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Traditional Chinese Medicine (TCM) has been used for thousands of years to treat
human diseases. Recently, many databases have been devoted to studying TCM
pharmacology. Most of these databases include information about the active
ingredients of TCM herbs and their disease indications. These databases enable
researchers to interrogate the mechanisms of action of TCM systematically.
However, there is a need for comparative studies of these databases, as they
are derived from various resources with different data processingmethods. In this
review, we provide a comprehensive analysis of the existing TCM databases. We
found that the information complements each other by comparing herbs,
ingredients, and herb-ingredient pairs in these databases. Therefore, data
harmonization is vital to use all the available information fully. Moreover,
different TCM databases may contain various annotation types for herbs or
ingredients, notably for the chemical structure of ingredients, making it
challenging to integrate data from them. We also highlight the latest TCM
databases on symptoms or gene expressions, suggesting that using multi-
omics data and advanced bioinformatics approaches may provide new
insights for drug discovery in TCM. In summary, such a comparative study
would help improve the understanding of data complexity that may ultimately
motivate more efficient and more standardized strategies towards the
digitalization of TCM.
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1 Introduction

TCM has not only played a crucial role in the treatment and prevention of disease in
ancient times but also is used as a valuable source of natural products in modern drug
discovery (Atanasov et al., 2021; Ngo et al., 2013). At present, there are more than
8,000 TCM components in total, which have been reported to have various
pharmacological effects (Wangkheirakpam et al., 2018), especially for complex diseases
(Yao et al., 2021), such as obesity (Vermaak et al., 2011), nonalcoholic fatty liver disease
(Yan et al., 2020), cancer (Wang et al., 2021), and diabetes (Tong et al., 2012). TCM herbs
as plant-based substances for medicinal purposes typically refer to the leaves, flowers,
stems, seeds, or roots of plants that may induce potential health benefits. They can be used
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either naturally or as preparations. TCM herbs, as one particular
type of natural products, have become increasingly popular in drug
discovery in recent years. There are 3,322 clinical trials registered
during 1999–2021 in ClinicalTrials.gov (Zhang et al., 2019). For
instance, PHY906 is based on Huang-Qin-Tang’s prescription for
common gastrointestinal distress and has been studied for seven
cancer types in clinical trials (Wang et al., 2011; Saif et al., 2014; Liu,
2015; Ganguly et al., 2019). ACT001 is an analog of parthenolide
derivative from the shoots of feverfew (Tanacetum parthenium). It
has been approved as orphan drug status by the FDA and is in phase
I clinical trials for advanced glioblastoma in China (CTR20171274)
and Australia (ACTRN12616000228482) (Zhang et al., 2012).

One of the main characteristics of TCM is that it considers the
human body as a holistic system to achieve maximal synergistic
effects and minimal side effects (Wang et al., 2012; Zhou et al.,
2017; Ramsay et al., 2018). The holistic concepts proposed by the
TCM theories thousands of years ago coincide with the system
biology concepts in modern medicine (Bahari and Yavari, 2021).
As an essential branch of system biology, network pharmacology
approaches have attracted considerable attention because of their
potential for understanding drug interactions in many complex
diseases. Hence, system pharmacology modeling has also been
widely applied in TCM to explore active ingredients or targets and
to understand therapeutic mechanisms of action (Maetschke et al.,
2014; Kibble et al., 2015), such as herb properties (Naghizadeh
et al., 2020; Naghizadeh et al., 2021), herb combinations (Vanunu
et al., 2010; Hsieh et al., 2011; Wang et al., 2021), TCM diagnosis,
and symptoms (Ma et al., 2010; Xie et al., 2018). The construction
of networks in TCM mainly consists of associations between five
main entities, including formulae, herbs, ingredients, targets, and
diseases. Based on the network’s topology, familiar patterns or
important nodes can be detected by various algorithms in network
analysis. Furthermore, biological pathways or gene ontology (GO)
functional terms can be inferred to discover potential mechanisms
of actions (MOAs) of active ingredients in TCM (Wang
et al., 2021).

Thanks to the rapid development of molecular profiling
technologies (Xu et al., 2021), increasing data at multiple omics
levels for both herbs and ingredients were available (Guo et al.,
2020). These data were curated, standardized, and stored as
databases to benefit researchers with valuable resources (Xu
et al., 2021). Multiple databases have been established recently,
providing diverse information for TCM herbs or ingredients
(Lagunin et al., 2014; Lee et al., 2019). For instance, recent
reviews summarize the databases and tools currently used for
TCM research (Zhang et al., 2019). However, fewer of them
have compared the overlap of these databases. Furthermore,
coverage of the trends of TCM databases to advance network
pharmacology is limited. We first determined their overlapping
herbs, ingredients, and herb-ingredient pairs based on all the
available data downloaded from major TCM databases
published since 2006. Secondly, we reported the developing
trend of TCM databases from the perspective of network
pharmacology, such as network construction and analysis,
external linking databases, and absorption, distribution,
metabolism, and excretion (ADME) properties. Finally, we
proposed a few promising directions and approaches for
improving and developing TCM databases.

