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Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often
causes severe disability or death. ICH induces adverse events that might lead to
secondary brain injury (SBI), and there is currently a lack of specific effective
treatment strategies. To provide a new direction for SBI treatment post-ICH, the
systematic review discussed how thrombin impacts secondary injury after ICH
through several potentially deleterious or protective mechanisms. We included
39 studies and evaluated them using SYRCLE’s ROB tool. Subsequently, we
explored the potential molecular mechanisms of thrombin-mediated effects
on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and
angiogenesis. Furthermore, we described the effects of thrombin in
endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the
harmful and beneficial effects of high and low thrombin concentrations on ICH.
Finally, we concluded the current research status of thrombin therapy for ICH,
which will provide a basis for the future clinical application of thrombin in the
treatment of ICH.
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1 Introduction

ICH, the most prevalent subtype of hemorrhagic stroke, is a critical illness that causes a
substantial burden of severe disability or death (An et al., 2017). The case fatality rate of ICH
is high (59% at 1 year and 70% at 5 years), with only 12%–39% of survivors achieving long-
term functional recovery and independence (An et al., 2017; Wilkinson et al., 2018).
Consequently, more than 80% of ICH survivors suffer from permanent disabilities (Ren
et al., 2020). At present, acute ICH can be managed through interventions aimed at
preventing hematoma expansion, controlling intracranial pressure, and treating edema.
Despite these measures, clinical outcomes frequently fall short of optimal, highlighting
persistent challenges in this domain (Hostettler et al., 2019; Zhu et al., 2019). Consequently,
the development of novel therapeutic strategies is critically important to enhance ICH
prognosis and reduce the detrimental effects associated with SBI. Factors such as oxidative
stress, neuronal damage, inflammation, and increased thrombin due to hemorrhage
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contribute to SBI (Wang et al., 2018; Shao et al., 2019). These
processes result in compromised blood-brain barrier (BBB)
integrity, brain edema, and neuronal death (Wang et al., 2018).
An increasing number of studies have shown that elevated thrombin
levels after ICH will affect brain injury through multiple
mechanisms (Lee et al., 1997; Caliaperumal et al., 2014; Wan
et al., 2016). We expect to improve the understanding of SBI and
search for more potential therapeutic targets by discussing the
mechanisms of how thrombin affects SBI after ICH.

Thrombin, a multifunctional serine protease, plays a pivotal
role as an effector protease within the blood coagulation system (Di
Cera, 2008). Study indicates that post-ICH, thrombin levels
around hematomas increase initially at 12 h, peak at 48 h, and
stay high up to 72–108 h (Hui et al., 2013). Plasma thrombin-
antithrombin (TAT) levels rise on day one and decline over time,
remaining notably higher than in non-ICH individuals despite a
significant decrease by day four (Wu et al., 2006). Additionally,
both animal and human brain tissue studies have established a
strong link between thrombin levels, brain edema, and brain cell
apoptosis (Striggow et al., 2000; Wu et al., 2006). Thrombin, apart
from its role in hemostasis (Danckwardt et al., 2013), exerts
regulatory control over brain cell apoptosis and viability,
neuroinflammatory processes, and BBB permeability through
the activation of protease-activated receptors (PARs) (Zhang
et al., 2010; Machida et al., 2015).

PARs belong to the G-protein-coupled receptor family
(Heuberger and Schuepbach, 2019). As high-affinity thrombin
receptors, PAR-1 and PAR-3 can be activated at lower
concentrations, while PAR-4, as a low-affinity thrombin
receptor, can only be activated at higher thrombin
concentration (Coughlin, 1999; Ossovskaya and Bunnett, 2004).
In addition to thrombin concentration, PAR activation is also
influenced by PAR location (Danckwardt et al., 2013). The
activation of PAR1 through thrombin-mediated mechanisms
initiates classical tethered ligand activation, resulting in
proinflammatory signaling and heightened endothelial
permeability (Alberelli and De Candia, 2014). Conversely, other
proteases cleave PAR1 at distinct locations, activating biased
tethered ligands (Zhao et al., 2014). For instance, activated
protein C (APC), triggered by thrombin-bound
thrombomodulin in the endothelium, activates PAR1 at a
nonclassical site, leading to anti-inflammatory effects and
protection of the endothelial barrier (Han and Nieman, 2020).
C4a, released by complement 4 (C4) during system activation,
serves as an untethered ligand for PAR1 and PAR4 receptors,
directly activating them and increasing endothelial permeability
via the PAR1 pathway (Barnum, 2015; Wang et al., 2017).
Depending on the variables regulating PAR activation,
thrombin may exert dual effects on cells by contributing to
anti-inflammatory and pro-inflammatory processes, modulating
endothelial integrity and permeability, and affecting neuron
viability (Alberelli and De Candia, 2014).

Consequently, this review provided a comprehensive overview
of the specific molecular mechanisms underlying thrombin
following ICH and its impact on various cells. Furthermore, we
elucidated the implications of diverse thrombin concentrations on
ICH and the potential therapeutic applications of thrombin
inhibitor intervention.

2 Materials and methods

2.1 Information sources and search
strategies

A comprehensive search of PubMed and Web of Science
databases was conducted to identify relevant studies. The search
was carried out from database inception to 30 November 2023. The
search strategy used the following generic terms as search terms:
“intracerebral hemorrhage,” “cerebral hemorrhage,” and
“thrombin.” For example, the detailed search strategy for
PubMed is as follows: ((intracerebral hemorrhage) or (cerebral
hemorrhage)) and (thrombin). Further references were identified
from included publications or available reviews.

2.2 Inclusion and exclusion criteria

Inclusion criteria were as follows: 1) studies investigating the
mechanisms of intracerebral hemorrhage and thrombin, 2)
experimental models in animal and/or cell culture, and 3) journal
articles only.

Exclusion criteria were as follows: 1) non-spontaneous
intracerebral hemorrhage or other diseases combined with
intracerebral hemorrhage; 2) review; and 3) no thrombin involved.

