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Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that
affects the synovial joint, which leads to inflammation, loss of function, joint
destruction, and disability. The disease biology of RA involves complex
interactions between genetic and environmental factors and is strongly
associated with various immune cells, and each of the cell types contributes
differently to disease pathogenesis. Several immunomodulatory molecules, such
as cytokines, are secreted from the immune cells and intervene in the
pathogenesis of RA. In immune cells, membrane proteins such as ion
channels and transporters mediate the transport of charged ions to regulate
intracellular signaling pathways. Ion channels control the membrane potential
and effector functions such as cytotoxic activity. Moreover, clinical studies
investigating patients with mutations and alterations in ion channels and
transporters revealed their importance in effective immune responses. Recent
studies have shown that voltage-gated potassium channels and calcium-
activated potassium channels and their subtypes are involved in the regulation
of immune cells and RA. Due to the role of these channels in the pathogenesis of
RA and from multiple pieces of clinical evidence, they can be considered
therapeutic targets for the treatment of RA. Here, we describe the role of
voltage-gated and calcium-activated potassium channels and their subtypes
in RA and their pharmacological application as drug targets.
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1 Introduction

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease (Andrei-Flavius
and Simona Gabriela, 2021). The prevalence rate of RAwas found to be 0.5%–1%worldwide
(Arima et al., 2022). Primarily, it affects the linings of joints and is characterized by swelling,
inflammation of the joints, redness, pain, arthralgia, synovitis, synovial hypertrophy,
pannus formation, cartilage and bone destruction, and autoantibody production
(Littlejohn and Monrad, 2018). The pathogenesis of RA involves the implication of the
immune system and inflammatory pathways, which involve immune cells and
inflammatory cytokines (Figure 1) (Dong et al., 2018). It is important for healthcare
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professionals to differentiate between clinical RA and osteoarthritis
as both treatment and outcomes differ greatly between these two
diseases (Littlejohn and Monrad, 2018). A differential diagnosis is
required to identify the individual types of arthritis (Littlejohn and
Monrad, 2018). The clinical diagnosis of RA is generally based on
biomarkers such as the presence of the rheumatoid factor (RF),
antibodies against citrullinated proteins (ACPA), erythrocyte
sedimentation rate (ESR), and C-reactive protein (CRP) and
multi-biomarker activity (MBDA) tests (Atzeni et al., 2017).
Various disease-modifying anti-rheumatic drugs (DMARDs) are
being used to treat RA, but they cause significant side effects such as
weight loss, hypersensitivity, neuropathy, and hair loss (Aletaha
et al., 2003). In addition, some patients do not respond to or tolerate
the treatment (Watanabe et al., 2022). Hence, it is important to
explore more targets and treatment therapies that may help in
treating RA and are beneficial for the patients and healthcare society.

Ion channels came into the limelight for the treatment of
autoimmune diseases as ion channels have the ability to establish
membrane potential, ion concentration, and regulate immune
response in immune cells (Chandy et al., 1985; Vinnenberg et al.,
2021). Genetic alterations in ion channels contribute to the
pathogenesis of several diseases. As such, there is no direct
link between the mutations of potassium channels with RA
pathogenesis. The primary potassium channels in human
T cells, such as Kv1.3 and KCa3.1, play a crucial role in
maintaining the ionic levels necessary for the healthy
operation of T cells and the immunological response (Chirra
et al., 2022). Studies identified that potassium channels regulate
the immune cell function and control the RA-fibroblast-like
synoviocyte (FLS) function, which is important in the

pathogenesis of RA (Hu et al., 2012). In this review, we focus
on the importance of voltage-gated and calcium-activated
potassium channels in RA and how they can be utilized as
therapeutic targets for the treatment of RA.

2 Immune system in RA

Both adaptive and innate immunity play an important role in
the pathogenesis and development of autoimmune diseases such as
RA (Trouw et al., 2013; Dong et al., 2018). The exact and complete
role of innate immunity in the disease development of RA is not
clearly known yet, but in the past two decades, emerging studies have
shown that innate immunity also plays a critical role in RA (Dong
et al., 2018). On the other hand, the impact of adaptive immunity on
autoimmune diseases due to the ability to react to self-antigens is
very well known, and evidence is present supporting this hypothesis,
such as the presence of autoantibodies such as RF and ACPA
(Yamada, 2022).

