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Background: Exosome-like nanoparticles (ELNs) mediate interspecies
intercellular communications and modulate gene expression.

Hypothesis/Purpose: In this study, we isolated and purified ELNs from the dried
rhizome of Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR-ELNs), a
traditional natural medicine, and investigated their potential as
neuroinflammatory therapeutic agents.

Methods: ALR-ELN samples were isolated and purified using differential
centrifugation, and their physical features and microRNA contents were
analyzed through transmission electron microscopy and RNA sequencing,
respectively. BV-2 microglial murine cells and primary mouse microglial cells
were cultured in vitro, and their ability to uptake ALR-ELNs was explored using
fluorescence microscopy. The capacity of ALR-ELNs to modulate the anti-
inflammatory responses of these cells to lipopolysaccharide (LPS) exposure
was assessed through mRNA and protein expression analyses.

Results: Overall, BV-2 cells were found to internalize ALR-ELNs, which
comprised three microRNAs (ath-miR166f, ath-miR162a-5p, and ath-
miR162b-5p) that could have anti-inflammatory activity. Pretreatment of BV-2
cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by
significantly reducing the levels of nitric oxide, interleukin-1β, interleukin-6, and
tumor necrosis factor-α. Notably, the mRNA levels of Il1b, Il6, iNos, ccl2, and
cxcl10 in BV-2 cells, which increased upon LPS exposure, were significantly
reduced following ALR-ELN treatment. Moreover, the mRNA levels of heme
oxygenase 1, Irf7, ccl12, and Irg1 also increased significantly following ALR-ELN
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treatment. In addition, pretreatment of primary mouse microglial cells with ALR-
ELN prevented the pro-inflammatory effects of LPS stimulation by significantly
reducing the levels of nitric oxide.

Conclusion:Our findings indicate that ALR-ELNs exhibit anti-inflammatory effects
on murine microglial cells. Further validation may prove ALR-ELNs as a promising
neuroinflammatory therapeutic agent.
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Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome, microglia, exosome-like
nanoparticle, Kampo medicine, microRNA, neuroinflammation

1 Introduction

Exosome-like nanoparticles (ELNs), which include plant-
derived exosomes, mediate intercellular communications
between different species (Woith et al., 2019; Kalluri and
LeBleu, 2020). However, ELNs may have originally evolved in
plants to support communication between plant cells and as a
way of modulating innate immune defenses upon pathogen
invasion (Ju et al., 2013). ELNs transport proteins, lipids,
mRNAs, and microRNAs that are transferred into the host
cells, where they act as extracellular messengers (Teng et al.,
2018; Jia et al., 2021). Nanoparticles from edible plants (such as
grape, grapefruit, ginger, and carrot) have anti-inflammatory
properties and help maintain intestinal homeostasis (Mu et al.,
2014); for example, ginger-derived nanoparticles protect against
the development of liver-related diseases, including alcohol-
induced damage (Zhuang et al., 2015). Additionally, ELNs
have shown potential as valuable drug delivery tools owing to
their biocompatibility, cellular uptake, and targeting capability
(Dad et al., 2021).

Atractylodes lancea (Thunb.) DC. [Asteraceae] (A. lancea) is an
important herb used in traditional natural medicine in East Asian
countries, with its rhizome being used to treat rheumatic diseases,
digestive disorders, night blindness, and influenza (Jun et al., 2018).
The A. lancea rhizome exerts anticancer, anti-obesity, and anti-
inflammatory effects (Koonrungsesomboon et al., 2014) owing to its
sesquiterpene, sesquiterpenoid, polyethylene alkyne, and
phytosterol contents (Jun et al., 2018).

Although natural metabolites modulate the response of
microglial cells to pro-inflammatory agents (Nomura et al.,
2017; Kawada et al., 2022), the specific role of ELNs in
neuroinflammation remains largely unknown. BV-2 murine
microglial cells treated with lipopolysaccharide (LPS) are widely
used as an in vitro model for investigating the effects of natural
metabolites on central nervous system disorders and inflammation
(Kawada et al., 2022).