2.3 Risk of bias assessment

The assessment of the quality of the animal studies included in this
research was conducted using the risk of bias tool developed by the
Systematic Review Centre for Laboratory Animal Experimentation
(SYRCLE), which is based on the Cochrane RoB tool and modified
to address specific biases in animal intervention studies (Hooijmans
et al., 2014). Previous studies have demonstrated the efficacy of
SYRCLE’s risk of bias tool for evaluating bias in animal studies
(Zeng et al., 2015; Ahmed et al., 2022; Al-Masawa et al., 2022; Suresh
et al., 2022). The tool contains selection bias (sequence generation,
baseline characteristics, and allocation concealment), performance bias
(random housing and blinding), detection bias (random outcome
assessment and blinding), attrition bias (incomplete outcome data),
reporting bias (selective outcome reporting), and other sources of
bias. Two authors performed an independent quality assessment, and
each methodological bias in the included animal studies was rated as
“low risk,” “high risk,” or “unclear risk”.

3 Results

3.1 Study selection

The aim of this review was to assess the potential mechanisms of
thrombin influencing SBI after ICH. A total of 1037 articles were
retrieved from literature databases and 18 articles were retrieved
from other sources. Other sources were acquired through manual
examination of the reference lists of the incorporated articles and
relevant reviews. After removing 248 duplicates, 807 potentially
relevant articles were evaluated. Subsequently, 564 articles were
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excluded after the evaluation of titles and abstracts. Among the
remaining 243, 59 reviews were excluded, and 144 studies were
excluded by screening the full text for failures to report mechanisms
of thrombin affecting ICH. Therefore, 39 studies were included in
the research. As shown in the flowchart (Figure 1). The data and
characteristics of the included studies are shown in Table 1.

3.2 Risk of bias of included animal studies

According to the evaluation of SYRCLE’s ROB tool, among the
26 animal experimental studies included, 6 described random
sequence generation (Zhou et al., 2012; Caliaperumal et al., 2014;
Hu et al., 2019a; Li et al., 2019; Cui et al., 2020; Ye et al., 2023). Only
6 studies reported incomplete data on baseline characteristics (Gong
et al., 2005; Xue et al., 2006; Zhou et al., 2011; Zhou et al., 2012; Wan
et al., 2016; Chao et al., 2023), and all the remaining studies
comprehensively reported baseline characteristics of the animals,
including animal breed, age, weight, and sex. No studies reported
information on allocation concealment and blinding of animal
interventions by investigators or animal breeders. None of the
studies could assess exact risk with respect to randomization for
outcome assessment. In 9 studies (Xue and Del Bigio, 2001; Gong
et al., 2005; Xue et al., 2006; Caliaperumal et al., 2014; Hu et al., 2016;
Hu et al., 2019a; Li et al., 2019; Krenzlin et al., 2020; Ye et al., 2023),

outcome assessors were blinded during the analysis. 12 studies fully
accounted for incomplete outcome data (Figueroa et al., 1998; Xue
and Del Bigio, 2001; Nagatsuna et al., 2005; Nakamura et al., 2005;
Kawakita et al., 2006; Sun et al., 2009; Zhou et al., 2011;
Caliaperumal et al., 2014; Li et al., 2019; Cui et al., 2020; Hijioka
et al., 2020; Ye et al., 2023), 3 studies did not report complete
outcome data (Lee et al., 1997; Gong et al., 2005; Zhou et al., 2012),
and others had unclear risks on this item. Animal placement was
randomized in all studies, and there was no selective outcome
reporting and other sources of bias (As shown in Figure 2).

3.3 The molecular mechanism of thrombin
in ICH-induced brain injury and repair

After ICH, thrombin promotes SBI (via several pathways that
exacerbate brain edema and neuronal damage) and could potentially
also facilitate the repair process. The molecular mechanism of
thrombin’s role in ICH injury and repair is detailed in the
following sections (As shown in Figure 3).

3.3.1 Thrombin-induced inflammatory response
in ICH

Following ICH, the brain experiences an inflammatory response
which causes infiltrating leukocytes and activated microglia to

FIGURE 1
PRISMA flowchart outlining the process of retrieving and filtering articles, with n indicating the number of articles selected.
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TABLE 1 The included articles’ data and characteristics.

Article Study design ICH models Thrombin dose Time Year

Wu et al. (2010) In vivo study The Autologous blood model - 2h/3h/6h/10h/12h/1d/
2d/5d

2010

Wan et al. (2016) In vivo study The Autologous blood model - 4h/1d/3d/7d 2016

Noda et al. (2020) In vitro study Thrombin stimulation 0,30,100,300U/ml 24h/48h/72 h 2020

Lee et al. (1997) In vivo and vitro study Thrombin injection/Thrombin stimulation 0,10,100 U/ml 1h/24 h 1997

Gong et al. (2005) In vivo study Thrombin injection 5U/animal 1d/3d/5d/7d/14d 2005

Nakamura et al. (2005) In vivo study Thrombin injection 1U/animal 24 h 2005

Li et al. (2019) In vivo study The type IV-S collagenase model - 7d/14d/21d/28d 2019

Fujimoto et al. (2008) In vitro study Thrombin stimulation 30,100 U/ml 30/60/90/120/150/
180min

2008

Xue and Del Bigio (2001) In vivo study Thrombin injection 2.5,25U/animal 300 h 2001

Figueroa et al. (1998) In vivo study Thrombin injection 0,1,5 8U/animal 24 h 1998

Hu et al. (2011) In vivo and vitro study Thrombin stimulation/The Autologous blood
model

3U/animal 1d/3d/7d 2011

0,3,5U/ml

Hu et al. (2016) In vivo and vitro study Thrombin injection/Thrombin stimulation 1U/animal 4d 2016

0,3,5 U/ml

Hu et al. (2019a) In vivo study The Autologous blood model 1U/animal 3d/7d/14d 2019

Cui et al. (2020) In vivo and vitro study Thrombin injection/The Autologous blood
model

1U/animal 3d/7d/14d 2020

6h/48 h

Zhou et al. (2012) In vivo study The Autologous blood model 1U/animal 3d/7d/14d 2012

Hu et al. (2019b) In vitro study Thrombin stimulation 0.5,1U/ml - 2019

Brailoiu et al. (2017) In vitro study Thrombin stimulation 0.1,0.5,1U/ml - 2017

Liu et al. (2010) In vivo study Thrombin injection 20U/animal 1d/7d/14d 2010

Machida et al. (2015) In vitro study Thrombin stimulation 1,3,10U/ml 24 h 2015

Xue et al. (2006) In vivo and vitro study Thrombin stimulation/The Autologous blood
model