2.1 Adaptive immunity in RA

In RA, T cells and B cells are critically significant in
autoimmunity and adaptive immunity. Studies have shown that
in most cases of RA, there is a formation of ectopic lymphoid
neogenesis (ELN), which comprises small portions of aggregates of
T and B cells present in the synovium (Yamada, 2022). Although
ELN is involved in RA progression, some researchers revealed that
there is no correlation between ELN formation and local production

FIGURE 1
Role of the inflammatory pathway in RA pathogenesis. IL, interleukins; RANKL, receptor activator of nuclear kappa beta ligand; TNF, tumor necrosis
factor; INF-, interferon-gamma;MMPs, matrixmetalloproteinases; APC, antigen presenting cell. T cells and B cells are the important immune cells in the
inflammatory pathway of RA. After binding of APC, B cells and T cells produce inflammatory cytokines and activate macrophages and plasma cells,
thereby resulting in bone erosion and cartilage damage, which contribute to joint destruction and RA.
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of ACPA and RF (Cantaert et al., 2008). In addition, ELN is formed
in various forms of arthritis, which excludes ELN from the race of
diagnostic markers for RA (Yamada, 2022). Studies performed by
researchers show conflicting data on the relationship between the
presence of ELN and the treatment of RA (Yamada, 2022).

2.1.1 B cells in RA
The increased number of autoreactive B cells plays an important

role in the activation of autoreactive T cells (Wu et al., 2021a).
KCa3.1 channels are expressed in B cells and regulate the migration
and proliferation of B cells (Lin et al., 2022). B cells, as APCs, present
their own antigens to CD4+ T helper cells, which results in an
increase in the number of follicular helper T cells (Tfh) and
peripheral helper T cells (Tph) in the synovium of RA patients
(Lucas et al., 2020). Tfh and Tph then secrete CXCL13 and IL-21,
which are important for the differentiation of B cells and the
production of antibodies (Lucas et al., 2020).

B cells have a notable role in the cytokine secretion in RA (de
Gruijter et al., 2022). B cells secrete cytokines such as TNF-α,
interferon-γ(IFN-γ), IL-6, IL-1b, IL-17, and IL-10, which are
involved in bone destruction and are related to the occurrence of
the disease (Yanaba et al., 2008; de Gruijter et al., 2022). The amount
of TNF-α produced by B cells in RA patients increases after the
activation of Toll-like receptor 9 (TLR9) and CD40, which
ultimately increases the expression of the receptor activator of
the nuclear kappa beta ligand (RANKL) in the presence of IL-1β
and promotes the formation of osteoclasts (Yeo et al., 2015).
Similarly, TNF-α and CCL3 restrict bone formation in RA
patients by inhibiting the differentiation of osteoblasts (Yeo
et al., 2015).

2.1.2 T cells in RA
T cells have an extensive role in the adaptive immunity and

pathological management of RA (Yamada, 2022). T cells have a
significant role in disease perpetuation as they are a source of pro-
inflammatory cytokines and interact with synovial stromal cells
(Scherer and Burmester, 2011; Komatsu et al., 2014). In T cells, the
KCa3.1 channels initiate the expression of genes that promote T-cell
activation and proliferation (Lin et al., 2022). Lines of evidence
suggested that CD4+ T cells and CD8+ T cells play an important role
in the progress and pathogenesis of RA (Jang et al., 2022).
KCa3.1 channels support the migration of CD8+ T cells to the
site of inflammation (Lin et al., 2022). In most of the cases,
infiltration of a large number of CD4+ T cells is observed in the
joint synovium and tenosynovium of RA patients, and these CD4+

T cells act as activation markers of T cells (Kaibara et al., 2008).
CD4+ T cells help B cells in the production of autoantibodies and
induction of inflammation at the joints (Yap et al., 2018). Due to the
infiltration of CD4+ T cells and macrophages, it is considered a
typical histological feature of RA synovitis (Li et al., 2021). T cells
release IL-17, which is involved in the mobilization of neutrophils,
activation of synovial fibroblast, and induction of RANKL
expression.