The purpose of this study was to evaluate the potential
of A. Lancea rhizome-derived ELNs (ALR-ELNs) as
neuroinflammatory therapeutic agents. First, we identified
ALR-ELNs and characterized their role in the response of
BV-2 and primary mouse microglial cells to LPS, including
their impact on the regulation of genes involved in the
inflammatory response and oxidative stress. Additionally, by
combining publicly available data on microRNAs and ALR-ELN
cargo, we aimed to identify candidate clinically valuable
mRNA targets.

2 Materials and methods

2.1 Isolation and characterization of
Atractylodes lancea-exosome-like
nanoparticles

A. lancea rhizome samples were purchased from Tsumura
(Tokyo, Japan) in November 2021, and authenticated using The
Japanese Pharmacopoeia 18th edition. ALR-ELN samples were
isolated and purified using differential centrifugation as
previously described (Iitsuka et al., 2018). Briefly, A. lancea
rhizome water-soluble substances were extracted by boiling 20 g
of the herb sample in 400 mL of water for 30 min, followed by
filtration. The extract was centrifuged at 8,000 × g for 5 min, and the
supernatant was collected and centrifuged at 15,000 × g for 20 min.
The supernatant was collected and filtered through a 0.8-µm filter
(Millipore, Burlington, MA, United States). Then, the ALR-ELNs
were extracted from the filtrate using an exoEasy Maxi Kit (Qiagen,
Hilden, Germany) and stored at −70°C. A total of 10.4 ± 3.0 mg
ELNs were isolated from 20 g of A. lancea rhizome crude samples.
The chemical profile of ALR-ELNs according to the ConPhyMP
statement (Heinrich et al., 2022) is provided in
Supplementary Figure S1.

2.2 Transmission electron microscopy
analysis

Nanoparticles were examined using a transmission electron
microscope (JEM-2000EX; JEOL, Tokyo, Japan) operated at
100 kV at the Hanaichi UltraStructure Research Institute (Aichi,
Japan). The diameter of the ELNs was measured and the size
distribution was calculated.

2.3 RNA sequencing (RNA-seq) analysis

Total RNA was extracted from the ALR-ELNs using miRNeasy
Mini Kit (Qiagen) according to the manufacturer’s protocol. RNA-
seq analysis was performed by Macrogen (Tokyo, Japan). TruSeq
Small RNA Library Prep Kit (Illumina, San Diego, CA,
United States) was used for library preparation according to the
manufacturer’s instructions. RNA samples were quality-tested using
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
United States). The libraries were sequenced using a HiSeq
2500 system (Illumina) and the resulting sequence reads were
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filtered to remove low-quality reads, repeated sequences, and
adaptor sequences. Next, the reads were aligned to miRBase
v22.1 (March 2022; http://www.mirbase.org) and RNAcentral
v14.0 (March 2022; https://rnacentral.org) data to classify known
microRNAs and other RNAmolecules, and the identified reads were
used for further analysis. The data are presented as the number of
reads for each mature microRNA.

2.4 Confocal laser fluorescence microscopy

The ALR-ELN suspension was stained using the ExoSparkler
Exosome Membrane Labeling Kit (Dojindo Laboratories,
Kumamoto, Japan), according to the manufacturer’s protocol.
Labeled ELNs (20 μg/mL) were added to BV-2 cells in a glass
bottom dish and incubated for 3 h; 4′,6-diamidino-2-
phenylindole was used as counterstain for the nuclei. The cells
were observed under a confocal laser scanning microscope (FV-
1000D/IX81; Olympus, Tokyo, Japan).

2.5 Cell viability

To evaluate the cytotoxic effects of ALR-ELNs, BV-2 cells
(1 × 104 cells/well) were cultured for 24 h and then treated with
increasing concentrations of ALR-ELNs (5, 10, 20, and 40 μg/
mL) for an additional 24 h. Next, the ALR-ELN-containing
medium was removed, and 100 μL of medium containing 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) (0.5 mg/mL) was added and incubated for 1 h.
Finally, the medium was removed, 100 μL of dimethyl
sulfoxide was added to each well, and the absorbance was
measured at 570 nm.