1,2,4,8,10 U/ml 24h/48 h 2006

2 U/animal

Kawakita et al. (2006) In vivo study Thrombin injection 3,10U/animal 12h/24h/72 h 2006

Gong et al. (2008) In vivo study The Autologous blood model/Thrombin
injection

5U/animal 1h/24 h 2008

1d/3d/28d

Krenzlin et al. (2020) In vivo study The Autologous blood model/Silicone oil
injection

- 24 h 2020

Wu et al. (2022) In vivo and vitro study Thrombin stimulation/The Autologous blood
model

20U/ml 24h/72 h 2022

Caliaperumal et al. (2014) In vivo study Thrombin injection 1U/ml 7d/60d 2014

Donovan et al. (1997) In vitro study Thrombin stimulation 0,20,50,100,200U/ml 24 h 1997

Fujimoto et al. (2006) In vitro study Thrombin stimulation 10,30,100,300U/ml 24h/48h/72 h 2006

Ohnishi et al. (2007) In vivo study The type IV collagenase model - 3d 2007

4h/8h/24h/48 h

Bao et al. (2017) In vitro study Thrombin stimulation 10,50,100U 0h/1h/6h/12h/24h/48 h 2017

Gingrich et al. (2000) In vitro study Thrombin stimulation 3,6,7U/ml - 2000

(Continued on following page)
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release cytotoxic mediators, leading to SBI and brain edema
formation (Gong et al., 2000; Wu et al., 2010).

By activating PAR-1, thrombin increases the inflammatory
response, which may result in excessive microglia/macrophage
activation (Wan et al., 2016). The release of pro-inflammatory
cytokines, including tumor necrosis factor-alpha (TNF-α) and
interleukin-1beta (IL-1β) (Golderman et al., 2022), is enhanced
by the microglia/macrophage bias toward a skewed
M1 phenotype which is modulated in part to cause microglia/
macrophage-mediated inflammatory brain injury (Hu et al.,

2015). This process may worsen neuronal death and BBB
disruption, as well as brain edema and neurological impairments
after ICH (Wan et al., 2016).

Thrombin receptors PAR-1 and PAR-4 are expressed in
neutrophils, and it was discovered that thrombin triggers
neutrophils to express pro-inflammatory and anti-inflammatory
phenotypes (Fu et al., 2015). The coexistence of cortical striatal
cultures during thrombin triggering enhanced the pro-
inflammatory response and decreased the anti-inflammatory
response of HL60 neutrophils (Noda et al., 2020).

TABLE 1 (Continued) The included articles’ data and characteristics.

Article Study design ICH models Thrombin dose Time Year

García et al. (2015) In vitro study Thrombin stimulation 0.1,0.5,1,10 U/ml 1h/100 h 2015

Donovan and Cunningham
(1998)

In vitro study Thrombin stimulation 0.2,1,10,20,40,200U/
ml

8h/12h/16h/20h/
24h/72 h

1998

Sun et al. (2009) In vivo study The Autologous blood model - 6h/24h/48h/72 h 2009

Nagatsuna et al. (2005) In vivo study The type IV collagenase model - 24h/72 h 2005

Zhou et al. (2011) In vivo study Thrombin injection/The Autologous blood
model

10U 24 h 2011

Ye et al. (2023) In vivo study Thrombin injection 0.5U 4 h 2023

Hijioka et al. (2020) In vivo and vitro
study

Thrombin stimulation/The type VII collagenase
model

0,10,30,50U/ml 12h/24 h 2020

Chao et al. (2023) In vivo and vitro
study

Thrombin stimulation/The Autologous blood
model

- 6h/24h/72 h 2023

Mu et al. (2017) In vitro study Thrombin stimulation 20U/ml 24 h 2017

FIGURE 2
Risk of bias assessment of included animal studies.
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3.3.2 Thrombin-induced iron deposition
The heme degradation process results in the accumulation of

ferrous iron, which leads to microglia activation, neutrophil
infiltration, and the production of reactive oxygen species (ROS),
consequently mediating the intimations of inflammatory responses
and neuronal death, thus leading to SBI (Wu et al., 2011).
Additionally, iron combined with ferritin can induce
neuronal death.

Furthermore, the BBB and complement cascade reaction are
disrupted and activated, respectively, when thrombin is released
following an ICH episode (Lee et al., 1997; Hua et al., 2007; Kearns
et al., 2021). Thrombin mainly activates complement components
C3d and C9 (Hua et al., 2000; Gong et al., 2005). The formation of
membrane attack complexes (MACs) is indicated by the
deposition of C9 on neuronal cell membranes after ICH (Hua
et al., 2000). The hemolysis occurs when MACs
develop. Hemoglobin is broken down to heme and iron once
erythrocytes start to lyse, and the released iron catalyzes the
Fenton reaction, resulting in oxidative stress and cell death,
consequently causing neuronal death and aggravating brain
edema (Wu et al., 2011; Babu et al., 2012; Kearns et al., 2021).

Transferrin (Tf) is a crucial iron carrier through the plasma to
various tissues. Plasma contains two forms of transferrin: iron-
bound (holo-Tf) and iron-free (apo-Tf) (Nakamura et al., 2005). The

Holo-Tf has a high affinity for Tf receptors, which results in
endocytosis and ferrous iron (a reduced form of iron) release
during receptor interactions (Templeton and Liu, 2003). In the
brain, the Tf receptor is involved in iron transit between the blood
and the brain, as it is abundantly present in endothelial cells
constituting the BBB (Broadwell et al., 1996). Thrombin activates
Tf receptors on neurons, and parenchymal cells take up the
transferrin-bound iron (Hua et al., 2003). Consequently,
intracellular iron levels increase, leading to free radical
production, oxidative damage, cell death, and, eventually, brain
edema (Tampo et al., 2003).

