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Lung cancer is the leading cause of global cancer-related deaths. Platinum-based
chemotherapy is the first-line treatment for the most common type of lung
cancer, i.e., non-small-cell lung cancer (NSCLC), but its therapeutic efficiency is
limited by chemotherapeutic resistance. Therefore, it is vital to develop effective
therapeutic modalities that bypass the common molecular mechanisms
associated with chemotherapeutic resistance. Ferroptosis is a form of non-
apoptotic regulated cell death characterized by iron-dependent lipid
peroxidation (LPO). Ferroptosis is crucial for the proper therapeutic efficacy of
lung cancer-associated chemotherapies. If targeted as a novel therapeutic
mechanism, ferroptosis modulators present new opportunities for increasing
the therapeutic efficacy of lung cancer chemotherapy. Emerging studies have
revealed that the pharmacological induction of ferroptosis using natural
compounds boosts the efficacy of chemotherapy in lung cancer or drug-
resistant cancer. In this review, we first discuss chemotherapeutic resistance
(or chemoresistance) in lung cancer and introduce the core mechanisms behind
ferroptosis. Then, we comprehensively summarize the small-molecule
compounds sourced from traditional medicines that may boost the anti-
tumor activity of current chemotherapeutic agents and overcome
chemotherapeutic resistance in NSCLC. Cumulatively, we suggest that
traditional medicines with ferroptosis-related anticancer activity could serve as
a starting point to overcome chemotherapeutic resistance in NSCLC by inducing
ferroptosis, highlighting new potential therapeutic regimens used to overcome
chemoresistance in NSCLC.
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1 Introduction

Lung cancer is broadly classified into two types: small-cell lung
cancer (SCLC) and non-small-cell lung cancer (NSCLC). SCLC and
NSCLC comprise >85% of all cases, are highly prevalent, and are
very aggressive, with an estimated 2.2 million new cases and
1.8 million deaths in 2020 (Leiter et al., 2023). Globally, lung
cancer is the second leading cause of cancer death after breast
cancer in women and is the leading cause of cancer mortality in men
(Sung et al., 2021).

Although multiple approaches including surgery,
immunotherapy, targeted therapy, and radiotherapy are
recommended for NSCLC patients, systemic chemotherapy is still
the mainstay regimen for NSCLC, especially for advanced-stage
patients. Platinum-based chemotherapy is recommended as the
standard first-line regimen for patients with advanced NSCLC
and is also prescribed for patients at earlier stages (Nagasaka and
Gadgeel, 2018). Platinum-based chemotherapy is frequently
combined with gemcitabine, pemetrexed, and vinorelbine or
taxanes as first-line therapeutic regimens for NSCLC. However,
the therapeutic efficacy of this regimen varies remarkably among
individuals and is limited by chemoresistance (Yin et al., 2016).
Therefore, understanding the novel molecular mechanism behind
chemoresistance in lung cancer will be vital to develop effective
therapies (Herbst et al., 2018; Lim and Ma, 2019).

Ferroptosis, a new form of non-apoptotic regulated cell death
(RCD) characterized by iron-dependent lipid peroxidation (LPO), is
suggested to play a vital role in anti-tumor activity (Dixon et al.,
2012; Lei et al., 2021; Wang et al., 2023;Wang et al., 2023). Emerging
evidence has revealed that the induction of ferroptosis by
ferroptosis-related small-molecule compounds suppresses tumor
growth (Yin et al., 2022; Xing et al., 2023). Ferroptosis-inducing
bioactive compounds could exert anti-tumor activity by inducing
ferroptosis, boosting the intrinsic anti-tumor activity of
chemotherapeutic agents, or altogether surmounting existing
chemoresistance in lung cancer (Tabnak et al., 2021; Wu et al.,
2021; Yin et al., 2022; Yin et al., 2022; Koeberle et al., 2023; Xing
et al., 2023).

Recent publications have discovered that using traditional
medicines to pharmacologically induce ferroptosis holds great
therapeutic potential by either boosting the efficacy of chemotherapy
or overcoming chemoresistance in NSCLC. In this review, we first
introduce the role of chemoresistance in lung cancer and then discuss
the core mechanisms of ferroptosis. We then comprehensively
summarize small-molecule compounds from traditional medicines
that may boost the anti-tumor activity of chemotherapeutic agents
or overcome chemotherapy drug resistance in NSCLC. Cumulatively,
we suggest that the pharmacological induction of ferroptosis by
traditional medicines with ferroptosis-related anticancer activity
could overcome chemotherapy resistance in NSCLC, potentially
producing therapeutic regimens that may overcome chemoresistance
in NSCLC.

