
Multiple cell-death patterns
predict the prognosis and drug
sensitivity of melanoma patients

Zewei Chen1,2†, Ruopeng Zhang1,2†, Zhoukai Zhao1,2†,
Baiwei Zhao1,2†, Feiyang Zhang1,2, Guoming Chen1,2,
Xiaojiang Chen1,2, Chengzhi Wei1,2, Jun Lin1,2, Feizhi Lin1,2,
Ziqi Zheng1,2, Kaiming Jiang1,2, Runcong Nie1,2* and
Yingbo Chen1,2*
1State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
Sun Yat-Sen University Cancer Center, Guangzhou, China, 2Department of Gastric Surgery and
Melanoma Surgical Section, Sun Yat-Sen University Cancer Center, Guangzhou, China

Background:Melanoma, a malignant tumor of the skin, presents challenges in its
treatment process involving modalities such as surgery, chemotherapy, and
targeted therapy. However, there is a need for an ideal model to assess
prognosis and drug sensitivity. Programmed cell death (PCD) modes play a
crucial role in tumor progression and has the potential to serve as prognostic
and drug sensitivity indicators for melanoma.

Methods: We analyzed 13 PCD modes including apoptosis, necroptosis,
ferroptosis, pyroptosis, netotic cell death, entotic cell death, lysosome-
dependent cell death, parthanatos, autophagy-dependent cell death,
oxeiptosis, disulfidptosis, and alkaliptosis. These modes were used to
construct a model that incorporated genes related to these 13 PCD modes to
establish a cell death index (CDI) to conduct prognosis analysis. Transcriptomic,
genomic, and clinical data were collected from cohorts including TCGA-SKCM,
GSE19234, and GSE65904 to validate this model.

Results: A CDI consisting of ten gene signatures was established using machine
learning algorithms and divided into two groups based on CDI values. The high
CDI group exhibited relatively lower numbers of immune-infiltrating cells and
showed resistance to commonly used drugs such as docetaxel and axitinib. Our
validation results demonstrated good discrimination in PCA analysis between CDI
groups, and melanoma patients with higher CDI values had worse postoperative
prognoses (all p < 0.01).

Conclusion: The CDI model, incorporating multiple PCD modes, accurately
predicts the clinical prognosis and drug sensitivity of melanoma patients.
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1 Introduction

Melanoma is the most lethal type of skin cancer, originating from
the malignant transformation of melanocytes. Globally, melanoma
accounts for approximately 1.7% of all newly diagnosed primary
malignant cancers, and deaths from melanoma constitute around
0.7% of all cancer mortality (Schadendorf et al., 2018). The
incidence and mortality rates of melanoma vary between countries
(Schadendorf et al., 2018). According to estimates from the American
Cancer Society, the number of new cases of melanoma is projected to
reach 97,610, with 7,990 deaths, by 2023 (Siegel et al., 2023). Surgery
currently remains the primary treatment modality for early-stage
melanoma (Zheng et al., 2020). With advances in the understanding
of the pathogenesis of melanoma, it has been recognized that gene
mutations play a crucial role in its development. In particular, the wide
application of targeted therapy and immunotherapy has substantially
improved the 5-year survival rate of patients with advanced melanoma
from <10% to around 30% (Guo et al., 2021). Therefore, in order to
improve the prognosis of melanoma, there is an urgent need to explore
new targets and establish effective models—necessary prerequisites for
making targeted therapies more feasible (Mahdavi et al., 2021; Khajuria
and Agha, 2013).