2 Overview of the significant
TCM databases

Here, we briefly described 14 TCM databases developed during
the last two decades. These databases are under active development
and, therefore, are expected to capture the recent updates in the
TCM research (Figure 1).

2.1 TCM-ID

TCM-ID (Chen et al., 2006) (http://bidd.group/TCMID/) was
initialized in 2006, including prescriptions (n = 1,588),
constituent herbs (n = 1,313), herbal ingredients (n = 5,669),
and their corresponding molecular information (n = 3,725). The
database currently consists of 7,443 prescriptions, 2,751 herbal
medicines, and 7,375 chemical ingredients. In particular, the
drug-target information for the ingredients has been obtained
from an in silicomethod named INVDOCK (Chen and Zhi, 2001)
and, more recently, from experimental validation of
bioactivity assays.

2.2 Database@taiwan

Database@taiwan (Chen, 2011) (http://tcm.cmu.edu.tw/) was
developed in 2011 and initially contained 20,000 pure compounds
and 435 TCM herbs. The number of compounds has increased to
about 61,000 more recently. Although virtual screening and
molecular simulation approaches are commonly used for drug
discovery, their applications are rare in TCM. Therefore,
Database@taiwan aimed to support virtual screening or
molecular simulation with the molecular structure of
ingredients in TCM.

2.3 TCMSP

TCMSP (Ru et al., 2014) (https://old.tcmsp-e.com/index.php) was
published in 2012 and then updated in 2014, including 499 herbs,
29,384 ingredients, 3,311 targets, and 837 associated diseases.

TCMSP aims to establish an efficient systems pharmacology
platform to integrate various information, such as
pharmacochemistry, ADME properties, drug-likeness, and drug
targets. In the TCMSP database, a comprehensive network
between herbs–compounds–targets–diseases (H–C–T–D) was
created to help illustrate the MOAs of TCM herbs, understand the
rationale of TCM theory, and discover herb-derived drugs. TCMSP is
also one of the first TCM databases that systematically reported
ADME properties to enable the filtering of the ingredients that
have poor oral absorbability and low drug-likeness.

2.4 TCMID

TCMID (Xue et al., 2013) (http://www.megabionet.org/tcmid/)
integrates the data from Database@Taiwan and other databases and
the literature. TCMID was updated in 2018, including
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49,000 prescriptions, 8,159 herbs, 25,210 ingredients, 3,791 diseases,
6,828 drugs, and 17,521 targets. TCMID visualizes interactions
between formulae, herbs, components, and their target proteins
to support the network modeling.

2.5 BATMAN-TCM

BATMAN-TCM (Liu et al., 2016) (http://bionet.ncpsb.org.cn/
batman-tcm/) is a bioinformatics tool for analyzing molecular
mechanisms of TCM published in 2015.

BATMAN-TCM focuses on understanding the multi-
component, multi-target, and multi-pathway combinational
therapeutic mechanism of TCM. To explore the molecular
mechanism of combinations of formulae or herbs, BATMAN-
TCM provides the predicted targets for TCM ingredients. Also,
BATMAN-TCM is a bioinformatics tool that performs functional
analyses and visualization of targets, such as biological pathways,
GO functional terms, and disease enrichment analyses.

2.6 TM-MC

TM-MC (Kim et al., 2015a) (http://informatics.kiom.re.kr/
compound/) extracted 14,000 chemical compounds from
536 medicinal materials and 4,000 journal articles in MEDLINE
and PubMed Central (PMC). Although many TCM databases
provide diverse information, the sources of such information are
seldom reported; thus, it is difficult to verify them. To solve this

limitation, TM-MC aimed to construct a database to provide
detailed sources of information in PubMed, PubChem, and
ChemSpider for each herb-ingredient pair.

2.7 TCM-Mesh

TCM-Mesh (Zhang et al., 2017) (http://mesh.tcm.
microbioinformatics.org) was published in 2017, including
6,235 herbs, 383,840 compounds, 14,298 genes, 6,204 diseases,
144,723 gene-disease associations and 3,440,231 pairs of gene
interactions. TCM-Mesh was designed to integrate various
resources and is intended to serve as a more comprehensive
and user-friendly platform for network pharmacology analysis.
In addition, TCM-Mesh provides the toxicity and side effects
of ingredients, which is vital for safety assessments during
the application of TCM. In total, 163,221 side effect
records (1,430 ingredients and 6,123 side effects) were
extracted from TOXNET (Fowler and Schnall, 2014) and
SIDER (Kuhn et al., 2016).