2 Chemoresistance in lung cancer

Chemotherapy remains a dominant treatment cornerstone for
many types of cancers at different stages (El-Hussein et al., 2021).

Conventional chemotherapy remains a cornerstone in the treatment
of patients with NSCLC, especially those with advanced-stage
disease (Min and Lee, 2021). Platinum-based chemotherapy is
still the standard treatment option and mainstay regimen for
patients with SCLC (Herzog et al., 2021). However, the
development of chemoresistance, i.e., resistance to
chemotherapeutic agents, poses a significant challenge and
obstacle to the treatment efficiency of patients with NSCLC (Min
and Lee, 2021). Although most patients with SCLC initially have a
good response to platinum-based chemotherapy, most patients
develop chemoresistance within 1 year (Jin et al., 2023), making
chemoresistance almost a universal driving factor behind patient
mortality (Herzog et al., 2021). Therefore, it is necessary to
understand the mechanisms underlying chemoresistance to
develop efficacious chemotherapeutic approaches for lung cancer.

3 Core mechanisms of ferroptosis

Ferroptosis is a new form of RCD characterized by the iron-
dependent oxidative modification of phospholipid membranes
(Dixon et al., 2012; Stockwell, 2022; Yin et al., 2022; Gu et al.,
2023; Huo et al., 2023) (Figure 1). Ferroptosis reflects an imbalance
between ferroptosis defense systems and promoting factors (Lei
et al., 2022). When the latter overrides the former, lethal lipid
peroxides accumulate on cellular membranes, leading to
membrane rupture and cell death (Hadian and Stockwell, 2020;
Chen et al., 2021; Lei et al., 2022).

3.1 Ferroptosis prerequisites

3.1.1 Iron homeostasis
Iron functions as a cofactor for iron-dependent enzymes,

i.e., arachidonate lipoxygenases (ALOXs) and cytochrome
P450 oxidoreductase (POR), or catalyzes the Fenton reaction to
promote LPO during the process of ferroptosis (Lei et al., 2022). The
overproduction of ROS and reactive nitrogen species (RNS) can
directly damage lipid membranes. In an iron-catalyzed process, ROS
(such as LO• or HO•) can react with polyunsaturated fatty acid
(PUFA)-containing phospholipids (PUFA-PLs) to produce lipid
hydroperoxides through the Fenton reaction. The Fenton
reaction is an Fe2+-catalyzed reaction that converts hydrogen
peroxide (H2O2) to toxic HO•, triggering LPO (Ryter et al., 2007;
Dos Santos et al., 2023). In the enzymatic LPO pathway, Fe2+

promotes the activity of iron-dependent peroxidases, in which
LOXs initiate the dioxygenation of the membrane PUFA-PLs
(Chen et al., 2020; David et al., 2022).

3.1.2 Lipid peroxidation
PUFA-PLs are the substrates for LPO during ferroptosis

(Hadian and Stockwell, 2020). There are two pathways for LPO,
the non-enzymatic and enzymatic LPO pathways (Hassannia et al.,
2019; Chen et al., 2021; Liang et al., 2022). The non-enzymatic LPO
pathway is a radical-driven chain reaction-dependent auto-
oxidation of lipids, in which ROS initiate PUFA oxidation. The
hydroxyl radical (OH·), a highly mobile water-soluble form of ROS
produced from Fenton reactions, is involved in initiating LPO
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(Ayala et al., 2014). One OH·
first abstracts a hydrogen radical from a

PUFA to produce a lipid radical (L•), which rapidly reacts with
molecular oxygen (O2) to yield a lipid peroxyl radical (LOO

•). LOO•

subsequently abstracts a hydrogen radical from an adjacent PUFA,
producing lipid hydroperoxide (LOOH). In the presence of ferrous
iron, LOOH is converted to an alkoxyl radical (LO•), which
subsequently reacts with an adjacent PUFA to initiate another
lipid radical chain reaction. When the ferroptosis defense systems
that keep LPO in check fail, this iron- and oxygen-catalyzed
oxidation process can lead to membrane destruction and cell
death (Hassannia et al., 2019).