Cell death can be categorized into accidental cell death (ACD) and
programmed cell death (PCD) depending on the triggering
mechanisms. PCD encompasses various forms of cell death,
including apoptosis, necroptosis, ferroptosis, pyroptosis, netotic cell
death, entotic cell death, lysosome-dependent cell death, parthanatos,
autophagy-dependent cell death, oxeiptosis, disulfidptosis, and
alkaliptosis, which are regulated by complex processes (Tang et al.,
2019). Netotic cell death is a neutrophil-induced form of cell death that
is characterized by the release of DNA that forms extracellular web-like
structures (Brinkmann et al., 2004). Alkaliptosis is a newly recognized
form of cell death, marked by metabolic dysfunction under alkaline
conditions (Song et al., 2018). PCD serves as a natural defense
mechanism against the survival and dissemination of cancer cells.
However, cancer cells evade PCD through different strategies, such
as acquiring genetic mutations or epigenetic modifications in key PCD
pathway regulators (Su et al., 2015). The relationship between PCD and
melanoma has not been fully elucidated, and there is limited research on
the specific functional aspects of PCD inmelanoma. Although previous
studies have partially investigated the relationship between melanoma
and programmed cell death, such as apoptosis and ferroptosis (Liu C.
et al., 2022; Hussein et al., 2003), there is still little analysis on how
melanoma integrates multiple modes of cell death. Therefore, this study
aims to introduce a novel indicator, the cell death index (CDI), to
improve prognostic prediction in melanoma. Overall, our research
highlights the heterogeneity among melanoma patients and evaluates
the clinical prognosis of this disease. These findings may assist
melanoma patients to make informed decisions about appropriate
treatment strategies.

2 Methods

2.1 Data collection

PCD-related genes include apoptosis, necroptosis,
ferroptosis, pyroptosis, netotic cell death, entotic cell death,

lysosome-dependent cell death, parthanatos, autophagy-
dependent cell death, oxeiptosis, disulfidptosis, and
alkaliptosis. These genes are collected from GSEA gene sets,
KEGG, review articles, and manual collation (Tang et al.,
2019; Liu and Tang, 2023). The final gene list represents a
comprehensive compilation of regulatory genes spanning all
13 PCD patterns. A total of 580 apoptosis genes, 5 alkaliptosis
genes, 292 autophagy genes, 14 cuproptosis genes,
14 disulfidptosis genes, 7 entotic cell death genes,
78 ferroptosis genes, 176 lysosome-dependent cell death genes,
51 necroptosis genes, 7 netotic cell death genes, 1 oxeiptosis gene,
7 parthanatos genes, and 36 pyroptosis genes were included in
this study. In total, 1,268 concatenated genes associated with
PCD patterns were incorporated for analysis.

To conduct the analysis, we obtained RNA-seq transcripts per
million (TPM) data from a cohort comprising 469 melanoma
patients and 557 normal samples by accessing the TCGA and
GTEx databases through the University of California Santa Cruz
(UCSC) database; the data had undergone log transformation.
Ensuring accurate gene annotation, we utilized the AnnoProbe R
package to convert ensemble IDs to gene symbols, and clinical
features were acquired from the official TCGAwebsite. Additionally,
we retrieved log-transformed chip-seq data and corresponding
clinical characteristics of a separate cohort containing
258 melanoma patients from the Gene Expression Omnibus
(GEO) database (ID: GSE19234, GSE65904) for external
validation purposes, with probe mapping facilitated using the
AnnoProbe R.

2.2 Expression, annotation, and genetic
mutation information about PCD-
related genes

In the TCGA-SKCM and GTEx cohorts, we prepared raw
transcriptome data from 469 melanoma patients and 557 normal
tissues. The “limma” package was subsequently used to identify
differentially expressed genes (DEGs) (Ritchie et al., 2015), with the
criteria of adjusted p < 0.05 and |log2FC| > 1. The visualization of
DEGs was performed using the “pheatmap” and “ggplot “packages.
We utilized the “maftools” package to explore genetic mutation
information among melanoma patients (Mayakonda et al., 2018).

2.3 Development of the PCD-related
gene signature

We used univariate Cox regression analysis to evaluate the
impact of these genes on the survival status of melanoma
patients. To ensure the accuracy of the model, we adjusted the
significance threshold to 0.05. Furthermore, we employed the
LASSO Cox regression method to narrow down the candidate
gene set and construct the optimal gene signature. We selected
the “lambda.min” value using the “glmnet” R package (Friedman
et al., 2010).

