposed a novel, simple, and easy-to-implement method to estimate the
PRR and ROR of multiple ADRs in a single analysis using a generalized mixed-
effects model for signal detection.

Methods: The proposed method simultaneously analyzed the association
between any drug and numerous ADRs, as well as estimated the PRR and
ROR for a specific combination of drugs and suspected ADRs. Furthermore,
the proposed method was applied to detect drug-drug interactions associated
with the concurrent use of two or more drugs.

Results and discussion: In our simulation studies, the false-positive rate and
sensitivity of the proposed method were similar to those of the traditional PRR
and ROR. The proposedmethod detected known ADRswhen applied to the Food
and Drug Administration Adverse Event Reporting System database. As an
important advantage, the proposed method allowed the simultaneous
evaluation of several ADRs using multiple drugs.
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1 Introduction

During the clinical development of new drugs, collecting
sufficient information on drug safety poses a considerable
challenge. Hence, spontaneous reporting systems are crucial
sources for post-marketing drug safety surveillance. Importantly,
these systems are commonly used to detect suspected adverse drug
reactions (ADRs) and generate potential ADRs in real-world
settings. Since the 1960s, regulatory authorities such as the US
Food and Drug Administration (FDA) have established databases
for spontaneous reporting.

When assessing drug safety using spontaneous reporting system
databases, quantitative signal detection methods can be valuable for
identifying the relationship between a drug and suspected ADR,
given the considerable amount of data obtained. This data mining
approach is crucial for the early detection of safety signals and for
generating hypotheses regarding new ADRs. Several methods,
including the proportional reporting rate (PRR) (Evans et al.,
2001), reporting odds ratio (ROR) (Rothman et al., 2004),
Bayesian confidence propagation neural network (BCPNN) (Bate
et al., 1998), and multi-item gamma Poisson shrinker (MGPS)
(DuMouchel, 1999), have been proposed and employed by
regulatory authorities for signal detection. These methods
typically assess disproportionality in the observed and expected
numbers of counts for specific combinations of a drug and
suspected ADRs. Thus, if the ratio of the observed count to the
expected count (henceforth, the O/E ratio) estimated using these
methods is far from 1, it is considered a signal. Although the
performance of these methods has been extensively evaluated and
compared (van Puijenbroek et al., 2002; Kubota et al., 2004;
Almenoff et al., 2006; Matsushita et al., 2007; Hochberg et al.,
2009; Ahmed et al., 2010; Bunchuailua et al., 2010; Chen et al.,
2015), no gold standard method has been established worldwide.

Unlike the BCPNN and MGPS, the PRR and ROR are easy to
calculate and interpret. The PRR is a simple risk ratio (or relative
risk), while the ROR is a simple odds ratio derived from a 2 ×
2 contingency table (Table 1), with both measurements closely
related to statistical models occasionally used for signal detection.
Considering Poisson regression models, the parameter estimates in
the model yield the PRR, which is the reporting ratio of drug use to
non-use. Likewise, the ROR can be estimated using a logistic
regression model. In particular, these models help assess drug-
drug interactions (DDIs) during the concurrent administration of
two or more drugs (Thakrar et al., 2007). By including a statistical
interaction term in the model, the presence of DDIs can be evaluated
using a spontaneous reporting system (van Puijenbroek et al., 1999;
van Puijenbroek et al., 2000). Importantly, these modeling
approaches can detect only one ADR, and multiple models need

to be constructed for each ADR to estimate the PRR and ROR of
various ADRs. For example, to evaluate 100 types of ADRs,
100 regression models must be constructed with each ADR as a
response variable.

As another approach for detecting DDIs, Norén et al. (2008)
proposed a criterion using the O/E ratio of the number of reports for
the ADR for a combination of two drugs. Gosho et al. (2017) also
proposed a criterion based on chi-square test statistics to measure
the discrepancy between the observed and expected number of
reports. Although these methods have been effectively reviewed
and compared (Noguchi et al., 2019; Noguchi et al., 2020), the
detection of DDIs between three or more drugs is not possible.
Moreover, similar to the analysis using regression models, the
methods can detect only one ADR, and multiple analyses are
required to assess each ADR.

In the present study, we propose a novel, simple, and easy-to-
implement method using Poisson and logistic mixed-effect models
for signal detection. The proposed method could simultaneously
analyze the relationship between any drug and numerous ADRs and
estimate the PRR and ROR for a specific combination of drugs and
suspected ADRs. Furthermore, the proposed method could be
applied to detect DDIs during the concurrent administration of
two or more drugs. We also provide a sample SAS code for
implementing the proposed method.

2 Methodology

2.1 Notation

Spontaneous reporting systems include multiple drugs and
ADRs in each report. This information can be summarized in a
2 × 2 contingency table, as shown in Table 1. We used I drugs and J
ADRs. Here, nij is the number of events reported for the i th drug
(i � 1, . . . , I) and j th ADR (j � 1, . . . , J); ni· is the total number of
events reported with the target drug i; n·j is the total number of
events reported with specific ADR j; n indicates the total number of
ADRs reported with any drug; pij is the incidence probability for the
j th ADR with the i th drug. Let i− denote all other drugs except the
target drug i.

2.2 Standard strategy and signal
detection methods

Typically, signal detection is used to assess disproportionality in
the observed number of counts, nij, and the expected number of
counts, Eij, for a specific combination of drug i and ADR j. Eij �

TABLE 1 Two-by-two contingency table for summarizing the specific ADR reported in the target drug.