Enzymatic LPO is mediated by the activity of ALOXs and POR
in a controlled manner. Iron initiates the Fenton reaction by
functioning as an essential cofactor for ALOXs and POR. In
enzymatic processes, acyl-coenzyme A synthetase long-chain
family member 4 (ACSL4) catalyzes the generation of PUFA-
CoAs by ligating free PUFAs with CoA to form phospholipids
(Dixon et al., 2015; Doll et al., 2017). Then, acyl groups are
inserted into lysophospholipids by lysophosphatidylcholine
acyltransferase 3 (LPCAT3), which incorporates free PUFAs into
phospholipids (PLs) to generate PUFA-PLs (Dixon et al., 2015;
Kagan et al., 2017). The incorporated PUFA-PLs are then
peroxidated by PORs and ALOXs by labile iron and O2 to

generate PUFA-PL hydroperoxides (PUFA-PL-OOH) or
peroxidated PUFA-PLs (Hadian and Stockwell, 2020; Zou et al.,
2020). Malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE)
are the two secondary products of LPO activity, leading to the
formation of membrane pores and, from such cell death, ferroptosis
(Tang and Kroemer, 2020).

3.2 Ferroptosis defense mechanisms

Cellular antioxidant systems constitute the ferroptosis defense
systems, which directly neutralize lipid peroxides (Gu et al., 2023).
Five major ferroptosis defense systems exist with specific subcellular
localizations.

3.2.1 SLC7A11-GSH-GPX4 axis
The solute carrier family 7 member 11-reduced glutathione

(GSH)–glutathione–glutathione peroxidase 4 (SLC7A11-GSH-
GPX4) axis is the first well-defined ferroptosis defense system
discovered (Lei et al., 2022; Sun et al., 2022). As such, GPX4 has
been identified as a key inhibitor of ferroptosis (Dixon et al., 2012;
Friedmann Angeli et al., 2014; Yang et al., 2014; Ingold et al., 2018;
Forcina and Dixon, 2019). GPX4 is a lipid repair enzyme (Brigelius-

FIGURE 1
Core mechanisms of ferroptosis.
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Flohé and Maiorino, 2013; Brigelius-Flohé and Flohé, 2020), which
converts LOOH to non-toxic PL alcohols, concomitantly oxidizing
two reduced GSHs into an oxidized glutathione (GSSG) (Ursini
et al., 1982; Seibt et al., 2019). Solute carrier family 3 member 2
(SLC3A2), also known as system Xc−(Sato et al., 1999; Koppula et al.,
2021), and SLC7A11, also known as xCT, mediate antiporter activity
by which intracellular glutamate is exported and extracellular
cystine is imported (Sato et al., 1999; Koppula et al., 2018).
Cytosolic NADPH is then used to reduce cystine into cysteine,
which functions as the precursor for GSH, the cofactor required for
the GPX4-induced detoxification of LPO (Koppula et al., 2021).

3.2.2 FSP1-CoQH2 system
Ubiquinone (coenzyme Q10 or CoQ10), a component of

mitochondria and diverse membranes, works as a second
endogenous mechanism to inhibit LPO and ferroptosis.
Ferroptosis suppressor protein 1 (FSP1) localizes to the plasma
membrane and was first discovered to operate independently of
GPX4 to halt ferroptosis (Bersuker et al., 2019; Doll et al., 2019),
which reduces ubiquinone CoQ10 to regenerate CoQ10-H2(CoQ10

ubiquinol), acting as a NAD(P)H-dependent oxidoreductase. This
traps LOO•, thereby suppressing ferroptosis by inhibiting LPO.
FSP1 halts ferroptosis by repairing damage to the plasma
membrane and by activating the endosomal sorting complex
required for transport III (ESCRT-III) complex (Dai et al., 2020;
Pedrera et al., 2021).

3.2.3 GCH1-BH4 system
The GTP cyclohydrolase 1 (GCH1)–tetrahydrobiopterin (BH4)

system is identified as the second suppressor of ferroptosis
independent of GPX4 (Kraft et al., 2020; Soula et al., 2020).
GCH1 mediates the production of the radical-trapping
antioxidant BH4, which functions as a cofactor for aromatic
amino acid hydroxylases (Kraft et al., 2020; Soula et al., 2020).

3.2.4 DHODH-CoQH2 system
The dihydroorotate dehydrogenase (DHODH)–

dihydroubiquione (CoQH2) system is the third ferroptosis
defense system independent of GPX4, which detoxifies
mitochondrial lipid peroxides compensating for GPX4 loss (Mao
et al., 2021). In the inner mitochondrial membrane, DHODH,
originally discovered to be involved in pyrimidine synthesis,
reduces CoQ10 to CoQH2, thereby reducing mitochondrial
CoQ10, analogous to the function of FSP1 in the
extramitochondrial membranes (Mao et al., 2021). Once GPX4 is
acutely inactivated, DHODH-mediated flux is significantly
increased to promote the generation of CoQH2, which neutralizes
LPO and halts ferroptosis that originates from the mitochondria
(Mao et al., 2021).