2.8 TCMAnalyzer

TCMAnalyzer (Liu et al., 2018) (http://www.rcdd.org.cn/
tcmanalyzer) was developed in 2017, covering 1,493 formulae,
618 TCM medicine, and 16,437 ingredients.

Many ingredients and their interactions with biological
receptors are unknown, which makes it difficult to determine the

FIGURE 1
The schematic of this review. (A) Developing history of TCM databases. (B) Data integration and network pharmacology modelling for TCM.
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molecular mechanisms of action. To solve this problem,
TCMAnalyzer intended to identify the active ingredients, protein
targets, therapeutic mechanisms, and critical structural fragments
responsible for the therapeutic activities by cheminformatics and
bioinformatics approaches. Compared with other TCM databases,
TCMAnalyzer deepens the understanding of the structure of TCM
ingredients by substructure-searching tools, similarity-searching
tools, and scaffold-searching tools.

2.9 YaTCM

YaTCM (Li et al., 2018) (http://cadd.pharmacy.nankai.edu.cn/
yatcm/home) was published in 2018 and contained 47,696 natural
compounds, 6,220 herbs, 18,697 targets (including 3,461 therapeutic
targets), 1,907 predicted targets, 390 pathways, and
1,813 prescriptions. Compared with other TCM databases,
YaTCM supports unique analytical tools, including similarity and
substructure searching for potential structures and identifying
similar biological functions between herb pairs.

2.10 ETCM

ETCM (Xu et al., 2019) (The Encyclopedia of Traditional
Chinese Medicine) (http://www.tcmip.cn/ETCM/) is a web server
tool established in 2018 for the network analysis of TCM, including
herbs (n = 402), formulae (n = 3,959) and ingredients (n = 7,284).
ETCM has some unique characteristics. For instance, the annotation
information for herbs and formulae is richer than other databases as
ETCM includes not only the habitat and quality control information
of herbs but also various drug-likeness information of the
ingredients. ETCM also has improved functions for network
analysis and visualization.

2.11 SymMap

Clinical symptoms in TCM are vital for diagnosis and treatment.
To study the TCM symptoms more systematically, SymMap (Wu
et al., 2019) (https://www.symmap.org/) was established in 2019 as
an integrative database that maps symptoms in TCM to modern
symptoms and diseases, covering 1,717 TCM symptoms, 499 herbs,
961 modern symptoms, 5,235 modern diseases, 4,302 targets, and
19,595 ingredients.

2.12 HERB

The HERB (Fang et al., 2021) database (high-throughput
experiment and reference-guided database of traditional Chinese
medicine) (http://herb.ac.cn/) is one of the few databases that
contain transcriptomic profiles for herbs and ingredients.
Established in 2020, HERB has 6,164 gene expression profiles of
TCM herbs or ingredients from 1,037 high-throughput experiments.
In addition, 12,933 targets and 28,212 diseases were further linked to
7,263 herbs and 49,258 ingredients by statistical inference.
Moreover, the gene targets (n = 1,241) and modern disease

indications (n = 494) for 473 herbs/ingredients were manually
collected from 1,966 scientific references.

HERB aimed to help researchers build a high-quality
pharmacology network by gene expression data, thus uncovering
evidence-based associations between TCM and modern drugs. In
addition, HERB also manually collects high-confidence compound-
target interactions and herb-disease associations from the literature.

2.13 TCMIO

Numerous herbs or ingredients have been reported to have
immunomodulatory functions and antitumor effects by targeting
the immune system. However, their underlying mechanisms remain
unclear. To tackle this issue, TCMIO (Liu et al., 2020) (Traditional
Chinese Medicine on Immuno-Oncology, http://tcmio.xielab.net)
was recently developed in 2020, including 1,493 prescriptions,
618 TCM medicine, 16,437 ingredients, and 32,847 TCM-
ingredient-associations.

TCMIO was designed to explore the role of TCM in modulating
the cancer immune microenvironment. Unlike other databases,
TCMIO focuses only on formulae, herbs, ingredients, targets, and
diseases related to immuno-oncology.

2.14 TCMSID

Traditional Chinese Medicine Simplified Integrated Database
(TCMSID, https://tcm.scbdd.com/home/index/) covers 499 herbs in
the Chinese pharmacopeia and 20,015 ingredients. TCMSID
evaluates the structural reliability of all ingredients and their
possibility of exerting pharmacological effects. In addition, the
potential targets of ingredients are predicted by multiple target
prediction tools.