In RA, it has been observed that there is a loss or functional
deficiency of T-regulatory (Treg) cells (Jiang et al., 2021). The
inhibition or decrease in the number of Treg cells is associated
with an increased immune response towards infectious pathogens
(Jiang et al., 2021). The reports of a meta-analysis showed that the

number of Treg cells was decreased in peripheral blood (PB), while
increased numbers were observed in synovial fluid (SF) (Morita
et al., 2016). Synovial oxygen deficiency is one of the characteristics
of RA; during this hypoxic environment, the synovial fibroblast
induces T-cell differentiation, which leads to a decrease in the
number of Treg cells and an increase in the number of Th17 cells
(Jiang et al., 2021).

2.2 Innate immunity in RA

Earlier, research was generally carried out to study the impact of
adaptive immunity on the pathogenesis of RA, but nowadays,
research has drifted towards studying the involvement of innate
immunity in the pathogenesis of RA (Gierut et al., 2010). Various
immune cells, such as monocytes, macrophages, dendritic cells
(DCs), neutrophils, natural killer cells (NK), and innate lymphoid
cells, contribute to RA pathogenesis via innate immunity (Bartlett
et al., 2018; Chen et al., 2022). In the early stages of RA, the
activation of innate immunity in the synovium serves as a key
pathogenic mechanism that leads to the inflammation of joints
(Gierut et al., 2010).

Macrophages and monocytes are important cells in innate
immunity as they are the source of various cytokines responsible
for maintaining the diseased condition, and the number of
macrophages in the synovial tissue is considered the most
reliable marker of disease severity in RA (Tak and Bresnihan,
2000). In tissues of RA patients, M1-like macrophages
overexpress major histocompatibility complex (MHC) class II
molecules, which are associated with increased inflammation and
tissue damage (Edilova et al., 2021; Weyand and Goronzy, 2021).

DCs are another type of immune cell that are involved in RA and
are divided into two subsets: classical DCs (cDCs) and plasmacytoid
DCs (pDCs) (Edilova et al., 2021). By secreting a large number of
cytokines such as TNF, IL-6, IL-1, and IL-12 and differentiation
factors such as the macrophage colony-stimulating factor (M-CSF)
and fibroblast growth factor (FGF), both cDCs and pDCs contribute
to RA pathogenesis (Saferding and Blüml, 2020). In RA, neutrophils
are the most abundant leukocytes in the inflamed joints and are the
first to reach the synovium (Cecchi et al., 2018). Fcγ receptors are
present on the membrane of neutrophils, and with the help of these
receptors, neutrophils bind to the immune complexes, resulting in
their degranulation and production of reactive oxygen species (ROS)
(Cecchi et al., 2018). This enhanced ROS generation leads to
endothelial dysfunction, tissue injury, DNA damage, oxidation of
lipids and proteins, and immunoglobin mutations (Edilova
et al., 2021).

3 Translational studies supporting the
role of ion channels in
rheumatoid arthritis

There are numerous human cell studies available in the literature
that suggest the potential role of ion channels in the pathogenesis of
RA. Mutation and functional changes in the ion channels lead to
malfunctioning of the immune system, and this malfunctioning
promotes RA. Hu et al. collected the FLSs of 12 RA patients to study
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the expression of the KCa1.1 channel. They found that the
KCa1.1 channel is expressed on the plasma membrane of the
FLSs and accounts for K+ current conduction in FLSs (Hu et al.,
2012). The KCa1.1 channel is also involved in regulating the β1-
integrin function (Tanner et al., 2017a). Similar results were
obtained from Pethő et al.’s study, where they showed that β
subunits of KCa1.1 are expressed on the plasma membrane of
FLSs (Pethő et al., 2016). Tanner et al. studied the interaction
between KCa1.1 and Kv1.3 channels and FLSs. It was found that
the KCa1.1 channel regulates the FLS-mediated activation and
proliferation of effector memory T (TEM) cells. KCa1.1 also
regulates the surface expression of MHC II (Tanner et al., 2019).
Beeton et al. studied the expression of the Kv1.3 channels with
autoreactive T cells in RA patients. They found that there is an
upregulation of Kv1.3 channels with TEM cells. The expression of the
Kv1.3 channel was found to be lower in the TEM cells in healthy
individuals. They tried to block the Kv1.3 channels with the help of
selective Kv1.3 blockers, such as PAP-1 and SL5. It was found that
the blockade reduces the activation and proliferation of TEM cells.
Similar results were obtained in the study performed by Tanner
et al., where they demonstrated the role of KCa1.1 and Kv1.3 in
regulating TEM cells in RA (Beeton et al., 2006).