3.2.5 MBOAT1/2-MUFA system
The MBOAT1/2-PE-MUFA system is a newly identified

ferroptosis defense system independent of GPX4 and FSP1,
discovered by Jiang et al. In the MBOAT1/2-PE-MUFA system,
new phospholipid-modifying enzymes O-acyltransferase domain-
containing 1 (MBOAT1) and O-acyltransferase domain-containing
2 (MBOAT2) work as ferroptosis suppressors (Liang et al., 2023).
PE-PUFA is the preferred substrate for PL peroxidation, dictating

ferroptosis sensitivity (Doll et al., 2017; Kagan et al., 2017). As a lyso-
PL acyltransferase (LPLAT), the membrane-bound
MBOAT2 selectively transfers monounsaturated fatty acids
(MUFAs) into lyso-phosphatidylethanolamine (lyso-PE), thereby
decreasing cellular PE-PUFA and increasing cellular PE-MUFA,
eventually inhibiting ferroptosis. The estrogen receptor (ER) and
androgen receptor (AR) directly transcriptionally upregulate
MBOAT1 and MBOAT2, respectively. Meanwhile, the ER or AR
antagonist boosts the anti-tumor activity of ferroptosis inducers in
AR+ prostate cancer and ER+ breast cancer, even in tumors with
drug resistance.

3.2.6 SC5D-7-DHC axis
The lathosterol oxidase (SC5D)–7-dehydrocholesterol (7-DHC)

axis is a newly identified inhibitor of ferroptosis, discovered by
Freitas et al. (2024), Li et al. (2024), Freitas et al. (2024), Li et al.
(2024), and Li et al. (2024), who both reported a previously
unknown natural inhibitor of ferroptosis, i.e., 7-DHC.
Synthesized in the endoplasmic reticulum, 7-DHC is found on
the cell membrane and mitochondria. It is generated in the
cholesterol synthesis pathway, which includes the intermediates
of zymosterol/lathosterol and the enzymes EBP, SC5D, and
DHCR7. When radicals attack phospholipids, the lipid is
oxidized, and it fragments. Here, 7-DHC absorbs radicals and
inhibits lipid peroxidation in both the plasma membrane and
mitochondria by diverting the peroxidation pathway from
phospholipids, thus mitigating ferroptosis.

4 Reversing chemotherapy resistance
by inducing ferroptosis in NSCLC

New reports suggest that small-molecule drugs may function as
ferroptosis-inducing bioactive compounds, enhancing
chemotoxicity toward cancers (Yin et al., 2022; Xing et al., 2023;
Li et al., 2024). Small-molecule drugs are organic compounds that
impact cellular activity, which, due to their low molecular weight,
can provide high cellular permeability. Small-molecule drugs are
generally derived from two major practices: isolation from natural
products or rational design to target proteins with a known function
(Ibarrola-Villava et al., 2018; Niu et al., 2023). Emerging ferroptosis-
inducing bioactive compounds (Figure 2) could boost the anti-
tumor activity of ferroptosis induced by chemotherapeutic agents,
overcoming chemotherapeutic drug resistance in NSCLC (Figure 3).
Table 1 lists some natural compounds that induce ferroptosis to
overcome chemoresistance in NSCLC.

4.1 Reversing chemotherapeutic resistance
in lung cancer—inducing ferroptosis with
natural products

One of the major active components of Dendrobii caulis and
phytoestrogen is erianin, which has anti-tumor, anti-diabetic
retinopathy, anti-inflammatory, antibacterial, and anti-psoriasis
effects (Li et al., 2023). Erianin significantly attenuates lung
cancer stemness and enhances sensitivity of lung cancer cells to
5-FU (Lin et al., 2020). The ferroptosis inhibitor Fer-1 attenuates the
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erianin-mediated inhibition of sphere formation in lung cancer cells,
suggesting that erianin inhibits lung cancer stemness by facilitating
ferroptosis (Lin et al., 2020).

Isoorientin is a natural C-glucosyl flavone that has multiple
pharmacological activities, including anti-inflammatory, robust
antioxidant, and anti-tumor activities (Li et al., 2020; Xu et al.,
2020; Ziqubu et al., 2020; Liu et al., 2021; Cui et al., 2023). Previous
experiments have shown that it promotes apoptosis by the ROS-
mediated MAPK/STAT3/NF-κB signaling pathway in A549 lung
cancer cells (Xu et al., 2020). Further study has revealed that
isoorientin overcomes drug resistance by inducing ferroptosis via
the sirtuin 6 (SIRT6)/nuclear factor-erythroid factor 2-related factor
2 (Nrf2)/GPX4 signaling pathway in lung cancer (Feng et al., 2023).
Isoorientin boosts the anti-tumor activity of cisplatin, as evidenced
by significantly decreasing the viability of drug-resistant cells, a
notable decrease in glutathione concentration, and a substantial
increase in intracellular iron, MDA, and ROS production in vitro
and in vivo. Mechanistically, isoorientin overcomes drug resistance
by downregulating SIRT6/Nrf2/GPX4 in lung cancer cells (Feng
et al., 2023).