3 Systematic comparison of
TCM databases

3.1 Sizes of TCM entities

We compared the number of data points in the TCM databases
for nine entities, including herbs, herbs with at least one
ingredient, ingredients with structure information, ingredients
with at least one target, herb-ingredient pairs, ingredient-target
pairs, targets, and diseases. As shown in Figure 2, HERB has the
most extensive coverage in eight of these nine entities, except for
the number of targets, with 7,263 herbs, 49,258 ingredients,
12,933 targets, and 28,212 diseases. As one of the newly
developed databases, HERB integrates information from the
other databases, leading to a much more extensive collection of
targets and diseases. Other databases, including TCMID, TCM-
Mesh, and YaTCM, have a similar number of herbs (n > 6,000) as
compared to the remaining databases (n < 2,000). Similarly, the
top TCM databases with the largest ingredients are HERB,
YaTCM, TCMID, and TCMSP (n > 30,000), while TCM-Mesh
has fewer ingredients. In addition, HERB and TCMID have the
most abundant herb-ingredient pairs (n > 8,000).
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In brief, TCM databases have experienced a fast development in
recent decades, accumulating information for ~8,000 herbs,
~50,000 ingredients, and ~120,000 herb-ingredients pairs.
Moreover, ~150,000 ingredient-target associations were predicted
by computational methods.

3.2 Shared herbs and ingredients

We determine the number of common herbs and ingredients to
explore the overlap among the TCM databases. We matched herbs
and ingredients by their Chinese names and PubChem IDs
respectively, on the TCM databases for which the data can be
downloaded. As shown in Figure 3A, HERB has the most unique

herbs (n = 3,660), followed by TCM-ID (n = 350) and TM-MC (n =
333). There are only 78 herbs shared among nine databases,
suggesting a minimal overlap. When excluding TM-MC, the
overlap increases to 116 herbs. Furthermore, TCMID, TCM-
Mesh, and HERB share more common herbs than the other
databases (n = 1,146).

Compared with the overlap situation in herbs, the number of
overlapped ingredients between eight databases is lower, with
only 295 common elements (Figure 3B). In contrast, TCM
databases contain a more significant number of unique
ingredients (TCMID = 10,860, HERB = 6,838, TM-MC =
4,801, TCM-ID = 2,788, TCMSP = 1,151, and, ETCM = 918).
TCMID and HERB shared the most common ingredients (n =
5,618). Generally, the consistency of the herb information

FIGURE 2
Summary of data sizes for multiple TCM entities, including herbs, herbs with ingredient information, ingredients, targets, diseases, ingredients with
structure information, ingredients with target information, ingredient-target interactions, and herb-ingredient interactions. Note that a database does not
necessarily contain all these entities’ information. Only the databases with the corresponding data entities are shown for each plot.
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contained among TCM databases is higher than that for
ingredients.

3.3 Shared herb-ingredient pairs

Herbal ingredients are vital for exploring the TCM mechanisms
at the molecular level. Therefore, we compare the herb-ingredient
pairs between the TCM databases. We consider the average overlap
rate and Jaccard coefficient across all the common herbs between a
given pair of databases. Namely, for a common herb, A and B
represent the set of ingredients of this herb in the two databases,
respectively. The overlap rate is defined as (‖ A ∩ B ‖)/ ‖ A ‖, where
‖ A ∩ B ‖ is the number of common ingredients and is further

divided by all the number of ingredients of this herb in database A.
Similarly, Jaccard index is defined as (‖ A ∩ B ‖)/(‖ A ∪ B ‖) .

As illustrated in Figures 3C, D, TCM-Mesh and TCMID have
the maximum average Jaccard index (0.16), while TCM-Mesh and
ETCM have the top average overlapped rate (0.29). ETCM has a
relatively higher overlap rate with other databases, such as TCM-
Mesh (0.29), TCMSP (0.20), TCMID (0.18), and TM-MC (0.12). In
contrast, TCM-ID has no overlap with any of the other databases.
We found that TM-MC tends to have more common herb-
ingredient pairs with other TCM databases, with an average of
124.42 (Figure 3E). For example, for the 177 common herbs in
TCM-ID and TM-MC, on average, 124 common herb-ingredient
pairs can be identified. Furthermore, TCM-Mesh and TCMID share
only 31.75 common herb-ingredient pairs, despite having

FIGURE 3
Overlapping of herbs and ingredients between TCM databases. Upset plot for the shared herbs (A) and ingredients (B) among the TCM databases.
The color bars at the bottom left represent the number of herbs or ingredients in each TCM database, which can be further collapsed into subclasses
depending on whether a herb or an ingredient exists in one or more TCM databases. The vertical bars show the number of shared herbs or ingredients for
a particular subset of TCM databases, as indicated by the connected lines below the x-axis between the databases. Average Jaccard coefficients (C)
and overlap rates (D) of herb-ingredient relationships between the common herbs in seven TCM databases. The average value of shared herb-ingredient
relationships (E) and number of pairwise common herbs (F) between seven TCM databases.
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1,283 common herbs (Figure 3F). The distribution of shared herb-
ingredient associations and the Jaccard index for ingredients of
common herbs between TCM databases can be seen in
Supplementary Figures S1, S2.