2.6 BV-2 microglial cell culture

Immortalized mouse microglial cells (BV-2; ABC-TC212S)
were purchased from AcceGen Biotechnology (Fairfield, NJ,
United States). The cells were maintained at 37°C and 5% CO2

in Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% heat-inactivated endotoxin-free fetal bovine serum,
100 U/mL penicillin, and 0.1 mg/mL streptomycin. Exosome-
depleted medium was obtained through ultracentrifugation at
110,000 × g overnight at 4°C and used in experiments involving
ALR-ELNs.

BV-2 cells were grown in 24-well plates at a density of 5 × 104

cells/well and incubated at 37°C. BV-2 cells were pretreated with
ALR-ELNs (2.5, 5, 10, 20, and 40 μg/mL) or positive control (1.0 µM
dexamethasone; Wako, Osaka, Japan) for 3 h and were then
stimulated with 0.5 μg/mL LPS. For mRNA expression analysis,
total RNA was extracted from BV-2 cells after 2 h of incubation.
After 24 h of culture, the supernatant was collected and nitric oxide
(NO) was measured using Griess assays, and interleukin (IL)-6, IL-
1β, and tumor necrosis factor (TNF)-α levels were measured
using commercial enzyme-linked immunosorbent assay kits
(R&D Systems, Minneapolis, MN, United States) as per the
manufacturer’s protocol.

2.7 Primary mouse microglial cell culture

Primary microglial cell cultures were prepared from mixed glial
cultures from ICR mice (Japan SLC, Hamamatsu, Japan) as
previously described (Higashi et al., 2011 Glia). All experimental
protocols conformed to the guidelines of the National Institutes of
Health (Guide for the Care and Use of Laboratory Animals, 1996)
and were approved by the Committee for the Care and Use of
Laboratory Animals at Kochi University (approval no. O-0009). In
brief, cortices were dissected from 1-day-old mice. Cells were
dissociated by mincing, followed by incubation in papain and
DNase for 10 min at 37°C. After centrifugation for 5 min at
500 × g, the cells were resuspended and triturated with a pipette
into DMEM supplemented with 10% fetal bovine serum (FBS)
(Biowest, Miami, FL) and 2 mM glutamine. Cells were plated on
6-well plates at a density of 6.4 ×105 cells/well and maintained in a
CO2 incubator. The medium was changed after 3 days in vitro and
once per week thereafter. This procedure resulted in cultures
consisting of astrocytes and microglia cells. After 2 weeks
in vitro, microglia were harvested by mildly shaking the cultures
and collecting the floating cells. The cells were replated at a density
of 5 × 105 cells/well on 24-well plates to obtain pure microglial
cultures. The microglial cultures were used for experiments 2 days
after replating (in vitro day 16). Each culture well was visually
inspected by phase contrast microscopy before use, and wells
containing >30% activated microglia were not used in the
experiments.

Primary microglial cells were pretreated with ALR-ELNs (20 μg/
mL) or positive control (1.0 µM dexamethasone) for 3 h and then
stimulated with 0.5 μg/mL LPS. After 24 h of culture, the
supernatant was collected and NO was measured using
Griess assays.

2.8 mRNA expression analysis by real-time
quantitative polymerase chain reaction
(RT-qPCR)

We used real-time PCR to identify several genetic changes
related to inflammatory pathways. This was based on a study
that employed dual RNA sequencing to analyze how gene
expression differs in BV-2 microglial cells when exposed to
inflammatory stimuli (Das et al., 2015). Total RNA was extracted
from BV-2 cells using the RNeasy Mini Kit (Qiagen), and then
reverse transcription was conducted using the PrimeScript RT
Reagent Kit (Takara Bio, Kusatsu, Japan). The conversion from
RNA to cDNA was performed with the PrimeScript RT Reagent Kit
and PCR Thermal Cycler Dice (Takara Bio). Each cDNA sample was
mixed with forward and reverse primers and the THUNDERBIRD
SYBR qPCR mix (Toyobo, Osaka, Japan) as per the manufacturer’s
instructions. The PCR mixture contained 1 µL cDNA, 5 µL
THUNDERBIRD SYBR qPCR mix, 0.2 µL PCR primers, and
3.6 µL RNase-free water. PCR was conducted using an Applied
Biosystems StepOnePlus system as previously described (Yoshioka
et al., 2023). This involved 45 cycles of denaturation at 95°C for 15 s,
followed by annealing and extension at 60°C for 1 min. Initial
analysis was performed using StepOnePlus version 2.3 (Applied
Biosystems, Foster City, CA, United States). The relative fold change
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in gene expression, compared to the control group, was determined
using mouse GAPDH as an internal reference. The primer set used
for PCR is provided in Supplementary Table S1.