As a natural bioactive juglone derivative, 2-methoxy-6-acetyl-7-
methyljuglone (2-methoxystypandrone, MAM) has anticancer, anti-
inflammatory, antimicrobial, antioxidant, and anti-HIV properties
(Khalil et al., 2022). MAM inhibits cancer progression by promoting
apoptosis, necroptosis, and deregulation signaling pathways in colon
cancer cells, glioblastoma, lung cancer, and breast cancer (Sun et al.,
2016; Sun et al., 2017; Sun et al., 2019; Yu et al., 2020). Anticancer
activity against lung cancer was corroborated by other studies, which
reported that MAM induces significant cell death in cisplatin- and
AZD9291-resistant lung cancer cells, being completely reversed by
NQO1 siRNA, NQO1 inhibitors, or iron chelators (Yu et al., 2023).
Mechanistically, MAM triggers ROS generation by binding to
activate NQO1, increasing LIP and LPO. MAM suppresses tumor
growth in a tumor xenograft zebrafish model. These studies suggest
that MAM induces ferroptosis by activating NQO1 in drug-resistant
NSCLC cells, highlighting a novel therapeutic regimen to overcome
drug resistance via inducing NQO1-mediated ferroptosis in NSCLC
(Yu et al., 2023).

As a natural bioactive molecule very abundant in aromatic and
medicinal plants (AMPs), α-hederin has various pharmacological

FIGURE 2
Chemical structures of small-molecule compounds from traditional medicines inducing ferroptosis in lung cancer.
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activities, particularly anticancer activity in several cancers including
colorectal, lung, esophageal, breast, hepatic, colon, ovarian, and
gastric cancers (Belmehdi et al., 2023). Recent experiments
substantiate previous indications that α-hederin has anticancer
activity against lung cancer (Wu et al., 2022). α-Hederin
inhibited cancer cell proliferation, invasion, and migration in
NSCLC in vitro and in vivo. α-Hederin increases the sensitivity
of NSCLC cells to cisplatin by promoting ferroptosis and apoptosis
(Wu et al., 2022).

The natural borneol obtained from the fresh branches and leaves
of Cinnamomum camphora (L.), J. Presl d-borneol has refreshing
and awakening effects and is usually used for treating
cerebrovascular and cardiovascular diseases. Borneol has anti-
inflammatory, penetration-promoting, and sedative, analgesic,
and antibacterial properties. Borneol can also boost the anti-
tumor effects of chemotherapeutic drugs in NSCLC, human
esophageal squamous cell carcinoma, gliomas, and hepatocellular
carcinoma (Chen et al., 2015; Meng et al., 2018; Cao et al., 2019; Li
et al., 2022). Further study has revealed that d-borneol exerts
anticancer activity in cisplatin-resistant NSCLC cells by inducing
ferroptosis (Li et al., 2022). d-Borneol enhances tumor-inhibiting
effects of cisplatin by promoting ferroptosis, as evidenced by the

increased production of ROS andMDA and decreased expression of
GSH, Trx, SOD, and heme oxygenase-1. Mechanistically, the
combination of d-borneol and cisplatin induces ferroptosis by
facilitating nuclear receptor coactivator 4 (NCOA4)-mediated
ferritinophagy and modulating intracellular iron ion transport via
decreasing PCBP2 and increasing PRNP (Li et al., 2022).

Dihydroartemisinin (DHA), an active derivative of artemisinin
originally developed in China, is the first-line treatment for malaria
(Dai et al., 2021). DHA has anticancer activity by boosting the
efficacy of chemotherapy, targeted therapy, and even radiotherapy in
a wide range of cancer types (Li et al., 2021). Recent studies have
suggested that DHA boosts the efficacy of targeted therapy and
immunotherapy by inducing ferroptosis in lung cancer cells (Li
et al., 2022; Han et al., 2023; Lai et al., 2023). DHA facilitates chlorin
e6-induced photodynamic therapy by inducing ferroptosis,
inhibiting GPX4, and enhancing ROS in lung cancer cells (Han
et al., 2022).