4 Potassium channels’ impact on
immune function and RA

Ion channels act by maintaining the membrane potential
through the influx or efflux of particular ions responsible for
hyperpolarization or depolarization (Ehling et al., 2011). Because
RA is an autoimmune disease, ion channels, specifically voltage-
gated and calcium-activated potassium channels, are very important
in maintaining the immune response and pathogenesis of RA.

As discussed in Section 2.1.2, Treg cells play a significant role in
RA pathogenesis, and proper ion regulation is required for the
regulation and effector function of a cell (Varga et al., 2009;
Kotschenreuther et al., 2022). Tregs are critical contributors to
immune tolerance, and defects in their function are associated
with autoimmune diseases such as RA (Vinnenberg et al., 2021).
The potassium channels, such as voltage-gated K+ channel
Kv1.3 and calcium-activated K+ channel KCa3.1, predominantly
control membrane potential in Treg cells (Vinnenberg et al., 2021).
Both these channels are involved in the antigenic activation and
proliferation of T cells, and each channel expresses differently in
each T-cell subtype (Vinnenberg et al., 2021). Studies indicated the
high Kv1.3 channel activity in the pathogenesis of RA, and dominant
KCa3.1 channel expression was observed in Th1 cells, which is
closely associated with autoimmunity (Vinnenberg et al., 2021).
Similar to Tregs, DCs are involved in the progression of RA as they
are specialized APCs and are engaged in both specific immunity and
immune tolerance (Veldhoen et al., 2006; Wehr et al., 2019).
Cytosolic calcium concentration has an effective role in DC
migration and is important for processes such as chemokine
receptor expression, cell swelling, and cytoskeletal changes
(Crottès et al., 2016). Potassium channels such as the
KCa3.1 channels can control the calcium levels in the DCs and
the capacity of cell migration (Vandier and Velge-Roussel, 2018).
Migration of DCs requires chemokine receptor expression and

optimal levels of cytosolic calcium levels, which are regulated by
the functioning of these channels (Vandier and Velge-Roussel,
2018). These cytosolic calcium levels are maintained by
regulating the membrane potential by the KCa3.1 channels as
they hyperpolarize the plasma membrane and favor calcium
entry by increasing the driving force for calcium (Vandier and
Velge-Roussel, 2018). In DCs, the involvement of KCa3.1 is limited
to calcium homeostasis and migration of DCs (Vandier and Velge-
Roussel, 2018). Moreover, in T lymphocytes, ion channels have a
prominent role in maintaining calcium levels, which are crucial for
the proliferation and effector functions of cells (Cahalan and
Chandy, 2009). In human T cells, Kv1.3 and KCa3.1 are the
principal potassium channels that are important for maintaining
the electrochemical driving force (Chirra et al., 2022). The voltage-
gated Kv1.3 channel in T cells gets activated by calcium influx
mediated by the calcium release-activated channels (CRACs), while
the increase in Ca2+ activates KCa3.1, which causes efflux of K+ ions,
thereby maintaining the membrane potential and driving force for
the influx of Ca2+, as represented in Figure 2 (Teisseyre et al., 2019;
Chirra et al., 2022). The expression, function, and role of the K+

channel vary as per the activation status and subset of T cells (Beeton
and Chandy, 2005; Pérez-García et al., 2018). Upon activation,
depending on the T-cell subset, the type of K+ channel is
upregulated (Beeton and Chandy, 2005; Pérez-García et al.,
2018). In resting human T cells, Kv1.3 is expressed more
compared to KCa3.1, and a similar effect is observed in activated
TEM (Beeton and Chandy, 2005; Pérez-García et al., 2018). In the
case of activated central memory T cells (TCM), the expression of
KCa3.1 is more abundant (Beeton and Chandy, 2005; Pérez-García
et al., 2018). Both the K+ channels are implicated in proliferation and
cytokine production, and the loss of Kv1.3 function is compensated
by KCa3.1 channels by maintaining the proliferation and effector
function of T cells (Chiang et al., 2017). Apart from this,
Kv1.3 channels are involved in the differentiation and regulation
of CD8+ T cells and CD4+ T cells (Chiang et al., 2017).