Taken together, we found a relatively low overlap of herbs and
their ingredients between different databases, suggesting that a more
unified knowledge base is needed to integrate these databases for
further study.

3.4 Types of annotations

Annotation of TCM usually contains information about
formulae, herbs, ingredients, targets, and disease indications.
With the development of TCM databases, annotation types have
become increasingly available for many herbs. For example, TCM
database@taiwan, one of the earliest TCM databases, only contained
the names of TCM herbs. After that, TCMSP, published in 2014,
provided therapeutic classes of herbs and their ingredients to
support more sophisticated network pharmacology analyses.
More recently, TCM databases contain more annotations, such as
TCM properties, meridians, disease indications, and therapeutic
effects (Figure 4A).

Another improvement is the annotation of the TCM formula, a
unique concept that specifies how herbs can be combined to treat
diseases. TCMID was the first database containing TCM formula
information, including usage, classification, and indication. The

therapeutic effects of one formula can be classified by the
Western medicine system as “indication” and by the traditional
medicine system as “function classes” according to their specific
“traditional function.” For example, herbs with functional effects
nourish the temper and replenish the heart, which belongs to the
function class tonic medicine. So far, five databases are providing
formulas, including TCM-ID, TCMID, YaTCM, ETCM, and
TCMIO (Figure 4A). Although the complete species names are
vital to avoid ambiguity in the use of herbal medicine, only the
ETCM and ICMIO databases provide species classification. On the
other hand, TCM-ID can link the prescription component by its
Barcode ID into the Barcode of Life Data Systems (BOLD) database
(Ratnasingham and Hebert, 2007). However, the DNA barcoding
data was typically determined for two or three genes, which are
limited in differentiating plants in the same genus. To improve the
quality of the TCM databases, it is necessary to apply standardized
reference resources such as Medicinal Plant Names Services (http://
mpns.kew.org/mpns-portal/) or Plants of the World Online (http://
www.plantsoftheworldonline.org) to reduce the ambiguity about the
identities and names of the species. Furthermore, as an important
quality control step, DNA sequencing of a comprehensive panel of
marker genes should be provided to avoid species misidentification
(Rivera et al., 2014).

An annotation tree was plotted to better illustrate the annotation
of ingredients in different databases (Figure 4B). There are four main
annotation types: ADME properties, external links, structure, and
names. For each annotation type, there exists a different number of

FIGURE 4
Types of annotations in different databases. (A) Annotation types for herbs (left) and formulae (right). In the heat map, rows are TCM databases, and
columns are annotation items, shown in redwhen available. The databases were ordered by their publishing years from top to bottom. (B) Annotation tree
for TCM ingredients. The nodes from inside to outside represent TCM databases, types of ingredient annotation, and their properties, respectively.
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TABLE 1 Network pharmacology modeling in TCM databases.

Database Last
update
year

Open
access

Source of targets Number of herbs-
or ingredient-target
pairs

Network
modeling entities

Functional
analysis

TCM Database@
taiwan

2010 Yes Virtual screening by docking
and molecular dynamics

/ / /

TCMSP 2014 Yes HIT SysDT 84,260 ingredient-target pairs
(7,947 ingredients,
1,079 targets)

Herbs, ingredients, targets,
and diseases

/

BATMAN-TCM 2016 Yes Similarity-based target
prediction

/ Formula, herbs,
ingredients, targets,
pathways, and diseases

KEGG biological
pathways

Gene Ontology (GO)
functional terms

TCM-Mesh 2017 No STITCH / Prescriptions, herbs,
ingredients, targets, and
diseases

/

TM-MC 2015 Yes / / / /

TCMID 2018 No STITCH / Prescriptions, herbs,
ingredients, targets, and
diseases

/

ETCM 2018 Yes MedChem Studio (chemical
fingerprint similarity)

/ Prescriptions, herbs,
ingredients, targets, and
diseases

KEGG biological
pathways

Gene Ontology (GO)
functional terms

YaTCM 2018 No Multi-voting chemical
similarity ensemble approach

/ Prescriptions, herbs,
ingredients, targets, and
diseases

KEGG biological
pathways

Gene Ontology (GO)
functional terms

TCMAnalyzer 2018 No ChEMBL / Ingredients, targets, and
diseases

KEGG biological
pathways

Gene Ontology (GO)
functional terms

TCMSID 2022 metaTARFISHER / / /

SymMap 2019 Yes / / TCM symptoms, modern
medicine symptoms, herbs,
ingredients, targets, and
diseases