The CDI for each patient was calculated using the formula
CDI � ∑10

i�1βi*Ei. B i represents the risk coefficient associated with
each gene, and E i denotes the corresponding gene’s expression level.
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For a more intuitive visualization, we divided melanoma patients
into low- and high-CDI groups based on the median CDI value.
Using the patient’s clinical information and CDI values, we created a
clustered heatmap using the “pheatmap” package in R. Additionally,
we examined the relationship between CDI grouping and the clinical
information of melanoma patients using Wilcox, t-, and
ANOVA tests.

2.4 Functional enrichment

We utilized the “clusterProfiler” R package to identify possible
biological pathways based on the DEGs and the genes identified
through lasso regression (Wu et al., 2021). Furthermore, we
employed the GSVA and GSEABase packages in R to analyze the
differential biological functions between the high- and low-CDI
groups (Wu et al., 2021).

2.5 Tumor microenvironment analysis and
drug sensitivities

The association between CDI and immunomodulators, as well
as immune cells, was analyzed. The single-sample gene set
enrichment analysis (ssGSEA) and CIBERSORT deconvolution
algorithm were employed to analyze the cellular composition of
the tissues based on gene expression profiles (Newman et al., 2015).
Additionally, drug sensitivities were predicted using “oncoPredict”
(Maeser et al., 2021).

2.6 Internal training and external validation
of the gene signature prediction model

External validation was conducted using the GSE19234 and
GSE65904 datasets. Scatter plots were generated using the “ggplot”
package depicting the relationship between CDI grouping and survival
outcomes. Principal component analysis (PCA) was performed using
the “stats” package. Additionally, Kaplan–Meier analysis, examining the
correlation between OS time and CDI, was conducted using the
“survival” and “survminer” packages. Furthermore, receiver
operating characteristic (ROC) analysis of CDI was performed using
the “timeROC” R package (Blanche et al., 2013).

2.7 Establishment and assessment of the
nomogram survival model

We collected clinical information of melanoma patients from
the TCGA database, including age, gender, T stage, N stage, and
stage grouping. We performed univariate and multivariate Cox
regression analyses using the clinical information and CDI
values. The patients were then stratified into stage IV and non-
stage IV groups, and we developed a prognostic nomogram and
calibration curve incorporating age, gender, T stage, N stage, and
CDI values using the “rms” and “survival” packages in R (Harrell Jr,
2023). ROC analysis of the nomogram was performed using the R
package “timeROC” (Blanche et al., 2013). Additionally, we

compared the nomogram models with and without CDI using
pROC and a Wilcoxon rank-sum test (Su et al., 2015).
Furthermore, based on the outcomes derived from the
nomogram analysis including and excluding CDI, the
participants were stratified into high- and low-risk cohorts using
the mean score computed from their respective datasets.
Consequently, Kaplan–Meier survival curves were constructed for
each cohort. It is important to note that for the external validation of
the nomogram survival model, we did not include T and N variables
due to limited data availability for melanoma.

2.8 Statistical analysis

All statistical analyses were performed using R version
4.2.1 Two-group comparisons were conducted using t-tests or
Wilcoxon tests. Overall comparisons were done using ANOVA.
Survival curves were analyzed using the log-rank test and described
using Kaplan–Meier plots. p < 0.05 was considered statistically
significant.

3 Results

3.1 Study workflow

We selected 1,267 genes related to programmed cell death
(PCD) and identified 1,026 patients from the TCGA and GTEx
databases, 44 from GSE19234, and 214 patients from GSE65904 for
inclusion in the analysis. Figure 1 illustrates the workflow employed
in this study.