3.3.3 Plasminogen enhances the cytotoxicity
of thrombin

Following ICH, thrombin converts fibrinogen into fibrin to
achieve hemostasis. However, according to some studies, fibrin
could increase nerve damage by inducing microglia to proliferate
and recruit leukocytes to enhance inflammation (Paul et al., 2007; Li
et al., 2019). Furthermore, fibrin contributes to edema formation.
The levels of fibrinogen in the brain exhibit a notable increase during
the advanced stages of ICH, and the modulation of fibrinogen could
potentially play a role in the recuperation process of ICH (Ryu et al.,
2015). Plasmin is the other serine protease involved in fibrin
dissolution. The brain endothelium produces tissue plasminogen

FIGURE 3
Themolecular mechanism of thrombin involved in brain injury and repair after ICH. (BBB: blood-brain-barrier; MAC:membrane attack complex; AV:
autophagic vacuoles; tPA: tissue plasminogen activator.) Created with BioRender.com.
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activator (tPA), which converts plasminogen (the precursor protein
of plasmin) to plasmin.

Although plasminogen alone does not cause significant neuronal
injury, its combined use with thrombin can lead to. When used in
combination, plasminogen enhances the neurotoxicity of thrombin
(30 U/mL) in the cerebral cortex and causes cortical damage
(Fujimoto et al., 2008). Plasminogen activity and ERK
phosphorylation in astrocytes may mediate this process, and
plasminogen activation of astrocytes may lead to increased
cytokine production that makes neurons susceptible to thrombin
(Xue and Del Bigio, 2001; Fujimoto et al., 2008).

Furthermore, a comparison of co-infusion of plasminogen
activator with thrombin with the administration of thrombin
alone showed higher sodium accumulation in the brain, which
promoted brain edema development (Menzies et al., 1993;
Figueroa et al., 1998). These findings imply that the
plasminogen/plasmin system increases thrombin neurotoxicity
and promotes brain edema formation.

3.3.4 Thrombin induces autophagy in ICH
Autophagy is a cellular degradation process involving isolating

cellular proteins and organelles in autophagosomes (double-
membrane vesicles), which are subsequently transported to
lysosome and digested by lysosomal hydrolases (Wang and
Klionsky, 2003).

In vivo, thrombin stimulation increased beclin-1 and light chain
3 (LC3) expression in rat astrocytes and stimulated the development
of autophagosomes within astrocytes. Moreover, in vitro, thrombin
boosted LC3-II levels and the amount of MDC-labeled autophagic
vesicles in cultured astrocytes. These findings imply that thrombin
induces autophagy in both the brain and cultured astrocytes (Hu
et al., 2011; Hu et al., 2016).

A recent study discovered that by increasing the amount of
autophagic vacuoles (AVs; both autophagosomes and
autolysosomes) in the cells surrounding the hematoma, thrombin
stimulates autophagy in neurons around the hematoma in the brains
of ICH patients (Wu et al., 2019). Another study discovered that
thrombin could activate autophagy and aggravate brain injury by
increasing LC3-I to LC3-II conversion and histone D levels and
promoting AV formation in neurons following its injection into the
rat brain (Adhami et al., 2006).

Paradoxically, this process can have dual effects: promoting
neuronal survival and causing neuronal damage or death.
Therefore, autophagy after ICH may be beneficial or detrimental
(Niu et al., 2017; Wu et al., 2019).

3.3.5 Thrombin promotes angiogenesis in ICH
Angiogenesis is an essential endogenous brain self-repair

process for neurological recovery after ICH (Cui et al., 2022).
According to recent studies, low thrombin doses administered in
the ICH rat model increase pericyte coverage by activating the
angiopoietin receptor (Tie2) and downstream PI3K/Akt signaling,
and the increased pericyte coverage subsequently promotes the
maturation and stabilization of new vessels, alleviating
neurological dysfunction and neuronal injury post-ICH (Hu
et al., 2019a).

Another study discovered that large amounts of thrombin were
released after ICH, and thrombin upregulated microRNA-24-1-5p

(miR-24), suppressing the PHD1 protein expression (Cui et al.,
2020). The PHD1 is a key prolyl hydroxylase of hypoxia-inducible
factor-1α (HIF-1α), and a decrease in PHD1 correspondingly
triggers a decrease in HIF-1α degradation (Cui et al., 2020). The
HIF-1α is a nuclear transcription factor and hub mediator of
angiogenesis; therefore, miR-24 promotes thrombin-induced
angiogenesis by targeting PHD1 (Kuschel et al., 2012; Cui et al.,
2020). Angiogenesis essentially facilitates brain recovery and
functional improvement by increasing the local blood and oxygen
supply to the brain injury, promoting oxygen and metabolite
exchange, and removing toxic substances (Zhou et al., 2012).

By upregulating vascular endothelial growth factor (VEGF) and
angiopoietin-2 (Ang-2) levels, thrombin activates quiescent brain
endothelial cells and stimulates endothelial cell proliferation,
migration, and new vessel formation, while it also upregulates
Ang-1 levels to stabilize vascular integrity and shift
neovascularization to maturation (Zhou et al., 2012).
Additionally, thrombin stimulates angiogenesis in astrocytes by
activating PAR-1 and p44/42 MAPK in astrocytes and
upregulating VEGF release (Hu et al., 2019b).

3.4 The effect of thrombin on various types
of cells after ICH

Following ICH, thrombin mainly affects neurons and microglia,
as well as various types of cells that constitute the BBB (Zhou and
Li, 2002; Wang et al., 2016). The brain microvascular endothelial
cells (BMVECs), astrocytes, pericytes, and basement membranes
make up most of the BBB. Endothelial cells form the capillary wall
and are the primary BBB barrier. The astrocyte end-foot wraps
around the BMVECs, the cell-secreted matrix proteins form the
basement membrane, and the pericytes are embedded in the
basement membrane of the glial cells and BMVECs (As shown
in Figure 4; Table 2).

3.4.1 Endothelial cells
BMVECs are an essential component of the BBB, as the complex

tight junctions between adjacent endothelial cells form a physical
barrier that forces most molecular traffic through the transcytosis/
transport protein route across the BBB (Persidsky et al., 2006).