2.9 Protein analysis

BV-2 cells were seeded in 24-well plates at a density of 1.0 × 105

cells/well and incubated for 24 h. Afterward, the cells were
pretreated with ALR-ELNs (20 μg/mL) for 3 h and stimulated
with 0.5 μg/mL LPS, after which the cells were incubated for
12 h. Then, the cells were collected and washed with phosphate-
buffered saline followed by the addition of RIPA buffer (Santa Cruz
Biotechnology, Dallas TX, United States). Protein concentrations
were determined by BCA protein assay (Thermo Fisher Scientific).

Automated western blots were performed using the Wes
Western Blot System (ProteinSimple, San Jose, CA,
United States) according to the manufacturer’s protocol and
recommendations. Cell lysates were diluted to 0.2 mg/mL, and a
size assay was run on a 25-well plate. The assay parameters were as
follows: 25 min separation time, 375 V, 5 min antibody diluent,
30 min primary antibody incubation, and 30 min secondary
antibody incubation. The following primary antibodies were
used: anti-iNOS (dilution 1:25; mouse, R&D Systems) and anti-β-
actin (1:250; rabbit, Cell Signaling Technology, Danvers,
MA, United States). Densitometric analysis was performed
using the Compass software (ProteinSimple) and protein
quantification was conducted using the area under the curve
calculation method.

2.10 Statistical analysis

All statistical analyses were performed using EZR version 1.29
(Saitama Medical Center, Jichi Medical University, Saitama, Japan)
(Nomura et al., 2017). Data are expressed as mean ± standard
deviation (SD). One-way analysis of variance (ANOVA) was

performed to examine the significance of the differences between
treatments. Subsequently, multiple comparison tests were
performed using Tukey’s test. Statistical significance was set
at p < 0.05.

3 Results

3.1 Characterization of ELNs from A.
lancea rhizome

TEM analysis showed that the ALR-ELNs were 50–365 nm in
size and had a round shape (Figures 1A,B). To investigate the
expression profile of miRNAs in A-ELNs, total RNA of A-ELNs
was extracted. Small RNA libraries were then constructed and
sequenced to generate a total of 6,848,533 raw reads. After
applying a series of stringent filters, the remaining
269,832 reads (3.94% of raw reads) from all libraries were
considered reliable miRNA candidates. Additionally, a
comparison of the miRNA sequences found in A-ELNs with
the mature miRNA library of Arabidopsis thaliana revealed
four known miRNAs (ath-miR166f, ath-miR162a-5p, ath-
miR162b-5p, and ath-miR396b-5p). Information on the
mature miRNA sequences of the three detected miRNAs is
shown in Table 1.

3.2 Effects of ALR-ELNs on BV-2 cell viability

Incubation of BV-2 cells for 3 h with the isolated ALR-ELNs
showed that the nanoparticles were taken up by the cells (Figure 2),
which confirmed that the nanoparticles could directly interact with
the cells. Moreover, the ELNs did not exert significant toxicity on
BV-2 cells when administered at 5–20 μg/mL, whereas significant
toxicity was observed at 40 μg/mL as compared with control
phosphate-buffered saline-treated cells (84.9% ± 9.7%; p =
0.012) (Figure 3).