Number of events (incidence probability for j th ADR) Specific ADR j All others Total

Target drug, i nij (pij) ni· − nij ni·

All others, i− nj − nij (pi−j) n − ni· − n·j + nij n − ni·

Total n·j (p·j) n − n·j n

ADR, adverse drug reaction.
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TABLE 2 ADRs detected with three or more kinds of SGLT2 inhibitors, and the lower limit of 95% CI for ROR calculated using the proposed model in Scenario 1 (single drug).

Detected ADR SGLT2 inhibitors

Canagliflozin
(ni· � 3933)

Empagliflozin
(ni· � 36966)

Ipragliflozin
(ni· � 553)

Dapagliflozin
(ni· � 14054)

Tofogliflozin
(ni· � 147)

Luseogliflozin
(ni· � 133)

Ertugliflozin
(ni· � 759)

Metabolism and nutrition disorders in system organ class

Hypoglycemia 7.35 4.18 8.55 10.23 1.61 0.52 2.50

Diabetic ketoacidosis 75.67 - 10.77 118.63 18.05 5.65 30.58

Euglycemic diabetic ketoacidosis 140.42 393.33 10.06 236.20 82.39 21.65 52.34

Ketoacidosis 76.20 131.99 32.16 171.53 2.88 3.19 17.90

Diabetic ketosis 14.97 39.91 16.05 189.73 - 226.11 -

Ketosis 127.62 74.74 22.47 217.34 24.72 - 49.15

Dehydration 3.17 3.71 4.04 3.95 5.23 0.18 0.98

Polydipsia 7.78 10.90 - 6.22 - - -

Diabetes mellitus 6.35 2.34 7.56 3.05 4.00 1.05 0.06

Type 1 diabetes mellitus 0.15 1.40 1.00 3.47 3.75 - -

Type 2 diabetes mellitus 14.01 1.18 1.42 1.82 0.53 - 0.35

Diabetes mellitus inadequate
control

13.05 6.90 20.31 18.71 28.29 13.81 5.37

Hyperglycemia 17.07 5.64 4.40 13.85 14.06 9.57 1.20

Insulin resistance - 4.37 - 1.91 9.90 - -

Diabetic metabolic
decompensation

- 10.88 - 53.40 - - 55.74

Acetonemia 38.53 75.23 - 51.36 - - -

Acidosis 8.46 9.47 2.84 6.99 - - -

Decreased appetite 0.79 1.42 1.46 1.33 1.15 2.95 0.29

Dyslipidemia 5.58 1.08 - 5.65 - - -

Fluid intake reduced 1.11 1.66 - 3.87 4.46 - -

Hyperglycemic hyperosmolar
nonketotic syndrome

5.43 13.97 19.85 38.27 - - -

Hyperkalemia 1.97 2.65 1.73 5.86 0.64 - 0.43

(Continued on following page)
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TABLE 2 (Continued) ADRs detected with three or more kinds of SGLT2 inhibitors, and the lower limit of 95% CI for ROR calculated using the proposed model in Scenario 1 (single drug).

Detected ADR SGLT2 inhibitors

Canagliflozin
(ni· � 3933)

Empagliflozin
(ni· � 36966)

Ipragliflozin
(ni· � 553)

Dapagliflozin
(ni· � 14054)

Tofogliflozin
(ni· � 147)

Luseogliflozin
(ni· � 133)

Ertugliflozin
(ni· � 759)

Hyperlipidemia 0.55 1.93 - 2.05 2.23 8.36 -

Hypernatremia 5.17 3.27 - 11.06 - - 0.88

Hypertriglyceridemia 3.87 1.41 3.45 1.27 - - -

Hyperuricemia 1.67 1.16 21.30 7.64 - - -

Hypokalemia 1.61 1.09 0.80 1.79 - - 0.31

Hypophagia 2.30 2.36 0.21 1.24 - - -

Hypovolemia 7.67 11.50 - 6.91 - - 0.90

Obesity 1.49 0.88 3.38 3.39 1.25 - 0.84

Starvation 1.23 2.88 - 6.14 - - -

ADRs recognized in the package insert of SGLT2 inhibitors

Coronary artery stenosis 7.02 3.23 5.33 14.71 5.87 - -

Cerebral infarction 19.66 2.74 24.66 8.60 8.84 6.27 -

Thrombotic cerebral infarction 1.75 5.82 78.94 38.16 - 49.76 -

Embolic cerebral infarction 1.07 1.57 7.39 1.01 - - -

Cerebellar infarction 5.43 1.54 3.79 4.06 - - -

Lacunar infarction 7.76 3.50 3.02 7.96 - 42.40 2.30

Brain stem infarction 5.68 1.68 6.12 13.76 - - -

Carotid artery stenosis 9.79 2.36 - 2.34 - 9.05 -

Ketonuria 72.99 86.02 - 211.69 - - 17.74

Nocturia 3.06 2.83 0.43 1.38 - - 0.32

Polyuria 13.18 8.70 0.65 19.31 - - 3.13

Balanoposthitis 28.25 45.10 - 70.31 - - 4.77

Pruritus genital 14.46 25.45 9.53 36.46 10.50 - 2.14

Vulvovaginal pruritus 0.98 14.40 - 7.15 - - 2.65

Genital discomfort - 19.05 - 17.82 - - 46.07

(Continued on following page)

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
4

G
o
sh

o
e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
4
.13

12
8
0
3

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1312803


TABLE 2 (Continued) ADRs detected with three or more kinds of SGLT2 inhibitors, and the lower limit of 95% CI for ROR calculated using the proposed model in Scenario 1 (single drug).