/

TCM-ID 2019 Yes Text mining 78,117 herb-human target
pairs (463 targets, 1,323 herbs)

/ Gene Ontology (GO)
functional terms

ChEMBL 23,946 herb-microbe protein
pairs (305 targets, 1,209 herbs)

Ligand–protein inverse
docking

10,750 validated ingredient-
target pairs from experiments
(1,656 ingredients,
667 targets)

HERB 2021 Yes Text mining 291 herb-target pairs (39 herbs
and 182 targets)

Herbs, ingredients, genes,
and diseases

Differentially
expressed qaaqgenes

Fisher’s exact test 4,815 ingredient-target pairs
(370 ingredients and
1,205 targets)

TCMIO 2020 Yes ChEMBL / Prescriptions, herbs,
ingredients, and targets

Gene Ontology (GO)
functional terms

Balanced substructure-drug-
target network-based
inference (bSDTNBI)

KEGG biological
pathways
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items. For example, SMILES, PubChem ID, andMol2 are commonly
used to represent the structure of ingredients. Physiological features
such as molecular weights and solubility are generally reported for
ADME properties. ADME gains increasing interest in the research
of TCM as TCM is administered by decoction, which triggers
complex absorption, distribution, and metabolism processes. It is
known that TCM ingredients can mimic the metabolites of the
human body to treat diseases (Kim et al., 2015). Currently, three
databases provide ADME properties (Figure 4B), including TCMSP,
YaTCM, and ETCM. For example, TCMSP provides 12 ADME
properties systematically, such as oral absorbability, half-life, drug-
likeness, Caco-2 permeability, blood-brain barrier, and Lipinski’s
rule of five. These properties are considered to be essential for drug
discovery in TCM. YaTCM focuses on 50 fundamental ADME
properties, including four physicochemical descriptors and
48 ADME descriptors. ETCM reports around ten physical-
chemical properties and six ADME properties, including blood-
brain barrier penetration, CYP450 2D6 inhibition, hepatotoxicity,
human intestinal absorption, plasma protein binding, and the
quantitative estimate of drug-likeness (QED). Considering these
ADME properties of ingredients in the study of network
pharmacology could help to prioritize the potential compounds
for drug discovery.

In summary, although the annotation for herbs and ingredients
has also been improved, the ADMET properties were only found in
four databases, with notable differences.

3.5 Network pharmacology modeling to
explore the mechanisms of action

Protein targets of ingredients are essential for the MOAs of
disease treatment in TCM (Chen et al., 2003). In TCM databases, the
validated ingredient-target interactions are mainly extracted from
four resources, including 1) Text mining from the literature,
including TCM-ID and HERB; 2) the ChEMBL database
(Gaulton et al., 2017), including TCM-ID, TCMAnalyzer, and
TCMIO; 3) the STITCH database (Kuhn et al., 2008), including
TCMID and TCM-Mesh; and 4) the HIT database (Ye et al., 2011),
including TCMSP.

In addition to validated targets, most TCM databases provide
predicted targets from computational methods (Table 1). In
databases published before 2014, docking methods are
commonly used. For example, TCM-ID implemented a ligand-
protein inverse docking strategy called INVDOCK to search
targets in the Protein Data Bank (PDB) (Chen and Zhi, 2001).
Database@taiwan also predicts compound-target interactions by
virtual screening with docking and molecular dynamics
simulations. However, docking-based virtual screening
approaches are usually demanding on proteins’ computational
resources and 3D structures. Therefore, more TCM databases
began to implement similarity-based target prediction models.
For instance, TCMSP utilizes a SysDT model (Yu et al., 2012),
and YaTCM utilizes a multi-voting chemical similarity ensemble
approach (Wang et al., 2016). TCMIO relies on a balanced
substructure-drug-target network-based inference [bSDTNBI
(Wu et al., 2016)] approach based on heat diffusion modeling.
In TCMSID, the potential targets of ingredients are predicted by

metaTARFISHER (https://metatarget.scbdd.com/), a tool that
provides multiple algorithms, including SwissTargetPrediction
(Gfeller et al., 2014; Daina et al., 2019), SEA (Wang et al.,
2016), HitPickV2 (Hamad et al., 2019), Polypharmacology
Browser and Polypharmacology Browser 2 (Awale and
Reymond, 2019). In contrast, HERB applies Fisher’s exact test
to infer the targets directly from the manually collected
1,966 references rather than docking or similarity-based target
prediction.

Many TCM databases harbor a mixture of experimentally
validated and computationally predicted targets. In addition, the
targets for herbs and formulae are usually considered as a union of
targets from their ingredients, which is not necessarily true as their
underlying target interactions are much more complex. Specific
target prediction models at the TCM herb or formula levels are still
in the early stages, with a few examples (Gu and Lai, 2020).