FIGURE 1
Characterization of Atractylodes lancea rhizome-derived exosome-like nanoparticles (ALR-ELNs). (A) Size and yield, and (B) morphology of the
nanoparticles were determined using transmission electron microscopy.
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TABLE 1 MicroRNAs identified in Atractylodes lancea rhizome-derived exosome-like nanoparticles.

MicroRNA Mature miRNA sequence Length (nt) Number of reads

ath-miR166f ucggaccaggcuucauucc 19 46

ath-miR162a-5p ucgauaaaccucugcaucca 20 2

ath-miR162b-5p ucgauaaaccucugcaucca 20 2

FIGURE 2
Uptake of ALR-ELNs by murine microglial cells. BV-2 cells were incubated with labeled ELNs (green) for 3 h and observed using confocal
microscopy. 4′,6-Diamidino-2-phenylindole (red) was used as nuclei counterstain.

FIGURE 3
Effects of ALR-ELNs on the viability of murine microglial cells. BV-2-cells (1 × 104 cells/well) were incubated for 24 h with increasing concentrations
of ELNs (2.5, 5, 10, 20, and 40 μg/mL). Cell viability was determined using the MTT assay. Values are expressed as mean ± SD. *p < 0.05 by one-way
ANOVA followed by Tukey’s test.
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3.3 Effects of ALR-ELNs on LPS-induced
release of inflammatory mediators by BV-
2 cells

We investigated the anti-inflammatory effects of ALR-ELN
on BV-2 cells. Pretreatment of BV-2 cells with 5–20 μg/mL ALR-
ELNs for 3 h significantly prevented the pro-inflammatory effects
of 0.5 μg/mL LPS stimulation, as indicated by the significantly
reduced levels of secreted NO, IL-1β, IL-6, and TNF-α (Figure 4).
Further analysis of BV-2 cells using RT-qPCR confirmed that the
expression of Il1b, Il6, iNos, ccl2, and cxcl10 increased after LPS
treatment (0.5 μg/mL for 2 h), an effect that was significantly
counteracted by ALR-ELN pretreatment (20 μg/mL for 3 h)
(Figures 5A,B; 5D–F). However, Tnfα levels were increased
after both ALR-ELN pretreatment and LPS stimulation
(Figure 5C). Additionally, mRNA expression of Hmox1, Irf7,
ccl12, and Irg1 in BV-2 cells significantly increased following
ALR-ELN treatment (Figures 6A–D).These results were also
verified through Western blot analysis of BV-2 cells pretreated

with 20 μg/mL ALR-ELNs for 3 h and stimulated with 0.5 μg/mL
LPS for 12 h. Inducible nitric oxide synthase (iNOS) expression
was increased upon LPS treatment, an effect that was significantly
counteracted by ALR-ELN treatment (p < 0.01) (Figure 7),
whereas ALR-ELNs alone had no significant effect on control
(non-LPS-stimulated) BV-2 cells.

3.4 Effects of ALR-ELNs on LPS-induced
release of inflammatory mediators by
primary microglial cells

We investigated the anti-inflammatory effects of ALR-ELN on
primary cultured mouse microglia. Pretreatment of primary
microglial cells with 20 μg/mL ALR-ELNs and that of the
positive control with 1.0 µM dexamethasone for 3 h significantly
prevented the pro-inflammatory effects of 0.5 μg/mL LPS
stimulation, as indicated by the significantly reduced levels of
secreted NO (Figure 8).

FIGURE 4
Effects of ALR-ELNs on lipopolysaccharide (LPS)-induced release of inflammatorymediators by BV-2 cells. The cells were pretreatedwith ALR-ELNs
(0–20 μg/mL) or dexamethasone (1 μM) for 3 h and stimulated with 0.5 μg/mL LPS for 24 h. The levels of the indicated cytokines were determined by
enzyme-linked immunosorbent assays. (A) Nitric oxide (NO): F 6,21 = 85.0, p < 0.01; (B) Interleukin (IL)-1β: F 6,21 = 27.0, p < 0.01; (C) IL-6: F 6,21 = 2941,
p < 0.01; and (D) tumor necrosis factor (TNF)-α: F 6,21 = 11511, p < 0.01. Values are expressed as mean ± SD. **p < 0.01 vs. LPS treatment alone by
one-way ANOVA followed by Tukey’s test.
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4 Discussion