FLSs play an essential role in synovial joint destruction as
inflammatory mediators (Wu et al., 2021b). Emerging evidence
suggests that the mechanism of highly dynamic synoviocytes is
linked to the membrane channels in inflamed joints. In RA patients,
KCa1.1 is the major channel present in the plasma membrane of
FLSs (Ji and Hong, 2019). They play an important role in regulating
β1 integrins by maintaining Ca2+ homeostasis (Tanner et al., 2017b;
Ji and Hong, 2019). Increased integrin ligation is associated with
growth factor expression and increased cytokine signaling (Tanner
et al., 2017a). KCa1.1 affects the proliferation and activation of TEM

cells, which are involved in the progression of RA, while an increased
expression of this channel represents the invasiveness of FLSs (Ji and
Hong, 2019; Tanner et al., 2019). Research conducted by Friebel
et al. indicated that the calcium-activated potassium channel
KCa3.1 is functionally active in RA and expressed at the mRNA
and protein levels in RA synovial fluids (SFs) (Friebel et al., 2015).
They have a regulatory impact on cell proliferation and secretion of
pro-inflammatory and pro-destructive mediators (Friebel et al.,
2015). Apart from this, they are also involved in the expression
and secretion of IL-6, IL-8, MCPI, and the tissue-destructive
protease MMP3 (Friebel et al., 2015). K2P5.1 (TWIK-related
acid-sensitive potassium channel 2 (TASK2); KCNK5) is a
member of the two-pore domain potassium channel family
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FIGURE 2
Roles of Kv1.3 and KCa3.1 in regulating depolarization shift that is important for immune function. APC, antigen presenting cell; IL, interleukin; ACPA,
antibodies against citrullinated proteins; Kv1.3, voltage-gated potassium channel 1.3; KCa3.1, calcium-activated potassium channel 3.1; and CRAC,
calcium-release-activated Ca2+ channel. Activation of TCR due to APCs activates the CRAC channel that causes an influx of Ca2+ ions. These Ca2+ ions
activate ER stores and cause sustained release of Ca2+. This causes the activation of calcium-mediated and voltage-sensitive potassium channels
such as Kv1.3 and KCa3.1. Upon activation, these channels cause the efflux of K+ ions. The influx of Ca2+ regulates the proliferation, activation, and
differentiation of various immune cells.

FIGURE 3
Mechanism underlying the aggression of T lymphocytes due to the activity of potassium channels. APC, antigen presenting cell; PLC, phospholipase
C; CRAC, calcium-release-activated Ca2+ channel; TCR, T-cell receptor; MHC, major histocompatibility complex; K+, potassium ion; IP3, inositol
triphosphate; DAG, diacylglycerol; Kv1.3, voltage-gated potassium channel 1.3; KCa3.1, calcium-activated potassium channel 3.1; Kv1.5, voltage-gated
potassium channel 1.5; and KCNE4, potassium voltage-gated channel subfamily E member 4. The expression of Kv1.3 is shared by both T

(Continued )
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expressed in CD4+ T cells (Bittner et al., 2010; 2011). The study
performed by Bittner et al. revealed that the expression levels of
K2P5.1 in synovial fluid-derived T cells are higher compared to
those of peripheral blood T cells (Bittner et al., 2011). K2P5.1 is
engaged in T-cell functions such as proliferation and cytokine
production (Endo et al., 2015). In addition, there is a correlation
between the expression levels of the channel in T lymphocytes with
patients suffering from RA, and an increased expression of this
channel is observed in RA patients (Bittner et al., 2011). The
activation of T lymphocytes is associated with the pathogenesis
of RA and the expression of potassium ion channels (Figure 3).

This evidence and hypothesis of the role of potassium channels
in the immune system and RA pathogenesis focus on the potassium
channels as therapeutic targets in RA. Due to their convincing role in
maintaining disease pathogenesis and the progression of RA,
potassium channels have a significant opportunity of being used
as potential therapeutic targets in RA.