3.6 Disease-related properties

To help understand the rationale of TCM, most databases
classify herbs and their disease indications inferred from the
putative targets. Furthermore, the disease indications are
annotated with commonly accepted standard terms. For example,
the TCM-ID database has 153 functional classes, 380 disease
indications, and 366 ICD-11 categories. In detail, there are
114,651 formulae-indication pairs involving 7,440 formulae and
380 indications. There are also 17,624 functions, covering
6,465 formulae and 4,629 functions. Similarly, in TCMSP, the
disease information (2,387 target-disease pairs) was established
by retrieving 2,387 targets and 84,260 compound-target pairs
from the TTD database (Chen et al., 2002) (https://doi.org/10.
1093/nar/gkp1014) and PharmGKB (Barbarino et al., 2018)
(https://www.pharmgkb.org/). In contrast, the gene-disease
associations in TCM-Mesh were collected from the GAD
database (Becker et al., 2004). The ETCM database utilizes
multiple resources, such as Phenotype Ontology (Köhler et al.,
2017), Online Mendelian Inheritance in Man (OMIM)
(Amberger and Hamosh, 2017), Database of gene-disease
associations (DisGeNET) (Piñero et al., 2015) and ORPHANET
database (Pavan et al., 2017). In YaTCM, the disease indication of
formulae and herbs is based on the therapeutic phenotypes rather
than their target genes. Unlike the previously mentioned databases
that rely on targets for disease classification, the SymMap database
aims to map TCM symptoms into disease indications directly (Xie
et al., 2020). Namely, SymMap first curates 1,717 TCM symptoms of
499 herbs and then maps them to 961 symptoms in modern
medicine. These current symptoms were finally linked to
5,235 diseases. As multiple levels of associations for formula,
herbs, ingredients, targets, and diseases have been established,
network pharmacology modeling has become a standard
technique to tackle the mechanisms of action of TCM, where the
KEGG pathway and GO analyses have been commonly used.

In summary, despite multiple databases that have provided
ingredient-disease, herb-disease, and formulae-disease
associations, many of them were inferred from computational
approaches. In contrast, the disease symptom classifications are
well-defined, although they differ from those used in mainstream
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medicine. As a result, phenotypic-based drug discovery (PDD) is a
favorable strategy for finding new indications for TCM.

3.7 Interconnections of TCM databases

The relationships between these TCM databases are shown in
Figure 5. TCMSP, TCM-ID, and TCMID were published before
2014 and were further utilized by other more recent databases, such
as TCMAnalyzer and SymMap. HERB integrated information
from the most significant number of other TCM databases,
followed by ETCM and SymMap. We found that the TCM
databases utilize multiple data sources that are grouped into four
categories, including:

1) Target databases and tools (e.g., target prediction tools, target-
target interaction, and annotation databases)

2) Compound databases and tools (e.g., compound annotation)
3) Disease databases and tools (e.g., disease annotation, disease

genes, pathways, and symptom databases)
4) Others (e.g., scientific literature databases and gene

expression databases)

Many data sources are commonly utilized in multiple TCM
databases, such as PubChem, DrugBank, and ChEMBL, to
annotate compounds and targets. As shown in Figure 5, the
most extensively involved data source is compound annotation

databases (n = 10), including PubChem and DrugBank. In
addition, various target-related databases (n = 9), such as
DrugBank, OMIM, and ChEMBL, are also utilized. However,
there are quite a few data sources that are used by specific
TCM databases. For example, Reactome (Matthews et al., 2009),
HPRD (Peri et al., 2003), MINT (Zanzoni et al., 2002), DisGeNet,
and GAD are only used for ETCM, while GEO (Barrett et al., 2013),
CMAP (Lamb et al., 2006), and GeneCards (Safran et al., 2010) are
unique resources for HERB. Therefore, it is expected that
connecting TCM databases to other public medicinal databases
via compound-target and target-disease associations can enhance
our understanding of herbal medicine at the molecular level.

4 Discussions

The lack of information has been a limiting factor for exploring
and applying TCM. With the development of computational tools,
increasingly comprehensive TCM databases have been developed.
To fully use all the available databases, it is essential to compare
them comprehensively. Although there are several comparative
studies, most of them covered TCM databases published before
2018, and little comparison about ingredients and herb-ingredient
pairs has been made.