A. lancea rhizome, which is widely distributed in China, is a
natural medicine derived from Atractylodes lancea and Atractylodes
chinensis from the aster family (Compositae) that is used as an
ingredient in many types of Kampo medicines. Natural medicines,
such as A. lancea rhizome, possess neuropharmacological efficacy
commonly attributed to the action of its constituent secondary
metabolites (Ikarashi and Mizoguchi, 2016; Kawada et al., 2022).
The general pharmacological effects of natural medicines are
thought to result from secondary metabolites, although it may
not be sufficient to explain the strength of the effects. Because
plant-derived extracts contain ELNs that may exhibit
pharmacological activity (Woith et al., 2019; Kalluri and LeBleu,
2020), they may be responsible for some of the pharmacological
effects of Kampo medicines. Herein, we investigated the presence of
ELNs in A. lancea rhizome. To the best of our knowledge, this is the
first study characterizing the uptake of ALR-ELNs by mammalian
cells and their ability to modify the gene expression profile of
microglial cells.

ELNs involved in plant cell–cell communication may potentially
regulate the innate immune system of plants and transport bioactive
molecules, including mRNAs, microRNAs, and proteins, to
recipient cells in different contexts (Teng et al., 2018). However,
few studies have investigated the therapeutic potential of ELNs
(Iitsuka et al., 2018). In this study, we isolated, purified, and
characterized ELNs from dried A. lancea rhizome, adding to the

previous knowledge on ELN extraction from raw fruits and
vegetables (Ju et al., 2013; Zhuang et al., 2015; Pérez-Bermúdez
et al., 2017; De Robertis et al., 2020). Although ELN isolation from
dried herbs can be challenging, possibly because the nanoparticles
become unstable during the drying process because of their lipid
bilayer and membrane proteins (Suharta et al., 2021), we
demonstrated that active ELNs can be extracted from dried
natural medicinal herbs. Therefore, ELNs are resistant to drying
and may contribute to the efficacy of dried natural medicines.

In this study, we successfully isolated ALR-ELNs ranging from
50 to 365 nm in size (Figures 1A,B). The size of these ALR-ELNs
resembled that of previously described plant-derived ELNs (Kim
et al., 2022). Previous studies have revealed similarities between
grape-derived ELNs and mammalian exosomes, such as shared
proteins (such as heat shock proteins and aquaporins) and lipids
rich in phosphatidic acids and phosphatidylethanolamines (Dad
et al., 2021). They also share comparable nano-sizes and vesicle
structures. These common characteristics enable grape ELNs to
traverse the gut, stimulate stem cell growth, and contribute to the
regeneration of intestinal epithelial tissue (Ju et al., 2013).
Additionally, ELNs have distinct pharmacokinetics, and their
lipid bilayer structure and composition affect their entry into
cells (Yepes-Molina et al., 2020). The present study demonstrated
that ALR-ELNs directly interacted with and were taken up by BV-2
cells from mouse microglia (Figure 2). Furthermore, the presence of
mature miRNAs in ALR-ELNs is consistent with findings from
previous studies (De Robertis et al., 2020; Kim et al., 2022),

FIGURE 5
Effects of ALR-ELNs on LPS-induced mRNA levels of proinflammatory mediators in BV-2 cells. The cells were pretreated with 20 μg/mL ALR-ELNs
for 3 h and stimulated with 0.5 μg/mL LPS for 2 h (A) Il1b: F 3,12 = 97.8, p < 0.01; (B) Il6, F 3,12 = 111.2, p < 0.01; (C) Tnfα, F 3,12 = 169.2, p < 0.01; (D) iNos: F
3,12 = 15.7, p < 0.01; (E) ccl2: F 3,12 = 59.6; p < 0.01 and (F) cxxl10: F 3,12 = 122.8, p < 0.01. Values are expressed asmean ± SD. **p < 0.01 vs. LPS treatment
alone by one-way ANOVA followed by Tukey’s test.
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suggesting that mature miRNAs possess pharmacological activity.
Although earlier reports did not focus on microglial cells, our study
suggests that ELNs could be beneficial in new areas.