Thrombin acts primarily on PAR-1, triggering an increase in
inositol 1,4,5-trisphosphate (IP3), which interacts with the
IP3 receptor to release Calcium (Ca2+) from the endoplasmic
reticulum (ER), and induces an influx of Ca2+ from outside the
cell, elevating the cytosolic Ca2+ concentration in BMVEC (Brailoiu
et al., 2017). Ca2+ is a critical second messenger regulating barrier
function, and the endothelial Ca2+ concentration determines
paracellular permeability (De Bock et al., 2013). The increased
Ca2+ concentration promotes nitric oxide (NO) formation, which
causes cytoskeletal alterations (increased F-actin stress fiber
formation) and disruption of tight junctions, leading to increased
permeability and barrier dysfunction (Fleming et al., 1997; Wang
et al., 2015).

Furthermore, thrombin-induced elevation of Ca2+ is transmitted
to the mitochondria, increasing the Ca2+ concentration in
mitochondria and thereby triggering mitochondrial reactive
oxygen species (mROS) generation (Camello-Almaraz et al.,
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2006). Endothelial dysfunction is associated with ROS production as
ROS accumulation induces oxidative stress, which is involved in
several cellular processes, including inflammatory response,
apoptosis, autophagy, and SBI caused by disruption of the BBB
(Chen et al., 2022; Zhang et al., 2022).

Research has revealed that thrombin exhibits binding
capabilities towards PAR, thereby initiating the activation of
various members belonging to the complex kinase family,
commonly referred to as the src kinase family (Liu et al., 2010).
Members of the src family of kinases can influence changes in BBB
permeability and brain edema by phosphorylating
metalloproteinases, tight junction proteins, and other BBB
proteins and by increasing VEGF induction (Guerrero et al.,
2004; Liu et al., 2010). The VEGF is a vascular endothelial cell-
specific mitogen that induces endothelial cell proliferation and
promotes increased vascular extravasation, increasing BBB
permeability and brain edema.

Therefore, thrombin plays a role in disrupting the BBB function by
regulating the activity of BMVECs via several mechanisms. Injury to the
BBB can cause secondary damage in ICH and promote edema formation
or development after ICH (Zheng et al., 2016; Noda et al., 2020).

3.4.2 Astrocytes
Astrocytes, a vital component of the BBB, are glial cells that wrap

around 99% of the BBB endothelium, interact with endothelial cells,
and contribute to the formation and maintenance of tight junctions
(Persidsky et al., 2006).

Thrombin lowered the BMVEC and perivascular astrocyte
immunoreactivity, implying cell injury or death, which amplifies
BBB permeability, increasing brain water content and BBB
destruction (Liu et al., 2010). Another study has found that
thrombin mediated VEGF secretion via the PAR-1 and p44/
42 MAPK pathways (Hu et al., 2019b). The VEGF release
stimulated angiogenesis in astrocytes (Hu et al., 2019b).

FIGURE 4
Mechanisms by which thrombin affects endothelial cells, astrocytes, pericytes, microglia, and neurons after ICH. (BBB: blood-brain barrier; PAR:
protease-activated receptor; VEGF: vascular endothelial growth factor; ROS: reactive oxygen species; ERK: signal-regulated kinase; JNK: c-Jun
N-terminal kinase.) Created with BioRender.com.
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TABLE 2 Mechanism of thrombin in various cells after ICH.

Cell
types

Animals/Cells ICH
models

Time Thrombin
dose

Mechanism Outcomes Refs

Endothelial
cells

Rat brain
microvascular
endothelial cells

Thrombin
stimulation

- 0.1,0.5,1U/ml Increased NO and ROS Increased BBB permeability
and disrupted BBB function

Brailoiu
et al.
(2017)

Endothelial
cells

Male Sprague-Dawley
rats

Thrombin
injection

1d/
7d/14d

20U/animal Activation of SRC kinase
family members to induce

decreased immune
responsiveness of endothelial
cells, resulting in endothelial

cell damage or death

Increased BBB permeability
and brain edema

Liu et al.
(2010)

Endothelial
cells

Male Sprague-Dawley
rats

The Autologous
blood model/
Thrombin
injection

3d/
7d/14d

1U/animal Upregulation of miR-24,
which inhibited

PHD1 protein expression,
and the reduction of

PHD1 triggered a decrease in
HIF-1αdegradation

Angiogenesis Cui et al.
(2020)

Endothelial
cells

Male Sprague-Dawley
rats

The Autologous
blood model/
Thrombin
injection

1d/3d/7d 1U/animal Activation of quiescent brain
endothelial cells and

upregulation of VEGF and
Ang-2 levels

Endothelial cell proliferation,
migration and neointima

formation

Zhou et al.
(2012)

Astrocytes Male Sprague-Dawley
rats

Thrombin
injection

1d/
7d/14d

20U/animal Reduced immune
responsiveness of

perivascular astrocytes

Increased BBB permeability,
increased brain water content,

and BBB destruction

Liu et al.
(2010)

Astrocytes Rat/mouse astrocytes Thrombin
stimulation

- 0.5,1U/ml Stimulation of PAR-1 and
p44/42 MAPK in astrocytes
to upregulate VEGF release

Angiogenesis of astrocytes Hu et al.
(2019b)

Pericytes Rat brain pericytes Thrombin
stimulation

24 h 1,3,10U/ml Stimulation of high levels of
MMP-9 release from

pericytes

BBB dysfunction Machida
et al.
(2015)

Pericytes Male Sprague-Dawley
rats

The Autologous
blood model/
Thrombin
injection

1d/4d/7d 1U/animal Activated Tie2 and
downstream PI3K/Akt

signaling to increase pericyte
coverage

Promoted maturation and
stabilization of

neovascularization and
alleviated neurological

dysfunction and neuronal
damage after ICH

Hu et al.
(2019a)

Microglia Male C57BL/6,wild-
type (WT) mice, male
PAR-1 knockout,
(PAR-1 KO) mice

The Autologous
blood model

1d/3d/7d - Regulation of microglia/
macrophage polarization
toward M1 phenotype to
promote the release of
inflammatory factors

Exacerbated neuronal death
and brain edema post-ICH

Wan et al.
(2016)

Microglia Male Tmem119-
EGFP mice

Thrombin
injection

4 h 0.5U/animal Stimulation of microglia Microglia proliferation Ye et al.
(2023)

Microglia Male C57BL/6J mice,
Mouse

microglia (BV2)