3.2 Differentially expressed genes (DEGs)
related to programmed cell death in the
TCGA cohort and GTEx cohort

In the TCGA and GETX cohorts, 335 DEGs were identified (all
adjusted; p < 0.05, and |log2FC| > 1), of which 149 were upregulated
and 186 were downregulated in the melanoma group. The
normalized RNA levels of the DEGs are displayed as heatmaps in
Figure 2A, while the volcano plot of the DEGs is presented in
Figure 2B (two vertical lines indicate gene expression fold
change >1 and <−1, respectively, and the horizontal line
indicates the P value of 0.05. Points with labels are obvious
DEGs which |log2FC| > 3). In addition, gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis indicated that these DEGs participated in multiple
biological pathways, such as lysosome, intrinsic apoptotic
signaling pathway, and autophagosome (Supplementary Figures
1A, B). Furthermore, the variation in PCD-related genes was
evaluated in melanoma patients from the TCGA cohort. Results
showed that about 327/456 (71.71%) of melanoma patients had
mutations. Missense mutation is the main mutation type,
accounting for about 90% of all mutations. The top-20 mutations
of PCD-related genes were displayed, with DCC possessing the
highest mutation frequency (22%), with 19 others ranging from 18%
to 10% (Supplementary Figures 1C, D).
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3.3 Construction of a prognostic gene
signature for malignant melanoma patients

We collected and analyzed survival information of melanoma
patients using univariate Cox regression analysis to screen for genes
associated with survival. In TCGA, 357 genes, and in GSE19234,
181 genes, met the cutoff criteria of p < 0.05, and the intersection of
the two screenings contained 67 genes. Through lasso Cox
regression analysis, we constructed a signature consisting of ten
genes (ATP6V0D1, CD74, GSTP1, MLKL, NFATC4, TRAF1,

TRIM27, VPS13C, XBP1, and ZBP1), with five from apoptosis,
three from autophagy, and two genes from necroptosis (Figure 3A),
which not only play a crucial role in the pathogenesis and the
development of melanoma but also serve as a potential factor in
reshaping the immune microenvironment, mediating metastasis,
and influencing drug resistance. This highlights the significant
impact of multiple PCD pathways in melanoma cell biology and
their implications in modulating a tumor’s biological behaviors (Zou
et al., 2022). We employed Kaplan–Meier analysis (log-rank test) to
evaluate the impact of these ten genes on overall survival (OS) time.

FIGURE 1
Flowchart for the analysis of cell death patterns in patients with melanoma. Abbreviations: DEGs, differentially expressed genes; KEGG, Kyoto
encyclopedia of genes and genomes; GO, gene ontology; PCA, principal component analysis; CDI, cell death indicator.

FIGURE 2
Differentially expressed genes (DEGs) related to programmed cell death in TCGA cohort and GTEx cohort. (A) Heatmap of the PCD-related DEGs
between malignant melanoma and normal tissues. (B) Volcano plot of the PCD-related DEGs between malignant melanoma and normal tissues (two
vertical lines indicate gene expression fold change >1 and <−1, respectively, and the horizontal line indicates the P-value of 0.05; points with labels are
obvious DEGs which |log2FC| > 3).
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Our findings demonstrated that higher expression levels of CD74,
MLKL, TRAF1, VPS13C, XBP1, and ZBP1 were associated with
improved survival outcomes in patients, while the higher expression
levels of ATP6V0D1, GSTP1, NFATC4, and TRIM27 were
correlated with poorer survival outcomes (all p < 0.05)
(Supplementary Figure 2). T-tests were performed to compare
the expression levels of these genes between melanoma tissues

and normal samples. Of these, ATP6V0D1, CD74, TRIM27,
TRAF1, XBP1, and ZBP1 showed higher expression in tumor
tissues, while MLKL, VPS13C, and NFATC4 showed lower
expression in tumor tissues (all p < 0.05), and the expression of
GSTP1 did not show a significant difference between melanoma
tissues and normal samples (Supplementary Figure 3). We derived
the CDI for each patient using a formula based on the expression

FIGURE 3
Construction of a prognostic gene signature for malignant melanoma patients. (A) Selection of the 10 model genes by lasso regression, machine
learning method, and cross-validation of the constructed signature. (B) Violin plots of the relationship between CDI and clinical information on different
melanoma patients. ****p < 0.0001; **p < 0.01; *p < 0.05; ns, not significant. (C) Heatmap of 10 model genes and clinical features.
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levels of the 10 genes. Based on the calculated median CDI, we
divided the 451 melanoma patients in the TCGA cohort into high
and low CDI groups as the training dataset. CDI was significantly

associated with clinical characteristics including survival status, T
stage, and clinical stage (p < 0.05) but not N stage (Figure 3B). A
heatmap illustrating the expression profiles of the ten model genes