Inflammation promoted by microglia is associated with the
development of various neurological diseases, including multiple
sclerosis (MS), Alzheimer’s disease, Parkinson’s disease, and
depression (Minter et al., 2016; Bright et al., 2019; Troubat
et al., 2021). Indeed, in such conditions, microglia release
inflammatory factors (such as IL-1β, IL-6, and NO) that
damage the nerve cells (Smith et al., 2012). NO is a free radical
synthesized by iNOS that is involved in microglia-mediated
inflammatory processes in the central nervous system (Subedi
et al., 2021). We evaluated the effects of ALR-ELNs on
microglial inflammation using LPS-stimulated BV-2 cells as an
in vitro model. ALR-ELN pretreatment significantly reduced the
mRNA levels of inflammatory cytokines (IL-1β, IL-6, and iNOS).
ALR-ELN pretreatment caused a decrease in TNFα mRNA levels
in the 24-h cultured supernatant after LPS stimulation (Figure 4D).
However, in cells collected 2 h after LPS stimulation, ALR-ELN
pretreatment led to an increase in TNFαmRNA levels (Figure 5C).

This could be attributed to TNFα′s rapid response to stimulation,
resulting in a transient increase with both LPS and ALR-ELN
pretreatment (Das et al., 2015). However, ALR-ELN pretreatment
may inhibit TNFα expression following LPS stimulation due to its
anti-inflammatory effect. ALR-ELN pretreatment resulted in a
significant reduction in the mRNA levels of the chemokines
ccl2 and cxcl10. Chemokines, recognized as inflammatory
cytokines, play a crucial role in regulating inflammation.
Elevated levels of these molecules are linked to disease
progression and severe inflammatory conditions, including MS
(Murdoch and Finn, 2000). Ccl2 is particularly important in
neuroinflammatory diseases and is a potential target for
treatment (Conductier et al., 2010). It is highly expressed in
microglia, astrocytes, and other inflammatory cells during MS
(Banisor et al., 2005). Cxcl10, another chemokine, is associated
with infectious and inflammatory diseases, contributing to T cell-
mediated inflammation in the central nervous system. Moreover,
Cxcl10 plays a role in inflammatory demyelinating diseases such as
MS by promoting leukocyte trafficking in the brain, leading to the
destruction of myelin sheaths or neurons (Shen et al., 2006). The

FIGURE 6
Effects of ALR-ELNs on LPS-inducedmRNA levels of anti-inflammatory mediators in BV-2 cells. The cells were pretreated with 20 μg/mL ALR-ELNs
for 3 h and stimulatedwith 0.5 μg/mL LPS for 2 h (A)Hmox1: F 3,12 = 50.2, p < 0.01; (B) Irf7, F 3,12 = 54.7, p < 0.01; (C) ccl12: F 3,12 = 113.2, p < 0.01; and (D)
Irg1 F 3,12 = 23.2; p < 0.01. Values are expressed as mean ± SD. **p < 0.01 vs. LPS treatment alone by one-way ANOVA followed by Tukey’s test.
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levels of NO and pro-inflammatory cytokines are closely related to
heme oxygenase (HO)-1 expression (Campbell et al., 2021). HO-1
suppresses LPS-induced inflammation in BV-2 cells (Lee et al.,
2017). In agreement with these findings, ALR-ELN treatment
significantly induced the expression of Hmox1 regardless of the
presence of LPS. Hence, it is reasonable to speculate that HO-1
mediates the anti-inflammatory effects of ALR-ELNs. In addition,
HO-1 contributes to other mechanisms that suppress the
inflammatory response triggered by LPS, such as the
SHP2–NLRP3 and Nrf2–ARE pathways (Buendia et al., 2016;
Guo et al., 2017). Furthermore, ALR-ELN treatment increased
the mRNA levels of Irf7, ccl12, and Irg1. In microglia,
Irf7 promotes both anti- and pro-inflammatory phenotypes and
activation of Irf7 through IFN-β restores the anti-inflammatory
phenotype (Cohen et al., 2014). Ccl12 reduces neuroinflammation
and inhibits inflammasome activation in LPS-stimulated BV2 cells
(Roosen et al., 2021). Irg1 regulates the immune metabolism in
inflammation and infectious diseases (Wu et al., 2020).
Consequently, the anticipated anti-inflammatory impact of
ALR-ELNs is likely to involve various signals, and additional
research is necessary to gain a deeper understanding of
the mechanisms behind the anti-inflammatory effects of
ALR-ELNs.