Thrombin
stimulation/The

type VII
collagenase
model

12h/24 h 0,10,30,50U/ml promoted LTB4 secretion by
microglia

Inflammatory nerve injury Hijioka
et al.
(2020)

Microglia Male C57BL/6 mice,
Mouse

microglia (BV2)

The Autologous
blood model/
Thrombin
stimulation

6h/
24h/72 h

- Induction of M1 polarization
in microglia

Inflammation Chao et al.
(2023)

Microglia Mixed primary
microglia cultures

Thrombin
stimulation

24 h 20U/ml Activation of microglia to
express higher levels of

CD36 protein and PPARγ
mRNA to enhance microglia

phagocytosis

Clearance of hematoma Mu et al.
(2017)

Neurons Rat hippocampal
neurons

Thrombin
stimulation

24 h 0,20,50,100,200U/
ml

Induction of complex kinase
activity to activate RhoA

activity

Neuronal apoptosis Donovan
et al.
(1997)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org09

Tao et al. 10.3389/fphar.2024.1293428

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1293428


3.4.3 Pericytes
Pericytes are flat, undifferentiated, contractile connective tissue

cells that develop around the capillary wall. Pericytes are closely
associated with endothelial cells, and their absence results in
endothelial hyperplasia and abnormal vascular morphogenesis in
the brain (Persidsky et al., 2006). Pericytes also play a vital role in
maintaining the structural integrity of the BBB.

After ICH, the levels of matrix metalloproteinase (MMP) in the
brain tissue increase, promoting neuronal death, leading to BBB
breakdown, consequently promoting brain edema formation and
ultimately leading to brain hemorrhage-induced secondary damage
(Florczak-Rzepka et al., 2012; Dang et al., 2017). During the acute
ICH phase, thrombin levels in BBB cells are elevated, and thrombin
acts through PAR-1 and PAR-4 to stimulate the release of high levels
of MMP-9 from pericytes (Machida et al., 2015). Thrombin and
MMP-9 are synergistically toxic, and their interaction increases
neurotoxicity, eventually leading to further BBB dysfunction
(Kawakita et al., 2006; Xue et al., 2006; Machida et al., 2015).

3.4.4 Microglia
Microglia, as resident macrophages in the brain, play a crucial

role in maintaining homeostasis within the central nervous system
(CNS) (Ginhoux et al., 2010). The activation and polarization of
microglia/macrophages have significant implications for SBI.
Within 6 h after ICH, both M1 and M2 phenotypes experience
an increase, although the elevation of M1 predominates (Liesz et al.,
2011; Tschoe et al., 2020). By the 3rd day, the M1 phenotype reaches
its peak and begins to decline, accompanied by a rise in the
proportion of M2 observed in the perihematoma region (Wan
et al., 2016; Lan et al., 2017). At the 14th day, the number of
M2 microglia/macrophages reaches its peak and surpasses that of
M1 (Tschoe et al., 2020). Microglia have the potential to transition
between the M1 and M2 phenotypes, showcasing a significant level
of plasticity (Hu et al., 2015; Lan et al., 2017).

The involvement of thrombin in the activation and polarization
of microglia/macrophages after ICH has been confirmed. The
activation of PAR-1 by thrombin regulates the polarization of
microglia towards the M1 phenotype (Wan et al., 2016; Chao
et al., 2023). Additionally, thrombin induces the differentiation of
microglia into M1 phenotype by upregulating the expression of
LncRNA TCONS_00145741 and activating the JNK MAPK
pathway (Wu et al., 2022). Furthermore, thrombin production
has been shown to stimulate the proliferation of microglia and

induce the secretion of leukotriene B4 (LTB4) by these microglia
(Hijioka et al., 2020; Ye et al., 2023). Consequently, the activation of
microglia by LTB4 results in the generation of proinflammatory
factors and the infiltration of neutrophils into hematomas, thereby
exacerbating the inflammatory injury (Hijioka et al., 2020).
Additionally, thrombin induces the upregulation of PPARγ levels,
resulting in heightened expression of the scavenger receptor cluster
of differentiation 36 (CD36) on microglial surfaces, thus facilitating
the differentiation of microglia towards the M2 phenotype (Fang
et al., 2014). The upregulated CD36 receptor enhances the
phagocytic activity of activated microglia, thereby promoting the
resorption of hematoma through the phagocytosis of erythrocytes
(Mu et al., 2017).

In conclusion, thrombin can induce the activation of microglia
(both M1 phenotype and M2 phenotype) and the induction bias
may be influenced by variations in time and concentration (Wu
et al., 2022). The regulation of phenotypic equilibrium could emerge
as a novel therapeutic objective for ICH.

3.4.5 Neurons
Neuronal damage post-ICH can cause severe behavioral

dysfunction and exacerbate SBI (Gong et al., 2008). Early
neuronal damage is associated with thrombin development. Cell
death, severe dendritic damage of nearby striatal neurons, and
eventual neuronal atrophy are all caused by thrombin perfusion
(Caliaperumal et al., 2014). In addition, thrombin induces neuronal
damage via several pathways.

First, thrombin activates the complex protein kinase via PAR-1
activation, triggering RhoA activation, which induces neuronal
apoptosis (Donovan et al., 1997). Secondly, thrombin induces
apoptosis of perihematomal neurons by activating several
intracellular signaling enzymes. Mitogen-activated protein kinase
(MAPK) signaling is critical for thrombin-induced neuronal death
(Fujimoto et al., 2007). Some members of the MAPK family include
extracellular signal-regulated kinase (ERK) and c-Jun N-terminal
kinase (JNK). Inhibition of ERK was reported to significantly reduce
thrombin-induced neuronal death (Fujimoto et al., 2006). On the
other hand, high thrombin concentrations (100 U) activated JNK in
primary cultured cortical neurons in a time-dependent manner, and
direct thrombin stimulation-induced neuronal injury was partially
prevented by the JNK pathway inhibitor SP600125, implying that
thrombin induces neuronal apoptosis via JNK activation (Ohnishi
et al., 2007; Bao et al., 2017). Additionally, thrombin can aggravate

TABLE 2 (Continued) Mechanism of thrombin in various cells after ICH.