Detected ADR SGLT2 inhibitors

Canagliflozin
(ni· � 3933)

Empagliflozin
(ni· � 36966)

Ipragliflozin
(ni· � 553)

Dapagliflozin
(ni· � 14054)

Tofogliflozin
(ni· � 147)

Luseogliflozin
(ni· � 133)

Ertugliflozin
(ni· � 759)

Penile erythema 2.05 20.82 - 3.70 - - 10.71

Penile pain 5.33 2.73 - 2.60 - - -

Scrotal swelling 2.99 5.74 - 1.61 - - -

Vulvovaginal erythema - 4.63 - 3.34 - - 15.02

Vulvovaginal swelling 0.39 2.90 - 1.50 - - 6.75

Pyelonephritis 6.73 3.50 5.88 8.55 7.39 8.16 1.46

Pyelonephritis acute 20.63 3.21 - 14.17 9.69 - -

Emphysematous pyelonephritis 12.83 99.69 89.65 1.09 - 371.02 -

Sepsis 1.29 2.22 0.68 2.09 1.19 0.20 0.80

Septic shock 1.44 1.51 - 2.21 0.50 - 0.33

Fournier’s gangrene 55.03 249.97 - 59.85 - - 71.49

Gangrene 4.53 7.10 - 5.56 - - 6.54

Necrotizing fasciitis 5.33 24.27 - 22.61 - - 4.20

Necrotizing soft tissue infection 9.74 28.54 - 2.75 - - 50.33

Diabetic gangrene 96.42 3.43 - 6.53 - - -

Thirst 4.00 8.64 1.99 6.26 - - 6.04

Amputation 28.07 5.69 - 2.39 - - -

Foot amputation 6.43 7.02 - 5.93 - - 8.13

Leg amputation 6.05 5.65 - 3.55 - - -

Toe amputation 10.72 9.57 - 8.26 - - 2.18

ADR, adverse drug reaction; CI, confidence interval; ROR, reporting odds ratio; SGLT2, sodium glucose-linked transporter 2.

- not reported; bold, detected ADR; ni· , the number of the target drug i reported.
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TABLE 3 ADRs detected with two or more kinds of SGLT2 inhibitors with glimepiride and the lower limit of 95% CI for ROR calculated using the proposed model in Scenario 2 (DDIs).

Detected ADR Concomitant use of glimepiride and

Canagliflozin
(nii′· � 467)

Empagliflozin
(nii′· � 1346)

Ipragliflozin
(nii′· � 116)

Dapagliflozin
(nii′· � 780)

Tofogliflozin
(nii′· � 26)

Luseogliflozin
(nii′· � 20)

Ertugliflozin
(nii′· � 34)

Metabolism and nutrition disorders

Hypoglycemia 9.78 3.67 8.40 - - 1.45 -

Diabetic ketoacidosis 31.63 - 5.62 - - - 1.40

Euglycemic diabetic
ketoacidosis

70.15 - 3.69 86.16 - - -

Ketoacidosis 24.65 15.48 - 39.40 - - 30.90

Diabetic ketosis - 22.14 - 84.30 - - -

Ketosis 145.37 105.86 - 17.17 56.46 - -

Abnormal loss of weight - 10.64 - 10.87 - - -

Dehydration 5.07 - 0.52 4.58 - 0.46 0.28

Diabetes mellitus 0.52 2.89 0.93 2.44 0.63 - -

Type 2 diabetes mellitus 0.46 2.06 - 2.62 - - -

Diabetes mellitus inadequate
control

6.98 12.37 0.79 28.45 - 3.66 2.24

Diabetic metabolic
decompensation

- 0.85 - 261.80 - - 459.27

Hyperglycemia 1.82 4.89 - - 1.37 1.78 -

Hypercholesterolemia - 6.58 - 1.46 - - -

Hyperuricemia - 6.49 14.61 - - - -

Increased appetite 1.06 0.09 - 2.16 - - -

Lactic acidosis 0.64 1.76 2.40 21.13 1.61 2.10 -

Metabolic acidosis 4.91 - - 1.28 - - -

Obesity - 1.30 - 1.38 - - -

Cardiac disorders

Coronary artery disease 0.16 1.25 - 2.13 - - 1.50

Coronary artery occlusion - 1.21 - 3.29 - - -

(Continued on following page)
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TABLE 3 (Continued) ADRs detected with two or more kinds of SGLT2 inhibitors with glimepiride and the lower limit of 95% CI for ROR calculated using the proposed model in Scenario 2 (DDIs).

Detected ADR Concomitant use of glimepiride and

Canagliflozin
(nii′· � 467)

Empagliflozin
(nii′· � 1346)

Ipragliflozin
(nii′· � 116)

Dapagliflozin
(nii′· � 780)

Tofogliflozin
(nii′· � 26)

Luseogliflozin
(nii′· � 20)

Ertugliflozin
(nii′· � 34)

Coronary artery stenosis 49.45 3.89 3.70 3.21 - - -

Acute myocardial infarction 5.26 7.37 - 8.11 - - 1.35

Angina pectoris 5.22 7.76 0.47 3.12 - - -

Angina unstable 0.67 1.15 - 1.93 - - -

Atrial fibrillation 4.42 0.82 0.69 1.41 - - -

Cardiac failure 3.33 1.30 0.16 1.52 8.11 - -

Myocardial infarction 1.64 1.85 0.42 1.22 - - -

Myocardial ischemia 3.83 3.08 1.31 0.24 - - -

Ventricular extrasystoles 4.73 3.81 - - - - -

Ventricular fibrillation - 13.08 - 4.18 - - -

Tricuspid valve
incompetence

- 2.30 - 3.92 - - -

Nervous system disorders

Cerebral infarction 34.52 10.56 2.88 - - 15.73 -

Cerebellar infarction 12.36 9.24 8.84 - - - -

Lacunar infarction - 0.84 - 12.79 - 207.12 -

Brain stem infarction - 7.33 14.41 41.61 - - -

Diabetic neuropathy - 1.52 - 8.46 - - -

Altered state of
consciousness

0.19 2.45 17.03 5.06 - - -

Cervicobrachial syndrome 79.17 13.67 - - - - -

Renal and urinary disorders

Ketonuria - 35.49 - 37.32 - - -

Nocturia 1.38 1.04 - 0.84 - - -

Pollakiuria 2.58 - - 1.94 - - -

Polyuria 4.49 6.01 - 16.92 - - -

(Continued on following page)
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TABLE 3 (Continued) ADRs detected with two or more kinds of SGLT2 inhibitors with glimepiride and the lower limit of 95% CI for ROR calculated using the proposed model in Scenario 2 (DDIs).