5 Potassium channels as therapeutic
targets for RA

The conventional therapies for RA include DMARDs and
glucocorticoids (GC), which are still a primary line of treatment
(Kerschbaumer et al., 2020; Tan and Buch, 2022). This treatment
does not provide a complete cure and causes several side effects, and
patients’ tolerance to the therapy also varies. Further advancements
in recent years in treatment include T- and B-cell-targeted therapies
and drugs targeting TNF-α and interleukins, the JAK pathway, and
various other targets such as the Toll-like receptors, neuropathways,
and dendritic cells, and these treatment options cause specific side
effects (Cheung and McInnes, 2017). The above sections explain the
role of ion channels in the pathogenesis of RA. Therefore, the ion
channels, specifically potassium channels, as therapeutic targets can
be a step toward exploring a new therapy for the treatment of RA.
Both voltage-gated and calcium-activated potassium channels are
involved in the disease progression and pathogenesis of RA, and
modulation of these channel activities can be considered a new
avenue for the treatment of RA. The evidence for their efficacy is
provided in Table 1.

5.1 Voltage-gated potassium channels

Kv1.3 is the most studied and widely explored voltage-gated
potassium channel due to its significant role in autoimmunity and
the pathogenesis of RA (Serrano-Albarrás et al., 2019). Pieces of
evidence suggest that an increased expression of this channel is

associated with the pathogenetic roadmap of RA (Serrano-Albarrás
et al., 2019). Thus, blockage of this channel with the help of
therapeutic agents can be beneficial for the treatment of RA
(Serrano-Albarrás et al., 2019).

Studies performed by Tanner et al. showed scorpion venom
peptide HsTx1 as a potent inhibitor of the Kv1.3 channel (Tanner
et al., 2017b). It is a key regulator of the potassium channel and CCR7-

TEM cell activation. Blockage of the Kv1.3 channel using HsTx1 leads
to the inhibition of TEM cell activation and attenuates inflammation in
autoimmunity (Tanner et al., 2017a). Results from the study showed a
reduction in inflammation due to delayed-type hypersensitivity in a
pristane-induced (PIA) rat model of RA (Tanner et al., 2017b). The
Kv1.3 channel is present in lymphocytes and is an important target for
immune modulation (Toldi et al., 2016). An ex vivo study performed
by Toldi et al. compared the alteration in cytokine production using
the selective Kv1.3 blocker margatoxin (MGTX) and found that there
was a decrease in the calcium influx of CD4+ and Th2 subsets across
the study group (Toldi et al., 2016; Xie et al., 2020), while treatment
with MGTX, a selective Kv1.3 blocker, did not show any influence on
cytokine production (Toldi et al., 2016; Xie et al., 2020). The treatment
in an ex vivo study with diclofenac, a Kv1.3 channel blocker, showed
inhibition of macrophages and T lymphocytes in diseased conditions
(Villalonga et al., 2010). It is shown that pharmacological doses of
diclofenac attenuate macrophage migration, IL-2 production, and
T-cell activity in an LPS-induced model (Villalonga et al., 2010).
Similar effects were shown by margatoxin, a Kv1.3 channel blocker,
and charybdotoxin, which blocks both the Kv1.3 andKCa3.1 channels
(Villalonga et al., 2010). ShK is a polypeptide obtained from the
Caribbean sea anemone Stichodactyla helianthus, which was used by
researchers as a Kv1.3 channel blocker (Beeton et al., 2011). ShK
blocks the Kv1.3 channel at picomolar concentrations (Beeton et al.,
2006; 2011). Studies have shown that ShK analog ShK-186 at
100 μg/kg body weight showed efficacy in treating RA (Beeton
et al., 2011). After inducing the rats with diseased conditions, the
results revealed that ShK-186-treated animals had significantly fewer
affected joints and showed improvement in radiological and
histopathological studies (Beeton et al., 2011). In 2008, a company,
Solvay Pharmaceuticals, filed a patent for oxazolidinediones-spiro-
azepene as a novel blocker of Kv1.3 potassium channels for the
treatment of T-cell-regulated autoimmune diseases such as RA
(Wulff, 2010). In addition, kaliotoxin is a molecule with
Kv1.3 blocking activity and can be used to treat delayed-type
hypersensitivity in RA patients (Beeton et al., 2001; Wulff, 2010).
A recently published study showed that dexamethasone blocks the
Kv1.3 channel in peripherally circulating CD8+ T cells of severely ill
patients with COVID-19 (Chimote et al., 2023). This study suggests
that steroidal therapies used to treat RAmay have an indirect effect on
Kv1.3 channels.