FIGURE 4
Internal training and external validation of the gene signature predictionmodel. (A)Distribution of adjusted CDI according to survival status and time
in TCGA, GSE19234, GSE65904 cohorts. (B) Principal component analysis (PCA) plot based on the CDI in TCGA, GSE19234, and GSE65904 cohorts. (C)
Overall survival in the low- and high-CDI group patients in TCGA, GSE19234, and GSE65904 cohorts. (D) Receiver operating characteristic (ROC) analysis
of CDI in TCGA, GSE19234, and GSE65904 cohorts. Abbreviations: AUC, area under the curve.
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and their associations with clinical characteristics is provided. The
figure demonstrates that the elevated expression of certain genes is
strongly correlated with poor prognosis, such as decreased survival
rates or more advanced tumor stages. For instance,
ATP6V0D1 shows significant upregulation in patients with
advanced tumor stages, while TRIM27 is notably associated with
worse overall survival outcomes (Figure 3C).

3.4 Internal training and external validation
of the gene signature prediction model

In the following analysis, we examined the differences in OS
between melanoma patients with varying CDI values. The results
revealed that patients with high CDI levels exhibited a lower OS rate
than those with low CDI (Figure 4A), with their 5-year survival rate
being 22.2% versus 48.2%. Utilizing principal component analysis
(PCA), we observed distinct separation based on CDI values.
Samples from the high CDI group clustered more closely in the
PCA plot, further supporting the consistency of gene expression and
clinical characteristics within this group (Figure 4B). Furthermore,
there was a significant disparity in OS times between the two groups,
with low-CDI patients demonstrating increased survival rates (HR =
0.36, 95% CI: 0.27–0.48, p < 0.001, Figure 4C). To validate our
findings, GSE19234 and GSE65904 were used as independent
cohorts, with patients divided into high and low CDI groups
based on median CDI for each cohort. The results demonstrated
a correlation between higher CDI and shorter survival time
(Figure 4A). Additionally, PCA showed clear separation between
the two groups (Figure 4B), while Kaplan–Meier analysis indicated
that the low-CDI group had better OS and lower death rates (HR =
0.27, 95% CI: 0.10–0.71, p = 0.003 and HR = 0.56, 95% CI: 0.38–0.84,
p = 0.004, Figure 4C). ROC analysis of CDI values in three
independent cohorts supported our findings, indicating the
significant accuracy of CDI values in predicting the 1-, 3-, and 5-
year OS of melanoma patients (Figure 4D). The AUC values for 1-,
3-, and 5-year survival in the training set were 0.731, 0.668, and
0.653, and the validation set showed AUCs ranging from
0.584 to 0.873.

3.5 Function enrichment and immune
analysis between two CDI groups in the
TCGA cohort

KEGG analysis revealed significant enrichment of the cell
apoptosis pathway (p < 0.001, Figure 5A). In GEVA analysis, we
selected the top-ten upregulated and top-ten downregulated
pathways (Figures 5B, C). Upregulation was observed in
pathways related to nitrogen compound transport, while
pathways associated with the nervous system showed
downregulation. Additionally, immune analysis indicated a
relatively higher presence of immune-infiltrating cells in the CDI
low group, accounting for 26 out of 28 (92.8%) of the total number
and proportion of immune cells in this group. Specifically, activated
B cells, activated CD8 T cells, and immature B cells were significantly
higher in the CDI low group (p < 0.001), while CD56dim natural
killer cells and neutrophils did not show significant differences

between the groups (Figure 6). The marked decrease in these
critical tumor-killing cells within the CDI low expression group
underscores the pivotal role of the CDI score in assessing the anti-
tumor microenvironment. A lower CDI is indicative of a more
suppressive tumor microenvironment, consistent with poorer
survival outcomes, and aligns with the findings of previous
studies (Cao et al., 2024).