Detected ADR Concomitant use of glimepiride and

Canagliflozin
(nii′· � 467)

Empagliflozin
(nii′· � 1346)

Ipragliflozin
(nii′· � 116)

Dapagliflozin
(nii′· � 780)

Tofogliflozin
(nii′· � 26)

Luseogliflozin
(nii′· � 20)

Ertugliflozin
(nii′· � 34)

Renal impairment 6.84 2.19 2.66 1.75 - - -

Acute kidney injury 1.35 - 2.07 2.27 0.21 - 0.99

Nephropathy 1.32 1.58 - - - - -

Renal failure 1.07 1.01 0.08 0.23 - - 0.23

Dysuria 0.47 2.12 - 2.67 - - -

Hematuria - 1.30 0.34 1.78 - - -

Urinary incontinence 1.27 0.73 - 1.75 - - -

Urinary retention 5.24 0.20 - 6.05 - - -

Reproductive system and breast disorders

Balanoposthitis 4.44 17.71 - 13.76 - - -

Pruritus genital - 16.72 - 19.61 23.53 - -

Vulvovaginal pruritus 0.73 7.91 - 2.12 - - -

Testicular pain 1.20 2.07 - 38.05 - - -

Benign prostatic hyperplasia 6.47 1.12 - 0.41 - - -

Infections and infestations

Pyelonephritis 1.89 0.69 7.17 5.50 4.82 - -

Pyelonephritis acute 8.58 6.41 - 49.32 21.72 - -

Sepsis 0.76 1.64 - 1.57 - - 0.32

Septic shock 3.42 0.52 - 2.48 1.10 - -

Escherichia sepsis - - 85.55 3.88 - - -

Fournier’s gangrene 1.52 93.96 - 21.73 - - -

Gangrene - - - 8.33 - - 35.25

Necrotizing fasciitis 1.17 2.14 - 11.50 - - -

Scrotal abscess - 16.64 - 26.23 - - -

Fungal infection - 8.85 - 0.30 - - 13.78

(Continued on following page)
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ninj/n is defined as the expected number of counts under the null
hypothesis, with no association between the i th drug and the j th
ADR. O/E ratios were evaluated using several methods. The direct
estimator of the O/E ratio is the relative reporting ratio, defined as:

nij/ni
nj/n � nij

Eij

The PRR was calculated as the ratio of the proportion of the
ADR j reported with drug i to the proportion of the same ADR
reported with all other drugs combined:

nij/ni
nj − nij( )/ n − ni( ) (1)

The PRR can be interpreted as a measure of the reporting rate,
with and without target drug i. In addition, PRR is considered an
approximation of the relative reporting ratio, given that nij ≪ nj and
ni ≪ n in almost cases. If PRR = 1, the absence of an association
between the i th drug and the j th ADR can be assumed.

The ROR was calculated as the ratio of the odds for ADR j
reported with drug i to the odds that the same ADR was reported
with all other drugs combined, as follows:

nij/ ni − nij( )
nj − nij( )/ n − ni − nj + nij( ) (2)

If the lower limit of the 95% confidence interval (CI) for PRR
is greater than 1, the relationship between the target drug and
specific ADR was detected as a signal; the same was applied
to ROR in Eq. 2.

2.3 Poisson mixed-effect model and PRR

We assumed that the random variable nij follows a Poisson
distribution, expressed as nij ~ Poisson(nipij), where pij is the
incidence probability of ADR j when drug i is used (Table 1). The
probability function is expressed as

Pr nij | λij( ) � exp −λij( )λijnij
nij!

, nij � 0, 1, 2, . . .

Here, λij was defined as the mean (expected) value of nij.
Accordingly, λij � nipij. The relationship between mean value λij
and covariate xi is generally modeled using a natural log link
function, as follows:

ln λij( ) � β0 + βixi (3)

where βi is the unknown regression parameter for drug i. We aimed to
evaluate all ADRs (j � 1, . . . , J) when drug i is used. Considering that
xi denotes the binary indicator for drug i, xi � 1 if the use of drug i is
reported, and xi � 0 if the use of other drugs (excluding the i th drug)
is reported. In this model, βi can be interpreted as the marginal effect
of all ADRs using drug i compared to the use of other drugs. Thus, βi
is a common effect that does not specify ADRs. Furthermore, exp(βi)
is the PRR for drug i that is not ADR specific. However, this
interpretation of βi must be oversimplified and cannot detect the
signal of a specific ADR.T
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Next, to assess a specific ADR, we included a random effect in
Eq. 3, with the linear predictor ηij expressed as follows:

ηij � ln λij( ) � β0 + b0 + βi + bj( )xi (4)

where b0 and bj are random effects for the intercept and j th ADR,
respectively, assumed to follow normal distributions,
b0 ~ N(0, γ0) and bj~ N(0,γj). Here, γ0 and γj are the
variances of the random effects. Eq. 4, known as the Poisson
mixed-effect model, was used to estimate the mean value λij for
each drug and each ADR.