FIGURE 3 (Continued)

lymphocytes and APC. APC involves the expression of Kv1.5 and KCNE4, whichmodulates the expression of Kv1.3. The signal transduction cascade is
initiated by the antigen presentation byMHC and TCR recognition, which causes the activation of PLC. PLC further activates IP3 and DAG, resulting in the
depletion of internal ER Ca2+ stores. This activates CRAC channels and causes depolarization. Kv1.3 opens as a result of depolarization, causing K+ efflux
through the membrane. In addition, an increase in internal Ca2+ concentration activates the KCa3.1 channel, and both K+ channels maintain the
negative membrane potential required for sustained Ca2+ release. This sustained Ca2+ release causes the activation of nuclear processes such as
activation and proliferation, and an increase of Kv1.3 abundance elevates the response, increasing the aggressiveness of T cells.
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5.2 Calcium-activated potassium channels

Similar to voltage-gated potassium channels, calcium-activated
potassium channels play a crucial role in the immune function and
pathogenesis of RA (Lam and Wulff, 2011). The ex vivo studies
performed by Friebel et al. concluded that KCa3.1, a calcium-
activated potassium channel, is involved in the pathological
maintenance of RA by regulating the cell proliferation and
secretion of pro-inflammatory and pro-destructive mediators
(Friebel et al., 2015). Since KCa3.1 is significantly expressed and
functional in SFs of RA patients, the study focused on the blocking of
this channel with TRAM-34, a pore-blocking KCa3.1 inhibitor
(Friebel et al., 2015). The results indicated that blocking of
KCa3.1 with TRAM-34 was beneficial as it reduced the
production of several pro-inflammatory mediators such as IL-6,
IL-8, and monocyte chemotactic protein-I (MCP-I) (Friebel et al.,
2015). Hu et al. demonstrated that blocking of the KCa1.1 channel
with tetraethylammonium (TEA) disturbs the calcium homeostasis
and inhibits the proliferation, invasion, and production of VEGF,
IL-8, and pro-MMP 2 by RA FLs. Although TEA has the ability to
block voltage-gated potassium channels, it was not used clinically
due to its non-specificity (Hu et al., 2012). Furthermore, an
antifungal agent, clotrimazole, was used in RA due to its ability
to block the KCa3.1 channel and showed beneficial effects such as
improved grip strength, pain relief, and reduced joint swelling
(Wulff et al., 2023). Tanner et al. showed the importance of
KCa1.1 channel expression in FLs of patients in PIA- and CFA-
induced models of RA (Wulff et al., 2023). In an RA rat model,
KCa1.1 channel blockers such as paxilline, TEA, and iberiotoxin

were used to block the channel activity, which resulted in an
approximately 80% blockage of potassium currents by TEA and
paxilline (Tanner et al., 2015; 2018). It has been shown that both
paxilline and TEA inhibit the proliferation and production of PIA-
FLS and pro-MMP-2, and a similar activity was shown by
iberiotoxin (Tanner et al., 2015; 2018). Schroeder et al. used
hydroxychloroquine (HCQ) to inhibit KCa3.1 during in vitro
studies and demonstrated dose-dependent inhibition of IL-1β
and caspase 1 by HCQ (Eugenia Schroeder et al., 2017).

These pieces of evidence and results prove the impact of voltage-
gated and calcium-activated potassium channels in the pathogenesis
and treatment of RA. Furthermore, detailed research is required to
improve the specificity of molecules toward the particular ion
channel to reduce the side effects.

6 Conclusion

RA is an autoimmune inflammatory disorder with serious effects
on the wellbeing of patients and the ability to perform daily functions.
The interaction between genetic and environmental factors is one of the
reasons for the development of RA, while autoimmunity also has a
significant contribution to disease progression. The current first-line
therapy for RA has several side effects, and some patients may show
poor tolerance to the treatment, which increases the limitation of the
therapy. Thus, there is a need for new treatment strategies for the
treatment of RA with minimal side effects. Several pieces of evidence
confirm the involvement of voltage-gated and calcium-activated K+

channels in the pathogenesis of RA due to their role in maintaining the

TABLE 1 Voltage-gated and calcium-activated potassium blockers for the treatment of RA.