3.6 Relationship between tumor drug
sensitivity and CDI

We conducted an analysis to determine whether there were
differences in other important features between the two CDI groups.
We calculated the half maximal inhibitory concentration (IC50)
values of commonly used melanoma drugs to explore the
relationship between the established model and drug sensitivity.
The scatter plots and box plots of the correlation and significance
between drug sensitivities and CDI for six commonly used
melanoma drugs (Axtinib, Carmustine, Docetaexl,
Temozolomide, Paclitaxel, Dabrafenib) are presented in Figure 7.
We found that the IC50 values of these drugs were higher in the
high-CDI group, which may suggest that melanoma patients with
high CDI are resistant to standard chemotherapy regimens and
result in poor prognosis. This finding is also consistent with
previous results.

3.7 Establishment and assessment of the
nomogram survival model

We performed univariate and multivariate Cox regression
analyses to determine whether CDI could serve as an
independent prognostic factor for melanoma. CDI (HR = 0.70,
95%CI: 0.51–0.97, p = 0.001) and stage (HR = 1.45, 95%CI:
1.16–1.82, p = 0.001) were considered as risk factors according to
the univariate Cox regression analysis; they remained independent
prognostic factors after multivariate analysis (Figure 8A). We
developed a nomogram model including age, gender, stage, CDI,
T stage, and N stage using multivariable Cox and stepwise regression
analyses in the TCGA cohort to predict 1-, 3- and 5-year OS
(Figure 8B). The ROC analysis results showed that the AUC
values for 1-, 3- and 5-year survival predictions using the
nomogram were at a high level, with values of 0.801, 0.803, and
0.766, respectively. In the validation set, the AUC ranged from
0.861 to 0.895 for GSE19234 and from 0.648 to 0.702 for GSE65904.
(Figure 8D). Moreover, the calibration curves and AUC values
obtained from ROC analysis in the three independent cohorts
further supported the high accuracy of the nomogram in
predicting the 1-, 3-, and 5-year survival of melanoma patients
(Figures 8C, D).

Additionally, we assessed the difference between the nomogram
with and without CDI values by comparing their AUC values in
predicting 3-year survival. Our results showed significant differences
between the two models in TCGA-SKCM (p = 0.01) and GSE65904
(p = 0.02), indicating that the inclusion of CDI improved the
accuracy of our prognostic predictions compared to existing
clinical models (Figure 9A). Furthermore, the substantial
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disparities observed in the Kaplan–Meier curves, which were
stratified based on individual scores, provide compelling evidence
for the pivotal importance of CDI values in our model
(Figures 9B, C).

4 Discussion

To the best of our knowledge, this study represents the first
comprehensive analysis of 13 different modes of PCD in melanoma

FIGURE 5
Plot of enrichment biological functions between two CDI groups in TCGA cohort. (A) GO enrichment analyses based on the 10 model genes. (B, C)
GSVA between two CDI groups in TCGA cohort. Abbreviations: GVSA, gene set variation analysis.
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and establishes a cell death signature in the TCGA dataset, which was
further validated in two external datasets (GSE19234 and GSE65904).
We constructed a nomogram incorporating clinical features and the
CDI which demonstrated excellent performance. Additionally, we

investigated the correlation between CDI and immune regulators as
well as drug sensitivity. The establishment and analysis of cell death
models for melanoma can effectively stratify the prognosis of patients
and provide new directions for further elucidating the mechanisms of

FIGURE 6
Correlation between immunomodulators and CDI values in malignant melanoma patients. (A) Box plot of the correlation between
immunomodulators and CDI values in malignant melanoma patients. (B, C) Supplementary Figure based on Figure (A).
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tumor occurrence and development, as well as drug target research and
development.