Ginkgetin (GK) is a natural biflavone with anticancer, anti-
inflammatory, antimicrobial, anti-adipogenic, and neuroprotective
activities (Adnan et al., 2020). GK has anticancer activities in a wide
range of cancer types including lung cancer (Lou et al., 2017; Ho
et al., 2018; Liu et al., 2022; Wu et al., 2023). In EGFR wild-type

FIGURE 3
Mechanisms of ferroptosis-inducing small-molecule compounds that may boost the anti-tumor activity of chemotherapeutic agents or overcome
chemotherapy drug resistance in lung cancer.
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TABLE 1 Small-molecule compounds as inducers of ferroptosis to overcome drug resistance in NSCLC.

Compound Cancer
type

Cell line/
model

Resistance Ferroptosis markers OR
involved mechanism

Supplementary
effect

Reference

Erianin (1) NSCLC A549 and H1299 5-FU ↓Lung cancer stemness; ↑sensitivity
of lung cancer cells to 5-FU

↓After Fer-1 treatment Lv et al. (2023)

FIN56 (2) NSCLC A549 Cisplatin ↑Cisplatin-induced ROS; ↓
antioxidant genes; and ↑cisplatin
cytotoxic effect

ND Duvigneau et al.
(2020)

Isoorientin (3) NSCLC A549 Cisplatin ↓Cell viability of drug-resistant cells;
↑intracellular iron levels; and
↑MDA; ↑ROS; ↓GSH; ↓Nrf2, GPX4,
and sirtuin 6

↓After Fer-1 treatment Duvigneau et al.
(2020)

Isoorientin (3) NSCLC A549 and A549/
DDP cells

Cisplatin ↓Cell viability; ↑iron; ↑MDA; ↑ROS;
and ↓Nrf2, GPX4, and sirtuin 6

ND Feng et al.
(2023)

MAM (4) NSCLC Cisplatin-resistant
A549 and
AZD9291-resistant
H1975 cells

Cisplatin ↑Cell death in drug-resistant cells;
activates and binds to NQO1; ↑ROS
generation; ↑LIP; ↑LPO; and ↓tumor
growth in the tumor xenograft
zebrafish model

↓After NQO1 inhibitor,
NQO1 siRNA, and iron
chelator treatment

Duvigneau et al.
(2020)

α-Hederin (5) NSCLC A549–DPP cell Cisplatin ↑Cell death ND Wu et al. (2022)

α-Hederin (5) NSCLC Xenografts bearing
A549

Cisplatin ↓Tumor volume and weight in
xenografts

ND Wu et al. (2022)

d-Borneol (6) NSCLC H460/CDDP
xenograft tumor
model

Cisplatin ↑ROS accumulation; ↑MDA levels;
↓GSH, SOD, Trx, and heme
oxygenase-1; ↑NCOA4-mediated
ferritinophagy; ↑intracellular iron
ion transport via upregulating PRNP
and downregulating PCBP2; and
↑autophagy

ND Duvigneau et al.
(2020)

DHA (7) Lung cancer Lewis cells PDT-induced
drug resistance

↓Cell viability; ↓GPX4; and ↑ROS ND Han et al. (2022)

Ginkgetin (8) NSCLC A549, NCI-H460,
and SPC-A-1

Cisplatin ↑Cytotoxicity; ↑LPO; ↑Fe2+;
↓SLC7A11/GPX4; ↓GSH; ↑ROS; and
↓Nrf2/HO-1

↓After DFO or
UAMC3203 treatment

Lou et al. (2021)

Ginkgetin (8) NSCLC Xenografts bearing
A549

Cisplatin ↓Tumor volume and weight ↓After UAMC3203 treatment Lou et al. (2021)

Erastin (9) NSCLC N5CP cells Cisplatin ↓Growth of N5CP cells in vivo;
↑lipid ROS

ND Li et al. (2020)

PRLX93936 (10) NSCLC A549 and H23 Cisplatin ↑Cell death; ↓cell viability; ↑LPO;
↑ROS; ↑Fe2+; ↓GPX4; ↑KEAP1;
↓Nrf2

↓After Lip-1 or Fer-1 treatment Liang et al.
(2021)

RSL3 (11) NSCLC A549 and H1299 Cisplatin ↓Tumor volume and weight in
xenografts

ND Zhang et al.
(2020)

Compound
23 (12)

NSCLC Nude mice bearing
A549/CDDP cells

Cisplatin ↑LPO and ROS ↓After Lip-1 treatment Sun et al. (2021)