Based on Eq. 4, the linear predictor for each xi was

ln λij( ) � β0 + b0 + βi + bj, xi � 1
β0 + b0, xi � 0

{
Thus, the PRR of ADR j for drug i is

PRRij � exp βi + bj( ).
Using Eq. 4, we simultaneously estimated the PRRs of all ADRs

(i.e., any j) for drug i.
Extending Eq. 4 allowed the simultaneous evaluation effects

mediated by multiple drugs; for example, consider a DDI in which
two drugs (i and i′) are administered simultaneously. In this case, the
linear predictor in Eq. 4 is expressed as follows:

TABLE 4 Four-by-two contingency table summarizing the specific ADR reported with the target drugs for evaluating DDIs.

Number of events (incidence probability for j th ADR) Specific ADR j All others Total

Neither drug 1 nor drug 2 n00 (p00) 10, 000, 000 − n00 10, 000, 000

Only drug 1 n10 (p10) 100, 000 − n10 100, 000

Only drug 2 n01 (p01) 100, 000 − n01 100, 000

drug 1 and drug 2 n11 (p11) 10, 000 − n11 10, 000

ADR, adverse drug reaction; DDIs, drug-drug interactions.

FIGURE 1
Simulation scenarios and settings. The height of bars correspond to the incidence probability of ADR A (i) in the absence of both D1 andD2; (ii) with D1

but not D2; (iii) with D2 but not D1; (iv) with D1 and D2. The shades correspond to the marginal relative probability of ADR A (lightest), the increased
frequency attributable to D1, the increased frequency attributable to D2, and the increased incidence probability attributable to an interaction between D1

and D2 (darkest). The darkest bars indicate the DDI effect. ADR, adverse drug reaction; DDI, drug-drug interaction.
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ln λii′j( ) � β0 + b0 + βixi + βi′xi′ + βii′xixi′ + bijxi + bi′jxi′ + bii′jxixi′

where xi � 1 if drug i was used, xi � 0 otherwise, xi′ � 1 if drug i′
was used, and xi′ � 0 otherwise. βi, βi′, and βii′ are unknown
regression parameters for xi, xi′, and xixi′, respectively; b0, bij,
bi′j, and bii′j are random effects for intercepts, xi, xi′, and xixi′,
respectively. Assuming that b0 ~ N(0, γ0), bij ~ N(0, γi),
bi′j ~ N(0, γi′), and bii′j ~ N(0, γii′), each linear predictor can be
calculated as follows:

ln λii′j( ) �
β0 + b0, xi � 0 andxi′ � 0
β0 + b0 + βi + bij , xi � 1 andxi′ � 0
β0 + b0 + βi′ + bi′j , xi � 0 andxi′ � 1
β0 + b0 + βi + βi′ + βii′ + bij + bi′j + bii′j, xi � 1 andxi′ � 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Thus, the PRRs of ADR j for drugs i and i′ and the combined use
of drugs i and i′ are as follows:

PRRij � exp βi + bij( ), PRRi′j � exp βi′ + bi′j( ),
and PRRii′j � exp βii′ + bii′j( ),

Here, PRRij is the PRR of ADR j for drug i, PRRi′j is the PRR of
ADR j for drug i′, and PRRii′j is the PRR of ADR j under the
concomitant use of drugs i and i′. The proposed method could allow
the detection of DDIs during the concurrent use of two or more
drugs, as it allows for flexible modeling by including a statistical
interaction term. The proposed method is based on a multiplicative
model for DDI, whereas the criteria for detecting DDIs established
by Norén et al. (2008) and Gosho et al. (2017) are based on an
additive model for DDI (Thakrar et al., 2007).

The fixed and random effects in Eqs 3, 4 were estimated using
the restricted pseudo-likelihood method (Wolfinger and O’Connell,

1993). The PRR and its 95% CI were estimated using the estimation
of βi and bij, β̂i and b̂ij and their variance estimates via pseudo-
likelihood theory. Stroup (2013) provides a more detailed
explanation regarding the theory of generalized mixed-effect
models, such as Poisson and logistic mixed-effect models. If the
lower limit of the 95% CI for the PRR was >1, the relationship
between the target drug and the specific event was detected as
a signal.

The simple PRR in Eq. 1 cannot be applied for signal detection
when nij � 0, given that the 95% CI for PRR in Eq. 1 cannot be
estimated when nij � 0. However, the proposed method could provide
a 95% CI for the PRR estimated using Eq. 4 even when nij � 0.

2.4 Logistic mixed-effect model and ROR

The modeling strategies described in Section 2.3 can be easily
applied to logistic regression analysis. We assumed that the random
variable nij follows the binomial distribution nij ~ Bin(ni, pij). As
described in Section 2.3., the logistic mixed-effects model can be
expressed as follows:

ηij � ln
pij

1 − pij
� β0 + b0 + βi + bj( )xi (5)

Using Eq. 5, the linear predictor for each xi can be calculated
as follows:

ln
pij

1 − pij
� β0 + b0 + βi + bj, xi � 1

β0 + b0, xi � 0
{

Thus, the ROR of ADR j for drug i is

TABLE 5 Simulation results in Scenarios 1 and 2 with single-dose settings (the number of ADR types = 100).