PCD involves intricate regulation and encompasses various
mechanisms. Growing evidence suggests that it plays a crucial role in
biological processes and has been implicated in the development and
metastasis of malignant tumors for decades (Su et al., 2015).We created a
feature consisting of ten genes (ATP6V0D1, CD74, GSTP1, MLKL,
NFATC4, TRAF1, TRIM27, VPS13C, XBP1, and ZBP1) associated with
PCD and found that it could predict overall survival in melanoma
patients. ATP6V0D1, which encodes a subunit of the proton pump
involved in endocytic pathways (Stevens and Forgac, 1997), was
identified as a risk factor for melanoma survival. The
STAT3 pathway, mediated by ATP6V0D1, consistently enhances
alkaliptosis in tumor cells (Chen et al., 2023). CD74 is highly
expressed on circulating tumor cells in the majority of melanomas,
and its elevated expression in tumor cells may lead to increased levels of
the sCD74 soluble form. Higher serum sCD74 levels are strongly
correlated with prolonged survival in patients with advanced

melanoma. (Loreth et al., 2021; Tanese and Ogata, 2024). Epigenetic
silencing of GSTP1 is a common genetic alteration (>90%) in prostate
cancer (Henrique and Jerónimo, 2004). Importantly, GSTP1 also plays a
crucial role in melanoma by augmenting drug resistance and enhancing
detoxification mechanisms, thereby positioning itself as a potential
therapeutic target (Depeille et al., 2005). Our study found higher
expression of GSTP1 in melanoma samples; elevated
GSTP1 expression may be associated with poorer prognosis. MLKL, a
key executor of necroptosis, regulates tumor development, progression,
and metastasis through both RIPK3-dependent and independent
mechanisms, including receptor internalization, extracellular vesicle
formation, and inflammation regulation. Its upregulation in response
to inflammation and tissue injury suggests that MLKL may play dual
roles in cancer (Martens et al., 2021). NFATC4 is a transcription factor of
theNFAT family, and its expression can effectively assess patient risk and
prognosis, consistent with our study’s findings of high
NFATC4 expression correlating with poorer prognosis. TRAF1 plays
a pivotal role in pro-survival signal transduction downstream of TNFR

FIGURE 7
Boxplots of the comparison of IC50 of drugs between high- and low-CDI groups, and correlation between IC50 and CDI values in TCGA cohort in
melanoma-related drugs. Abbreviations: IC50, half-maximal inhibitory concentration.
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superfamily members and has potential as a molecular therapeutic target
for various human cancer types (Zhong et al., 2022). Our results suggest
that TRAF1 is a prognostic factor in melanoma. As a member of the
TRIM protein family, TRIM27 is a RING-mediated E3 ubiquitin ligase.

TRIM27 may contribute to cell proliferation through the activation of
p-Akt1, influence cell migration and invasion, and potentially serve as a
predictor of distant metastasis in SNMM. It could also be considered a
criterion for adjuvant chemotherapy following curative treatment

FIGURE 8
Establishment and assessment of the nomogram survival model. (A) Univariate analysis and multivariate analysis for the clinicopathologic
characteristics and CDI in TCGA cohort. (B) A nomogram was established to predict the prognostic of malignant melanoma patients in TCGA cohort. (C)
Receiver operator characteristic (ROC) analysis of nomogram in TCGA, GSE19234, and GSE65904 cohorts. (D) Calibration plots showing the probability
of 1-, 3-, and 5-year overall survival in TCGA, GSE19234, and GSE65904 cohorts.
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(Kimura et al., 2023). Studies on the role of TRIM27 in cancer
consistently report its carcinogenic effects (Yu et al., 2022), aligning
with our research. Currently, research on the VPS13C gene remains
limited; however, our study indicates that higher expression ofVPS13C in
tumor tissue is associated with improved prognosis, consistent with
previous findings (Wu and Zhao, 2021). Our findings indicate that
MLKL exhibits a clear anti-tumor effect in melanoma. XBP1 is a unique
basic region leucine zipper (bZIP) transcription factor that not only
promotes tumor cell proliferation but also participates in immune
evasion, angiogenesis, hypoxia, invasion, and metastasis during
tumorigenesis. Suppressing XBP1 expression can reduce tumor cell
viability and drug resistance (Chen et al., 2020). We found that it is
also a favorable prognostic factor in melanoma. ZBP1 is an interferon-
induced cytosolic nucleic acid sensor that facilitates antiviral responses via
RIPK3.We found higher expression of ZBP1 in tumor tissue, but patients
with higher expression had better prognosis.