Type Subtype Blocker Outcome Reference

Voltage-gated Kv1.3 HsTx1 Inhibits TEM cell activation and attenuates inflammation in autoimmunity Tanner et al. (2017a)

Potassium
channels

Kv1.3 Diclofenac Inhibits macrophages, T lymphocytes, and IL-2 production Villalonga et al. (2010)

Kv1.3 Margatoxin Attenuates macrophages migration, IL-2 production, and T-cell activity Villalonga et al. (2010)

Kv1.3 Charybdotoxin Attenuates macrophage migration, IL-2 production, and T-cell activity Villalonga et al. (2010)

Kv1.3 ShK-186 Decreases the number of affected joints and showed improvement in the
radiological and histopathological studies

Beeton et al. (2011)

Kv1.3 Spiro-azepene Attenuates T-cell activation Wulff (2010)

Oxazolidinediones

Kv1.3 Kaliotoxin Treats delayed-type hypersensitivity in RA patients Beeton et al. (2001), Wulff
(2010)

Calcium-
activated

KCa3.1 TRAM-34 It reduced the production of several pro-inflammatory mediators such as IL-6, IL-
8, and monocyte chemotactic protein-I (MCP-I)

Friebel et al. (2015)

Potassium
channel

KCa1.1 Tetraethyl
ammonium (TEA)

Disturbs calcium homeostasis and inhibits the proliferation, invasion, and
production of VEGF, IL-8, and pro-MMP 2

Hu et al. (2012)

KCa3.1 Clotrimazole Shows beneficial effects such as improved grip strength, pain relief, reduced joint
swelling

Wulff et al. (2023)

KCa1.1 Paxilline Inhibits the proliferation and production of PIA-FLS and pro-MMP-2 Tanner et al., 2015 (2018)

KCa1.1 Iberiotoxin Inhibits the proliferation and production of PIA-FLS and pro-MMP-2 Tanner et al., 2015 (2018)

KCa3.1 Hydroxychloroquine
(HCQ)

Showed a dose-dependent inhibition of THP-1 macrophages, NLRP-3
inflammasomes, IL-1β, and caspase

Eugenia Schroeder et al.
(2017)
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immune function and immune cells. This makes K+ channels a
promising target for the treatment of RA. The studies performed by
the researchers demonstrated the effectiveness of potassium channels,
specifically Kv1.3, KCa1.1, and KCa3.1, in various models of RA. The
blockers of these channels with various pharmacological agents were
found to be beneficial in rat models of RA. Although no clinical trial has
yet been performed for the effectiveness of Kv1.3 blockers in humans,
more research is required regarding these channels. The focus should be
on designingmore target-specific strategies andmolecules to reduce any
kind of side effects and create potential therapies. Ultimately, target-
specific studies with a greater extent are required for this channel to
explore the therapeutic opportunities of potassium channels in the
treatment of RA.
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Glossary

ACPA Antibodies against citrullinated proteins

cDCs Classical DCs

CRAC Calcium release-activated Ca2+ channels

CRP C-reactive protein

DCs Dendritic cells

DMARDs Disease-modifying anti-rheumatic drugs

DTH Delayed-type hypersensitivity

ELN Ectopic lymphoid neogenesis

ESR Erythrocyte sedimentation rate

FcγR Fcγ receptor

FDCs Follicular dendritic cells

FGF Fibroblast growth factor

FLS RA-fibroblast-like synoviocytes

GC Glucocorticoids

IFN- Interferon-ϒ

ILCs Innate lymphoid cells

K2P5.1 TWIK-related acid-sensitive potassium channel 2

MBDA Multi-biomarker activity test

M-CSF Macrophage colony-stimulating factor

MGTX Margatoxin

MHC Major histocompatibility complex

MMPs Matrix metalloproteinases

NK cells Natural killer cells

PB Peripheral blood

pDCs Plasmacytoid DCs

RA Rheumatoid arthritis

RAG Recombination activating gene

RANKL Receptor activator of nuclear kappa beta ligand

RF Rheumatoid factor

ROS Reactive oxygen species

SF Synovial fluid

SNPs Single nucleotide polymorphism

TCM Central memory T cells

TEM Effector memory T cells

Tfh Follicular helper T cells

TLR Toll-like receptor

TNF-α Tumor necrosis factor-alpha

Tph Peripheral helper T cells

Tregs T-regulatory cells
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