Cell
types

Animals/Cells ICH
models

Time Thrombin
dose

Mechanism Outcomes Refs

Neurons Cortico-striatal slices Thrombin
stimulation

24h/
48h/72 h

10,30,100,300U/
ml

Increased ERK
phosphorylation and

sustained signaling Src and
PKC induced

Neuronal injury in the cerebral
cortex and striatum

Fujimoto
et al.
(2006)

Neurons Cortical neurons Thrombin
stimulation

0h/1h/
6h/12h/
24h/48 h

10,50,100U Activation of JNK Neuronal apoptosis Bao et al.
(2017)

Neurons Rat hippocampal
neurons

Thrombin
stimulation

- 3,6,7U/ml Activation of PAR-1 to
enhance the NMDA
receptors sensitivity

Neuronal death Gingrich
et al.
(2000)
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glutamate-mediated neuronal death by activating PAR-1 to enhance
the NMDA receptor sensitivity (Gingrich et al., 2000; Zhou and
Li, 2002).

3.5 Effect of thrombin concentration in ICH

According to researches, 0.01 U/ml of thrombin is protective
against several causes of neuronal cell injuries, including glucose
deprivation, hypoglycemia, and ROS (Striggow et al., 2000; Krenzlin
et al., 2020). On the other hand, thrombin >10 U/ml exhibits
cytotoxicity and kills neuronal cells, resulting in cellular damage
and upregulation of TNF-α, with subsequent worsening of brain
edema and neurological deficits after ICH (Donovan and
Cunningham, 1998; Striggow et al., 2000; García et al., 2015).
Another study discovered that treatment of hippocampal neurons
with thrombin concentrations >150 U/ml (750 nm) resulted in a
rapid and substantial increase in RhoA activity, leading to neuronal
apoptosis, whereas neurons treated at lower thrombin
concentrations exhibited a relatively less significant elevation in
RhoA activity (Donovan et al., 1997). Treatment of cortico-striatal
sections with thrombin concentrations >100 U/ml for over 24 h
induced neuronal injury, with the extent of injury increasing
radically with the increase in both thrombin concentration and
duration of treatment (Fujimoto et al., 2006). Furthermore,
treatment of cortical neurons with thrombin
concentrations >50 U significantly increased neuronal apoptosis
rate, which increased substantially with increasing thrombin dose
(Bao et al., 2017). When administered at 20 U/animal, thrombin
induced endothelial cell injury or death and ultimately decreased
BBB permeability and increased brain edema, whereas it promoted
endothelial cell proliferation, migration, neointima formation, and
angiogenesis when administered at 1 U/animal (Liu et al., 2010;
Zhou et al., 2012; Cui et al., 2020). Following treatment with
thrombin (10 U/mL), brain pericytes exhibited extremely high
levels of MMP-9 release, resulting in BBB injury, whereas
following treatment with 1 U/mL and 3 U/mL of thrombin, brain
pericytes showed substantially lower levels of MMP-9 release
compared to the 10 U/mL dose (Machida et al., 2015).

The above research findings confirm that thrombin-induced
brain injury is concentration-dependent, with high concentrations
causing BBB injury, brain edema, and neuronal apoptosis, and low
concentrations promoting neuronal growth and branching,
improving neuronal viability, and preventing excitotoxic injury
(Striggow et al., 2000; García et al., 2015). In an in vitro
experiment, cortical neuronal cells were stimulated with different
concentrations of thrombin and argatroban (a direct thrombin
inhibitor), and neuronal survivability was assessed using the
MTT assay. The results showed that lower concentration of
thrombin (1 nM) exhibited comparable levels of neuroprotection
as micromolar concentrations of argatroban (García et al., 2015).

3.6 Thrombin therapy

With the mechanism of secondary injury after ICH having been
studied extensively, the comprehension of the effect of thrombin on
secondary injury post-ICH has gradually improved. Thrombin

inhibitors can improve thrombin-induced injury post-ICH by
directly suppressing thrombin, which offers a novel way for
future SBI treatment after ICH.

Hirudin is a potent, specific, natural direct thrombin inhibitor
that binds directly to thrombin and prevents it from interacting with
its substrate, inhibiting the conversion of fibrinogen to fibrin
(Bichler and Fritz, 1991). According to an ICH mouse model,
hirudin inhibited fibrin formation, reducing neuroinflammation
and improving long-term outcomes (Li et al., 2019). Hirudin
therapy reduced leukocyte accumulation in the brain and shifted
microglia to an anti-inflammatory phenotype (Li et al., 2019). In
other studies, hirudin was reported to alleviate thrombin-induced
autophagy after ICH (Hu et al., 2011). Recombinant hirudin
(r-Hirudin), a tight-binding specific thrombin inhibitor, prevents
cytotoxicity in neurons, microglia, and astrocytes by blocking the
induction of Aquaporin (AQP) 4 and 9, which are implicated in
edema formation, thereby significantly reducing edema after ICH
(Sun et al., 2009).

Argatroban is a small molecule, synthetic, direct, and
competitive thrombin inhibitor. It rapidly and reversibly binds to
the catalytic site of thrombin, preventing fibrin formation (McKeage
and Plosker, 2001). In an ICH rat model, argatroban administration
rapidly suppressed inflammatory cell infiltration within 24 h and
reduced edema size to 25% within 72 h, contributing to improved
prognosis (Nagatsuna et al., 2005; Zhou et al., 2011). Argatroban
administered an hour post-ICH rapidly reduced the infiltration of
polymorphonuclear neutrophils (PMNs), which produce free
radicals that damage cellular functions, including neurons
(Nagatsuna et al., 2005).

Administration of thrombin inhibitors following ICH has been
shown to effectively mitigate neuroinflammation and brain edema,
thereby enhancing prognosis. However, the comprehensive
suppression of thrombin activity would yield adverse
consequences due to the demonstrated neuroprotective and
angiogenic properties associated with low levels of thrombin.
Consequently, excessive utilization of thrombin inhibitors may
exacerbate secondary injury and impede the prospects of long-
term recuperation (Belur et al., 2013).