In this study, we comprehensively analyze 14 major TCM
databases. We compared the recent trends of TCM data curation,
including their primary functions, annotations, network analysis,

FIGURE 5
Interconnections of TCM databases and their data sources. Each TCM database is shown as bars on the left side, connecting to their data sources in
the middle panel. These data sources are further grouped into different categories on the right side. The height of each rectangle represents the
frequency with which it was linked to other databases.
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and visualization tools. We searched for the herbs by their Chinese
names and found that the information about their ingredients differ
across different databases. We also found that these TCM databases
provide ununified annotation for herbs or ingredients, especially for
the structure information of the ingredients, making it challenging
to integrate data from them. Furthermore, we summarized novel
multi-omics and advanced bioinformatics approaches that have
been applied in the study of TCM, such as symptoms or gene
expressions, which may provide new insights for drug discovery
from TCM. We foresee that such a comparative study would help
improve the understanding of data complexity that may ultimately
motivate more efficient and more standardized strategies towards
the digitalization of TCM.

TCM databases have been developed rapidly. Initially, the
databases contained only basic information (e.g., TCM-ID,
TCMdatabse@taiwan, and TCMSP), and increasing volumes of
data have been added to enable a network pharmacology
visualization (e.g., TCMID and TCM-Mesh), and functional
analyses (e.g., ETCM and YaTCM). A notable trend is that
more specific databases, such as SymMap, have been intended
for symptoms and HERB mainly for transcriptional data. In
addition, the ingredient search functions are becoming more
flexible and powerful. With these tools, ingredients can be
searched in TCM databases through direct keywords such as
herbs, SMILES, or names and structures or substructures. If two
compounds are similar in structure, they usually have identical
properties or biological activities (Jafari et al., 2020). Hence, a
comparison of the structural similarity between TCM ingredients
and known drugs is needed. Several TCM databases have provided
such a functionality. For instance, YaTCM uses the likeness of
KEGG (Kanehisa et al., 2017) pathways to search potential
ingredients, while TCMAnalyzer is based on molecular
fingerprints’ similarity. Furthermore, drug-target prediction
methods are commonly used in BATMAN-TCM and TCMID.

Harmonization of terminology is critical for improving the
quality of TCM databases. Among these databases, BATMAN-
TCM, TM-MC, HERB, and TCMIO provide scientific binomials
for plants. Particularly, TCMIO provides scientific plant names,
coupled with the names of publishing authors, to avoid potential
ambiguity. As shown in Figure 4, Latin names of the herbs were
commonly found across the databases. However, the majority of
them were adopted from Pharmacopoeia to refer to herbal
substances. These pharmacopeia names were not as precise as
scientific botanical nomenclature. To ensure a better
standardization of herbal substances, we recommend the use of
the Medicinal Plant Names Services (http://mpns.kew.org/mpns-
portal/) for nomenclatural indexing and references. On the other
hand, the information on used parts was found in five databases,
including TCM-Mesh, TCMID, ETCM, SymMap, and TCMIO,
while the location and time of herb harvesting is available only
in ETCM. Furthermore, we found that these TCM databases
commonly lack information on the fingerprinting protocols, such
as high-performance liquid chromatography (HPLC), gas
chromatography (GC), and mass spectrometry (MS). According
to the Consensus statement on the Phytochemical Characterization
of Medicinal Plant extract (ConPhyMP) (Heinrich et al., 2022)
(https://ga-online.org/best-practice), fingerprinting protocols
contain essential information to ensure the reproducibility and

interpretation of herb extract characterization. The current lack
of such information across the TCM databases presents a critical
limitation to reusing the data for more integrative analyses.
Therefore, to improve the sharing of data and resources for the
TCM research community, the FAIR (Findable, Accessible,
Interoperable, and Reusable) principle should be carefully
followed, similar to the data curation efforts for modern
medicine (Almada et al., 2020; Tanoli et al., 2022).

Recently, many studies have performed high-throughput
transcriptomic profiling for ingredients, herbs, and formulas.
HERB is one of the first TCM databases to provide high-
throughput gene expression data for herbs and ingredients,
mainly from the GEO database. The differentially expressed
genes (DEGs) were obtained by comparing samples treated with
ingredients or herbs and control samples. These DEGs will lead to
identifying pathways that are affected by TCM. Compared with the
putative targets, the pathways derived from gene expression data
may be more reliable to represent the holistic effects of specific herbs
or ingredients. Therefore, we foresee that the increasing availability
of molecular profiling data may open opportunities for more
advanced bioinformatics and machine learning approaches to
tackle the complexity of TCM.

In conclusion, our study covered an extensive collection of
commonly used TCM databases. Also, the developing trends in
TCM databases were summarized in the aspects of their primary
functions, annotations, and network analysis. More importantly, we
compared their overlaps of herbs, ingredients, and herb-ingredient
associations. We found that TCM databases provide different
complementary sets of information, suggesting the necessity of
TCM database harmonization. Our comparison of TCM
databases would help to deepen the understanding of TCM
databases and to integrate a diversity of data efficiently from
TCM databases.
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