p1-j (%) p1j (%) Proposed method Traditional method

PRR ROR PRR ROR

False-positive rate

0.05 0.05 3.27 3.27 3.27 3.27

0.1 0.1 2.04 2.04 2.05 2.05

0.2 0.2 2.78 2.79 2.80 2.80

0.05 0.05 2.56 2.56 2.59 2.59

0.1 0.1 2.56 2.56 2.57 2.57

0.2 0.2 2.58 2.59 2.60 2.60

Sensitivity

0.05 0.075 23.6 23.6 23.6 23.6

0.1 56.5 56.5 56.5 56.5

0.125 80.2 80.2 80.2 80.2

0.1 0.15 35.1 35.1 35.2 35.1

0.2 78.4 78.4 78.4 78.4

0.25 95.6 95.6 95.6 95.6

ADR, adverse drug reaction; DDIs, drug-drug interactions; PRR, proportional reporting rate; ROR, reporting odds ratio.
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RORij � exp βi + bj( ).
Based on Eq. 5, we could simultaneously estimate the RORs of all

ADRs (i.e., any j) for drug i.
Using the method described in Section 2.3, Eq. 5 was used to

simultaneously evaluate the effects of multiple drugs. For example,
consider a DDI in which two drugs are administered simultaneously.
The linear predictor in Eq. 5 is expressed as follows:

ln
pii′j

1 − pii′j
� β0 + b0 + βixi + βi′xi′ + βii′xixi′ + bijxi + bi′jxi′

+ bii′jxixi′

Thus, the RORs of ADR j for drugs i and i′ and the combined
use of drugs i and i′ are as follows:

RORij � exp βi + bij( ),RORi′j � exp βi′ + bi′j( ),
and RORii′j � exp βii′ + bii′j( ).

RORij is the ROR of ADR j for drug i, RORi′j is the ROR of ADR j
for drug i′, and RORii′j is the ROR of ADR j during the concomitant
use of drugs i and i′. If the lower limit of the 95% CI for the PRR was

>1, the relationship between the target drug and the specific event
was detected as a signal.

If pij is small, the ROR well-approximated the PRR. Given that
pij is usually small in signal detection analyses, ROR and PRR did
not differ significantly in almost all cases.

3 Application

We analyzed the FDA Adverse Event Reporting System
(FAERS), a well-known database comprising adverse event
reports designed to support the FDA’s post-marketing drug
safety surveillance program. FAERS includes seven data files:
demographics (e.g., sex and age), drugs (e.g., drug name and
route of drug administration), reaction (e.g., terms of an
adverse event), outcome (patient outcome), report source
(code for the source of the report), therapy date (e.g., the
date on which the therapy was started and stopped), and
indications for use. Adverse events are determined using the
Medical Dictionary for Regulatory Activities (MedDRA) as the
preferred term.

TABLE 6 Simulation results in Scenarios 1 and 2 with DDI settings (the number of ADR types = 100).

Scenario p00 (%) p10 (%) p01 (%) p11 (%) Proposed method Existing method

PRR ROR PRR ROR

Scenario 1: false-positive rate (%)

1–1 0.05 0.05 0.05 0.05 5.29 5.30 5.29 5.34

0.1 0.1 0.1 0.1 3.86 3.87 3.96 4.03

0.25 0.25 0.25 0.25 3.25 3.27 3.37 3.48

1–2 0.025 0.025 0.05 0.05 4.53 4.54 4.52 4.55

0.05 0.05 0.1 0.1 3.48 3.48 3.59 3.64

0.1 0.1 0.25 0.25 3.01 3.11 3.12 3.18

1–3 0.01 0.025 0.025 0.0625 3.35 3.35 3.30 3.33

0.025 0.05 0.05 0.1 3.25 3.26 3.33 3.35

0.05 0.1 0.1 0.2 3.04 3.06 3.13 3.17

Scenario 2: sensitivity (%)

2–1 0.025 0.025 0.025 0.05 36.7 36.7 36.5 36.6

0.05 0.05 0.05 0.1 53.9 53.9 54.1 54.3

0.1 0.1 0.1 0.2 75.9 76.0 76.1 76.2

2–2 0.01 0.01 0.025 0.05 27.3 27.3 27.2 27.3

0.025 0.025 0.05 0.1 48.0 48.1 47.7 47.9

0.05 0.05 0.1 0.2 70.5 70.5 70.9 71.1

2–3 0.01 0.015 0.015 0.045 28.0 28.0 28.0 28.0

0.02 0.03 0.03 0.09 45.1 45.2 44.9 45.0

0.04 0.06 0.06 0.18 67.1 67.2 67.4 67.6

ADR, adverse drug reaction; DDIs, drug-drug interactions; PRR, proportional reporting rate; ROR, reporting odds ratio.

Simulation Scenario 1 (absence of DDI): 1–1, p00 � p10 � p01 � p11; 1–2, p00 � p10 < p01 � p11; 1–3 p00 <p10 � p01 < p11.

Simulation Scenario 2 (presence of DDI): 2–1, p00 � p10 � p01 <p11; 2–2, p00 � p10 < p01 <p11; 2–3, p00 <p10 � p01 <p11
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Recently, sodium glucose-linked transporter 2 (SGLT2) inhibitors,
a class of oral antidiabetic drugs, have been widely used to treat type
2 diabetes. The FDA approved canagliflozin as the first SGLT2 inhibitor
for treating type 2 diabetes in 2013 (Mosley et al., 2015). Since then, six
SGLT2 inhibitors have been approved in the US and Japan. The
proposed logistic mixed-effect and Poisson mixed-effect models
were applied to the signal detection analysis of these
SGLT2 inhibitors for potential ADRs in two scenarios: 1) signal
detection for one drug and 2) DDIs following the concomitant use
of two drugs, as well as a simulation study.