4 Conclusion

Thrombin is a critical component of the coagulation system that
substantially impacts the secondary injury process after ICH.
Following ICH, thrombin initiates an inflammatory cascade,
characterized by the augmented activation of microglia/
macrophages and the subsequent release of pro-inflammatory
cytokines such as TNF-α and IL-1β (Wan et al., 2016). These
cytokines contribute to a series of detrimental outcomes
including compromise of BBB, development of brain edema, and
overall neurological dysfunction (Hu et al., 2015). Additionally,
thrombin is implicated in promoting iron deposition in the
brain, predominantly via complement cascade activation (Hua
et al., 2000). The iron-catalyzed Fenton reaction leads to
oxidative stress-induced neuronal damage and aggravated brain
edema (Babu et al., 2012). Furthermore, the interaction between
thrombin and plasminogen intensifies neurotoxicity, further
escalating neuronal injury and edema (Fujimoto et al., 2008).
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Interestingly, thrombin also plays a role in modulating autophagy
within brain cells, a mechanism that may be beneficial or
detrimental (Wu et al., 2019). Lastly, thrombin significantly
contributes to the process of angiogenesis, which is crucial for
neurological recuperation post-ICH (Cui et al., 2022). It activates
molecular pathways that lead to enhanced pericyte coverage,
vascular maturation, and stabilization, thereby aiding in the
restoration of neurological function and mitigating neuronal
damage (Hu et al., 2019a).

Following ICH, thrombin mainly affects neurons, microglia, and
BBB components, including endothelial cells, pericytes, and
astrocytes. Thrombin affects BMVECs by elevating cytoplasmic
and mitochondrial Ca2+ levels and activating the SRC kinase
family, thereby disrupting BBB function which leads to increased
permeability and barrier dysfunction (Liu et al., 2010; Brailoiu et al.,
2017; Zhang et al., 2022). In addition, thrombin has been observed to
diminish the viability of BMVEC and astrocytes, while also
intensifying BBB permeability (Liu et al., 2010). However, it also
plays a role in facilitating the secretion of VEGF in astrocytes,
thereby promoting angiogenesis (Hu et al., 2019b). Furthermore,
thrombin activates MMP-9 release from pericytes through PAR-1
and PAR-4 pathways after ICH, intensifying neurotoxicity and
compromising BBB integrity (Machida et al., 2015). Moreover,
thrombin regulates microglia polarization, promoting
M1 phenotype via PAR-1 activation and LncRNA TCONS_
00145741/JNK MAPK pathway, while also stimulating microglia
proliferation and LTB4 secretion, leading to inflammatory injury
and neutrophil infiltration (Hijioka et al., 2020; Wu et al., 2022).
Concurrently, thrombin fosters M2 phenotype differentiation
through PPARγ upregulation and CD36 receptor enhancement
on microglia, aiding hematoma resorption (Mu et al., 2017).
Lastly, thrombin induces neuronal apoptosis by activating
protein kinases through PAR-1, particularly MAPK pathways
like ERK and JNK, and exacerbates glutamate-related neuronal
death by increasing NMDA receptor sensitivity (Gingrich et al.,
2000; Fujimoto et al., 2006; Bao et al., 2017).

However, thrombin release post-ICH is not exclusively an
adverse consequence. Although high thrombin concentrations
can damage neurons, promote inflammatory responses, destroy
the BBB as well as promote the development and exacerbation of
brain edema (Striggow et al., 2000), low thrombin
concentrations can increase pericyte coverage, stimulate
endothelial cells and astrocytes to upregulate VEGF, promote
angiogenesis, protect neurons, and alleviate neurological
dysfunction after ICH (García et al., 2015). The utilization of
direct thrombin inhibitors, such as hirudin and argatroban, has
demonstrated efficacy in enhancing SBI following ICH,
consequently leading to improved prognosis (Nagatsuna
et al., 2005; Li et al., 2019). However, it is important to
consider that the excessive administration of thrombin
inhibitors for SBI may amplify the neuroprotective and
angiogenic characteristics associated with reduced levels of
thrombin (Belur et al., 2013).

There are some limitations to this systematic review. First, the
limited scope of the initial search mechanism, which only
encompassed the PubMed and Web of Science databases, may
have resulted in a sample size of included studies that was
insufficient. Second, we employed the SYRCLE’s ROB tool for

assessing bias risk in animal studies, yet these investigations
frequently omitted crucial methodological specifics, including
blinding of investigator manipulations, statistical results, and
randomized animal grouping. Therefore, most of these studies
were classified as low or unclear risk, which significantly affected
the outcomes of our systematic evaluation. Furthermore, the
omission of clinical trials within the scope of this study, coupled
with the limited implementation of thrombin therapy in clinical
settings, more related trials need to be conducted in the subsequent
researches.

In conclusion, future research endeavors should concentrate on
mitigating thrombin’s detrimental impact in ICH while amplifying
its protective functions, offering novel perspectives and
methodologies for clinical ICH therapy.
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Glossary

Ang-2 angiopoietin-2

APC activated protein C

AQP Aquaporins

AVs autophagic vacuoles

BBB blood-brain-barrier

BMVEC brain microvascular endothelial cells

C4 complement 4

Ca2+ Calcium

CD36 cluster of differentiation 36

ER endoplasmic reticulum

ERK extracellular signal-regulated kinase

HIF-1α hypoxia-inducible factor-1α

ICH Intracerebral hemorrhage

IL-1β interleukin-1beta

IP3 inositol 1,4,5-trisphosphate

JNK c-Jun N-terminal kinase

LC3 light chain 3

LTB4 leukotriene B4

MAC membrane attack complex

MAPK mitogen-activated protein kinase

miR-24 microRNA-24-1-5p

MMP matrix metalloproteinase

mROS mitochondrial reactive oxygen species

NO nitric oxide

PAR-1 KO PAR-1 knockout

PARs protease-activating receptors

PMNs polymorphonuclear neutrophils

PPARγ peroxisome proliferator-activated receptor-gamma

r-Hirudin recombinant hirudin

ROS reactive oxygen species

SBI secondary brain injury

SYRCLE Systematic Review Centre for Laboratory Animal Experimentation

TAT thrombin-antithrombin

Tf Transferrin

TGF-B transforming growth factor-beta

TM thrombomodulin

TNF-α tumor necrosis factor-alpha

tPA tissue plasminogen activator

VEGF vascular endothelial growth factor

WT wild-type
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