Propofol (13) NSCLC A549 and H1299,
A549/Cis, and
H1299/Cis

Cisplatin ↓IC50 value and chemotherapy-
resistance of NSCLC cells to Cis;
↑ferroptosis; ↑miR-744-5p/miR-
615-3p; ↓GPX4; and ↓tumor growth
and CR to Cis by upregulating miR-
744-5p/miR-615-3p and inhibiting
GPX4 to induce ferroptosis

ND Duvigneau et al.
(2020)

Falnidamol (14) NSCLC A549 and PC-9 Cisplatin ↓Cell proliferation; ↑lipid ROS;
↑ROS; ↓GPX4; ↓GSH; ↓FSP1; ↑TfR1;
and ↓tumor volume and weight in a
xenograft mouse model bearing
A549

ND Cui et al. (2022)

(Continued on following page)
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NSCLC, GK facilitates the therapeutic effect of cisplatin by inducing
ferroptosis and downregulating Nrf2/HO-1 (Lou et al., 2021).

Compound 23, i.e., 11β-Hydroxy-ent-16-kaurene-15-one, is one of
the ent-kaurane diterpenoids from Chinese liverworts Jungermannia
tetragona Lindenb and has strong anti-tumor activity in several cancer
cell lines. Compound 23 induces both apoptosis and ferroptosis by
increasing cellular ROS levels in HepG2 cells. Compound 23 increases
the sensitivity of cisplatin-resistant A549/CDDP cancer cells by
inducing ferroptosis and apoptosis, suggesting that ent-kaurane
derivatives overcome chemoresistance to cisplatin by inducing
ferroptosis (Sun et al., 2021).

4.2 Reversing chemotherapy resistance
through inducing ferroptosis by small-
molecular drugs in lung cancer

The utilization of ferroptosis-modulating small molecules or
compounds is a new novel strategy to enhance chemotherapy
outcomes (Yin et al., 2022), potentially acting as a vector to treat
chemotherapeutic resistance (Koeberle et al., 2023). Functioning as a
type 3 ferroptosis inducer, the ferroptosis-inducing agent 56
(FIN56) promotes ferroptosis by facilitating the autophagy-
dependent protein degradation of GPX4 (Shimada et al., 2016;
Sun et al., 2021). FIN56 combined with cisplatin increases
cellular ROS levels, decreases antioxidant gene expression, and
boosts the cisplatin cytotoxic effect in the A549 cell line,
indicating that inducing ferroptosis is a promising strategy in
cisplatin-resistant cancer cells (Golbashirzadeh et al., 2023).

Initially identified as a small-molecule compound that
selectively kills tumor cells, erastin is an inducer of ferroptosis by
modulating system XC−, p53, and the voltage-dependent anion
channel (VDAC). Erastin can increase tumor sensitivity to
chemotherapy and radiotherapy, highlighting a promising
potential in cancer therapy (Zhao et al., 2020). Erastin and
sorafenib induce ferroptosis in CDDP-resistant N5CP NSCLC
cells, as evidenced by the accumulation of intracellular lipid ROS.
Erastin and sorafenib, alone or in combination with CDDP, inhibit
the growth of N5CP cells in vivo (Li et al., 2020).

An analog of erastin, PRLX93936, has demonstrated synergistic
effects against NSCLC cells. The combination of PRLX93936 and
cisplatin induces ferroptosis, as evidenced by the increased
production of ROS, LPO, and Fe2+. Mechanistically, the
cotreatment of PRLX93936 with cisplatin induces ferroptosis by
inhibiting Nrf2-dependant GPX4 (Liang et al., 2021).

RAS-selective lethal 3 (RSL3) induces ferroptosis by inhibiting
GPX4. RSL3 facilitates the anticancer effect of cisplatin in vitro and

in vivo (Zhang et al., 2020). Recent studies have shown that propofol,
an intravenous anesthetic agent traditionally and widely used for
sedation and general anesthesia, exhibits anti-tumor activity against
cancer progression in vitro and in vivo (Wang et al., 2018; Gu et al.,
2022). Propofol can boost the anti-tumor activity of cisplatin in lung
cancer (Huang et al., 2020; Ling et al., 2022; Quan et al., 2022).
Mechanistically, propofol decreases cisplatin resistance in NSCLC
by inducing ferroptosis, accomplished by upregulating the miR-744-
5p/miR-615-3p axis and inhibiting GPX4 (Han et al., 2023).

NVP-231, a ceramide kinase (CERK) inhibitor, induces
ferroptosis in mutant KRAS NSCLC cells by increasing the
VDAC-regulated mitochondrial membrane potential and the
generation of ROS. NVP-231 synergized NSCLC to cisplatin
through the upregulation of VDAC1 (Vu et al., 2022).