Data files were downloaded from the FDA website (https://fis.
fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html) and
analyzed between 2014 Q1 and 2022 Q4 after the launch of
SGLT2 inhibitors. The analyses included records describing
13,344,838 patient characteristics, 54,869,999 drug properties,
and 43,029,283 reactions/events. All analyses were performed
using SAS software version 9.4 (SAS Institute, Cary, NC). The
SAS code is provided in the Supplementary Material.

3.1 Scenario 1 (single drug)

We applied the two proposed models to the FAERS database to
screen for ADRs when seven SGLT2 inhibitors (canagliflozin,
empagliflozin, ipragliflozin, dapagliflozin, tofogliflozin,
luseogliflozin, and ertugliflozin) were used. As a reference, we
also applied the traditional ROR and PRR to the database.

A list of ADRs determined as signals using the proposed
methods is presented in Supplementary Table S1. The total run
time of the analysis was 30 min (2.2 GHz Intel Xeon processor with
64 GB memory). When the lower limit of the 95% CI for the
proposed ROR and PRR was greater than 1, the ADR was
considered detected. The results of the proposed ROR were
similar to those of the proposed PRR owing to the low reporting
rate. In addition, the ADRs detected using the proposed methods
were similar to those detected using traditional methods. As
numerous ADRs were detected (Supplementary Table S1), we
summarized the ADRs detected with three or more
SGLT2 inhibitors (Table 2). We only presented ROR results
because there was no significant difference between PRR and
ROR. In addition, owing to space limitation, only ADRs classified
as “metabolism and nutrition disorders metabolism” in the system
organ class (SOC) ofMedDRA or recognized in the package insert of
SGLT2 inhibitors are listed in Table 2.

In the current analysis, hypoglycemia, ketoacidosis, and several
infarctions, all well-known ADRs of SGLT2 inhibitors, were
detected with almost all SGLT2 inhibitors. Euglycemic diabetic
ketoacidosis, ketoacidosis, and pyelonephritis were detected with
all seven SGLT2 inhibitors. The detection results of the proposed
methods were similar to those observed with the traditional ROR
and PRR (Supplementary Table S1).

3.2 Scenario 2 (DDI)

Patients with diabetes frequently coadminister SGLT2
inhibitors with glimepiride, a sulfonylurea that stimulates
pancreatic β cells to release insulin. Accordingly, the proposed

models were applied to assess DDIs between seven
SGLT2 inhibitors and glimepiride.

A list of ADRs determined as signals using the proposed methods
is presented in Supplementary Table S2. The number of drugs
reported is also shown in Supplementary Table S3. The total run
time of the analysis was 232 min (2.2 GHz Intel Xeon processor with
64 GB memory). For the proposed PRR and ROR, an ADR was
considered to be detected when the lower limits of 95% CI were >1.
The results of the proposed RORwere similar to those of the proposed
PRR. As observed in Scenario 1, Table 3 presents a list of ADRs
detected with two or more types of SGLT2 inhibitors using the
proposed methods. Only ROR results are presented, given the
absence of any significant difference between the PRR and ROR.
Owing to space limitations, only ADRs classified as “metabolism and
nutrition disorders metabolism,” “cardiac disorders,” “nervous system
disorders,” “renal and urinary disorders,” “reproductive system and
breast disorders,” “infections and infestations,” and “surgical and
medical procedures” in SOC of MedDRA are listed in Table 3.
These SOC classes include ADRs that are likely to occur with the
use of SGLT2 inhibitors.

In addition, ketosis-related ADRs were frequently detected
following the concomitant use of glimepiride and several
SGLT2 inhibitors. Coronary artery stenosis, acute myocardial
infarction, cardiac failure, cerebral infarction, renal impairment,
and acute pyelonephritis were detected in patients treated with four
SGLT2 inhibitors (Table 3).

4 Simulation study

We examined the performance of the proposed method using a
simulation study. We calculated the ROR and PRR using the logistic
mixed-effect and Poisson mixed-effect models, respectively, as
defined in Section 2.

The performance was evaluated in terms of sensitivity and false-
positive rates. Sensitivity is the proportion of correctly identified
signals, whereas the false-positive rate is the proportion of falsely
detected signals. In this section, we considered two simulations: 1)
signal detection for one drug and 2) DDI for the concomitant use of
two drugs.

4.1 Data generation

Data generation was repeated 1,000 times for each setting. The
number of ADR types was set as J � 100, 500.

4.1.1 Simulation 1 (single drug)
Signal detection was considered when only one drug was

administered. The number of ADRs reported for each drug was
set to n � 10, 000, 000. For drug 1 (i � 1), the number of
prescriptions with drug 1 was set to n1· � 10, 000, 50, 000. In
Scenario 1, we investigated the false-positive rate of the proposed
method, setting the incidence probabilities of ADR j to p1j � p1−j �
0.05, 0.1, 0.2 (%). Here, p1−j is the incidence probability of ADR j
when drug 1 is not used (see Table 1). In Scenario 2, we examined the
sensitivity by setting (p1−j, p1j) � (0.05, 0.075), (0.05, 0.1),
(0.05, 0.125), (0.1, 0.15), (0.1, 0.2), (0.1, 0.25) (%). In both
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scenarios, the values of n1j and nj − n1j were independently
generated by the binomial distributions Bin(n1·, p1j) and
Bin(n − n1·, p1−j), respectively.