Tumor cells are able to survive due to the tumor
microenvironment, which allows them to evade immune
surveillance and drug interference (Zou et al., 2019). According to
our analysis, the activity of various immune cells in the CDI low group
was significantly higher than that in the high group, which includes a

higher proportion of activated B cells, memory CD8+ cells, NK cells, and
others. Activated B cells with high glycolytic and OXPHOS activity are
found in melanoma patients and are associated with adverse reactions
to immune checkpoint blockade therapy (Imahashi et al., 2022).
Memory CD8+ T cells are capable of persisting and functioning in
host tissues and tumors, mediating durable tumor immunity (Han et al.,
2020) Natural killer cells are a specialized immune effector cell type
whose activation is governed by the interaction of NK receptors with
target cells, independent of antigen processing and presentation (Liu
et al., 2021). Additionally, NK cells can exert anti-tumor responses
without prior sensitization (Terrén et al., 2019). Immunosuppressive
cells, such as MDSC and regulatory T cells, are more prominent in the
low CDI group. Therefore, differences in immune infiltration may not
necessarily reflect the strength of antitumor immunity. Further precise
experimental validation is required to elucidate the relationship between
programmed cell death (PCD) and the immune microenvironment in
melanoma. Our study found that patients in the high CDI group had
higher IC50 values for Axitinib, carmustine, docetaxel, temozolomide,
paclitaxel, and dabrafenib. This indicates potential resistance to
chemotherapy drugs used in melanoma treatment, leading to poorer
prognosis in the high CDI group.

FIGURE 9
Comparison between CDI and without-CDI models. (A) Receiver operating characteristic (ROC) analysis of nomogramwith and without CDI values
in 3-year survival rate in TCGA, GSE19234, GSE65904 cohorts. (B) Kaplan–Meier survival curves grouped by nomogram scores. (C) Kaplan–Meier survival
curves grouped by nomogram without CDI scores.
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Furthermore, our analysis using the established CDI index revealed
that PCD-related genes have a high predictive accuracy and robustness
for patient survival in melanoma. The CDI low group showed relatively
better survival outcomes. The 3-year survival AUC values were 0.668 for
the TCGA cohort, 0.863 for GSE.19234, and 0.656 for GSE65904. After
performing univariate and multivariate Cox regression analysis on
important clinical variables, CDI was identified as an independent
prognostic factor. We constructed a column plot incorporating CDI
and important clinical indicators. The 3-year AUC value for the TCGA
cohort was 0.803. Comparing the results with ROC analysis excluding
the CDI value, our nomogram is more suitable for clinical practice.

Overall, our findings shed light on the association between PCD
and melanoma prognosis and provide insights into potential
therapeutic targets. The identification of the CDI and its correlation
with immune modulation and drug sensitivity offer promising avenues
for personalized treatment strategies in melanoma patients.

Melanoma is a highly immunogenic tumor characterized by
numerous genetic mutations and represents a paradigmatic cancer
for immunotherapy and targeted therapy research. Previous studies
on melanoma and cell death have explored the impact of apoptosis-
related pathways on melanoma progression and the influence of
ferroptosis-related genes (TP53, CP, MAP1LC3A, and TF) on
melanoma prognosis (Long and Pi, 2020; Chen et al., 2021; Liu
Y. et al., 2022). In this study, we integrated the major 13 modes of
cell death into a comprehensive CDI scoring system. Enrichment
analysis, immune analysis, and drug sensitivity analysis were
conducted based on CDI groups, and a clinically predictive
model with good discriminative ability was developed. Further
research can explore the regulatory mechanisms of gene
mutations, immune infiltration, and identify more effective
targets to improve patient survival and prognosis in melanoma.

In conclusion, this study establishes and validates a cell death gene
signature for stratifying prognosis in melanoma patients, revealing the
association between PCD and melanoma prognosis and providing
insights into potential therapeutic targets. The CDI-based scoring
model shows promising prognostic efficacy for melanoma patients.
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