Active oxygen may be involved in the anti-inflammatory effects
of ALR-ELNs in BV-2 cells, similar to blueberry-derived ELNs that
contain miR162 and exhibit antioxidant activity (De Robertis et al.,
2020). Thus, these microRNAs may mediate the inhibitory effects of
ALR-ELNs on LPS-induced inflammation in microglial cells. Future
studies should focus on the use of ELNs as vectors for active
metabolites, such as drugs, RNAs, proteins, and lipids. In
addition, ALR-ELNs were found to contain multiple microRNAs
including miR166, which is predicted to target the pro-

inflammatory molecules B-cell lymphoma 2, VAV1, and
IL2 receptor alpha with high affinity (Minutolo et al., 2020). In
particular, VAV1 upregulates the expression of inflammatory
mediators (Miletic et al., 2007) and may play a role in the anti-
inflammatory effects of ALR-ELNs. However, VAV1 does not affect
iNOS or IL-6 (Miletic et al., 2007); therefore, ALR-ELNs may have
an alternative mode of action independent of VAV1, which warrants
further investigations. In addition, ALR-ELNs did not contain beta-
eudesmol, hinesol, atractylone, and atractylodin, which are the
major constituents of A. lancea rhizome (Koonrungsesomboon N
et al., 2014), but 7-methoxycoumarin was found to be a component
of ALR-ELNs (Supplementary Figure S1). Methoxycoumarin is
found in various plants and has anti-inflammatory effects on
microglia (Togna et al., 2014; Kirsch et al., 2016; Kang and
Hyun, 2020). However, ALR-ELN may contain components
other than methoxycoumarin, and future studies should
investigate whether the components of ALR-ELNs contribute to
the anti-inflammatory effects.

This study has several limitations. First, some quality indicator
data for the ELNs, such as the PDI, were not available. These data are
considered necessary for future animal studies and clinical
applications (Danaei et al., 2018), as these act as indicators that
affect the in vitro and in vivo behavior of the nanoparticles. Second,
we performed a comprehensive analysis of microRNAs through
RNA sequencing and found that several characteristic microRNAs
are transported by the ALR-ELNs; however, these microRNAs have
not been quantified. Therefore, it is necessary to investigate them in
the future using RT-qPCR. Third, despite the collective evidence
that ALR-ELNs can be taken up by BV-2 cells, this alone does not
prove complete cellular uptake. In the future, it will be necessary to
confirm that the ALR-ELNs are incorporated into cells using more
reliable methods.

FIGURE 7
Effects of ALR-ELNs on LPS-induced levels of iNOS in BV-2 cells. The cells were pretreated with 20 μg/mL ALR-ELNs for 3 h and stimulated with
0.5 μg/mL LPS for 12 h. (A) Western blotting analysis of iNOS levels. Expression of β-actin served as loading control. (B) Densitometric analysis of (A).
Values are expressed as mean ± SD. F 3,12 = 22.5, **p < 0.01 vs. LPS treatment alone by one-way ANOVA followed by Tukey’s test.
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5 Conclusion

In summary, our study reports for the first time the anti-
inflammatory effects of ALR-ELNs on LPS-stimulated microglia.
We believe that the findings of this study provide additional insights
into the pharmacological efficacy of natural medicines via their
ELNs and valuable bioactive agents. Future studies of ALR-ELN
action in vivo may prove ALR-ELNs to be promising
neuroinflammatory therapeutic agents.
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