4.1.2 Simulation 2 (DDI)
We evaluated DDIs with the concomitant use of drugs 1 (D1)

and 2 (D2) by assuming the number of prescriptions in the absence
of both drugs, the presence of either D1 or D2, and the presence of
both drugs to be 10,000,000, 100,000, and 10,000, respectively
(Table 4). The incidence probabilities in Table 4 vary depending
on the simulation scenario. In Scenario 1, we determined the false-
positive rate of the proposed method. In this case, no DDIs were
observed. We then set (1–1) p00 � p10 � p01 � p11; (1–2)
p00 � p10 < p01 � p11; and (1–3) p00 <p10 � p01 < p11 (Figure 1).
An additional effect was observed between drugs 1 and 2 in (1–2)
and (1–3), although no interaction was observed under the
multiplicative assumption because p00p11/(p10p01) � 1. In
Scenario 2, we investigated the sensitivity and detected a positive
DDI because p00p11/(p10p01)> 1. Under this assumption, we set
(2–1) p00 � p10 � p01 <p11, (2–2) p00 � p10 < p01 <p11, and (2–3)
p00 <p10 � p01 <p11 (Figure 1). The details of these settings are
shown in Figure 1 and described in the Results section. In both
scenarios, the values of n00, n10, n01, and n11 were independently
generated using binomial distributions. As a competitor
(henceforth, the existing method), we calculated the PRR and
ROR using simple Poisson and logistic models, including two
factors D1 and D2, and the interaction term for each ADR,
respectively (van Puijenbroek et al., 1999).

4.2 Results

4.2.1 Simulation 1 (single drug)
Table 5 presents the false-positive rate in Scenario 1 and the

sensitivity in Scenario 2 when the traditional and proposed PRR and
ROR are applied under J � 100. The simulation results under J �
500 are presented in Supplementary Table S4. At the top of Table 5,
the false-positive rates of the proposed PRR and RORwere similar to
those of the traditional PRR and ROR across all simulation settings.
Additionally, false-positive rates of the PRR and ROR differed
minimally. The false-positive rate for the proposed method was
not dependent on the incidence probability or the number of ADR
types. As shown in Table 5 (bottom), the sensitivities of the proposed
PRR and ROR were similar to those of the traditional PRR and ROR
for all simulation settings. Furthermore, the false-positive rate of
PRR and ROR differed minimally.

4.2.2 Simulation 2 (DDI)
Table 6 presents the false-positive rate in Scenario 1 and the

sensitivity in Scenario 2 when the proposed PRR and ROR were
applied under J � 100. The simulation results under J � 500 are
presented in Supplementary Table S5. At the top of Table 6, the
false-positive rate for DDIs using the proposed PRR and ROR was
generally controlled at a nominal significance level of 5%. The
false-positive rates of the proposed PRR and ROR were similar to
those of the PRR and ROR derived using existing methods across
all simulation settings. In addition, the false-positive rates of the
PRR and ROR differed minimally. The false-positive rate for the

proposed method was not dependent on the incidence probability
or the number of ADR types. As shown in Table 6 (bottom), there
was minimal difference in the sensitivity between PRR and ROR as
a false-positive rate. The sensitivities of the proposed PRR and
ROR were also similar to those of the PRR and ROR from the
existing method across all simulation settings. Although the
sensitivity of PRR and ROR increased as the incidence
probability increased, the sensitivity was not dependent on the
number of ADR types.

5 Discussion

Herein, we proposed a new signal detection method within
the framework of a generalized mixed-effect model. The
proposed models can directly estimate the PRR and ROR,
which are used worldwide to detect signals in spontaneous
reporting systems. In terms of the advantages, the proposed
method can allow the simultaneous evaluation of several
ADRs using multiple drugs. The proposed method is suitable
for signal detection because ADRs should be comprehensively
and efficiently screened in post-marketing drug safety
surveillance. Our study also found that the PRR and ROR
calculated using the proposed model were almost identical to
the traditional PRR and ROR. While the traditional PRR and
ROR can only be calculated in the presence of one drug, the
proposed method can be applied to multiple drugs and is a more
generalized and convenient method.

For screening ADRs in spontaneous reporting systems, the
Medicines and Healthcare Products Regulatory Agency adopts
the traditional PRR, and the Netherlands Pharmacovigilance
Center and the Pharmaceutical and Medical Devices Agency
in Japan employ the traditional ROR (Noguchi et al., 2021).
The proposed method also provides the PRR and ORR, and it can
be interpreted similarly to the results of traditional methods
routinely used by the regulatory authorities. Although the
criterion established by Norén et al. (Norén et al., 2008)
would be the most widely used for detecting DDIs, the
method proposed in the current study is more convenient for
practical applications, given that ADRs from “single use of a
drug” and “concomitant use of drugs” can be uniformly evaluated
using one methodology. Thus, we anticipate that the proposed
method will become one of the most useful applications in drug
safety surveillance in the future.

However, some ingenuity is required to construct a generalized
mixed-effects model. For example, the model may lead to
convergence problems in numerical optimization when many
drugs are included in the model as factors. Specifically, we
cannot obtain PRR and ROR estimates when the constructed
model is markedly complicated. In this case, the model is
simplified. In addition, the calculation to obtain parameter
estimates may be prolonged in the presence of numerous ADRs
and drug types.

Several limitations need to be cautiously considered when
undertaking signal detection analyses. For example, only
observed ADRs are registered in spontaneous reporting
systems databases, resulting in underreporting bias (Noguchi
et al., 2021). Furthermore, the incidence rate for ADRs cannot
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be calculated because databases collect only patient information
with the ADR (Tada and Gosho, 2022). Moreover, even if the
patients are actually taking multiple drugs, some drug
information might be missing. Therefore, the measures for
detecting DDI tend to be underestimated (Norén et al., 2008).
These limitations are inherent to databases and cannot be
overcome even when using the proposed method. Although
signal detection analysis fails to establish definite conclusions
regarding the association between ADRs and target drugs due to
the limitations, the analysis results generate hypotheses about the
association.
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