5 Conclusion and future perspectives

In conclusion, this review summarized the novel role of ferroptosis
in lung cancer and provides an overview on how pro-ferroptotic
molecules may be used to overcome chemotherapeutic resistance.
During the past decade, ferroptosis has attracted considerable
interest in lung cancer research for its anti-tumor activity, which is
thought to boost the efficacy of chemotherapy. In this review, we
comprehensively summarized the small-molecule compounds from
traditional medicines that may boost the anti-tumor activity of
chemotherapeutic agents or overcome chemotherapy drug resistance
in NSCLC, both of which serve as starting points to develop ferroptosis-
related anticancer drugs for NSCLC. Small-molecule compounds that
induce ferroptosis have specific targets. Erastin targets system Xc− to
prevent cysteine import, which causes GSH depletion. RSL3 is a
covalent inhibitor of GPX4 that causes the accumulation of lipid
peroxides. In contrast to classical small molecules, traditional
medicines have the advantage of polypharmacology. For example,
ginkgetin regulates Nrf2, SLC7A11, and GPX4 at the same time.

The FDA has approved some ferroptosis-targeting small-
molecule compounds for the evaluation of clinical trials with
NSCLC patients (Li et al., 2024). However, research on
ferroptosis is an emerging field still in its infancy. Significanr
research is needed to bridge the gap from where we are to where
we need to be in order to provide satisfactory biological outcomes.
First, research on the role of ferroptosis in NSCLC is still ongoing,
and the specific functions of ferroptosis remain ambiguous, hence
warranting further investigation. As such, inevitable challenges still
remain before the practical application of these treatment
modalities. Second, the epigenetic modification of ferroptosis in
cancer is an emerging field. The epigenetic modification of

TABLE 1 (Continued) Small-molecule compounds as inducers of ferroptosis to overcome drug resistance in NSCLC.

Compound Cancer
type

Cell line/
model

Resistance Ferroptosis markers OR
involved mechanism

Supplementary
effect

Reference

NVP-231 (15) NSCLC A549, H838, H1792,
H1299, H358, and
H460

Cisplatin ↑Sensitivity of mutant KRAS lung
cancer to cisplatin; ↓VDAC-
mediated mitochondrial function

↓After DFO or Fer-1 treatment Duvigneau et al.
(2020)

A549/Cis, Cis-resistant A549 cells; compound 23, 11β-hydroxy-ent-16-kaurene-15-one; DFO, deferoxamine; DHA, dihydroartemisinin; FTH, ferritin heavy chain; H1299/Cis, Cis-resistant

H1299 cells; LIP, labile iron pool; Lip-1, liproxstatin-1; MAM, 2-methoxy-6-acetyl-7-methyljuglone; NCOA4, nuclear receptor coactivator 4; NVP-231, CERK inhibitor; Nrf2, nuclear factor-

erythroid factor 2-related factor 2; NSCLC, non-small-cell lung cancer; PDT, photodynamic therapy; TfR, transferrin receptor that imports iron from the extracellular environment into cells;

VDAC, voltage-dependent anion channel.
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ferroptosis is identified in NSCLC, which, when dysregulated, can be
feasibly targeted by small-molecule compounds. However, the
practical application of these treatment modalities in NSCLC still
has a long way to go. Third, many key components of the ferroptosis
pathway, i.e., the principal proteins and enzymes engaged in the
induction and inhibition of ferroptosis are transcriptionally
controlled by Nrf249−53. More research is needed to discover new
mechanisms that regulate ferroptosis and the role of Nrf2 in
inhibiting ferroptosis, which will repurpose old drugs,
i.e., Nrf2 inhibitors, as ferroptosis inducers to kill NSCLC.
Nrf2 inhibitors may then be an optimal approach to treat
NSCLC, but this requires further investigation. Fourth, the
identification of biomarkers for ferroptosis sensitivity or
resistance is urgently needed for accurately predicting the
efficiency of inducing ferroptosis. Fifth, an assessment of the
safety and potential toxicity of the small-molecule compounds
that induce ferroptosis should be considered as this is a crucial
consideration for potential therapeutic agents.

In conclusion, ferroptosis has been identified as a critical RCD
triggered by ferroptosis-inducing bioactive compounds in NSCLC.
Thus, the small-molecule compounds from traditional medicines
hold great potential in NSCLC therapy, especially when combined
with conventional chemotherapy by boosting the anti-tumor activity
of chemotherapeutic agents or overcoming chemotherapy drug
resistance in NSCLC. Natural-product ferroptosis-inducing small
molecules may serve as an excellent starting point for the further
development of ferroptosis-related anticancer drugs to overcome
NSCLC chemotherapeutic resistance.
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