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Cancer is a major disease with ever-increasing morbidity and mortality. The
metabolites derived from traditional Chinese medicine (TCM) have played a
significant role in combating cancers with curative efficacy and unique
advantages. Ferroptosis, an iron-dependent programmed death characterized
by the accumulation of lipid peroxide, stands out from the conventional forms of
cell death, such as apoptosis, pyroptosis, necrosis, and autophagy. Recent
evidence has demonstrated the potential of TCM metabolites targeting
ferroptosis for cancer therapy. We collected and screened related articles
published in or before June 2023 using PubMed, Google Scholar, and Web of
Science. The searched keywords in scientific databases were ferroptosis, cancer,
tumor, traditional Chinese medicine, botanical drugs, and phytomedicine. Only
research related to ferroptosis, the metabolites from TCM, and cancer was
considered. In this review, we introduce an overview of the current
knowledge regarding the ferroptosis mechanisms and review the research
advances on the metabolites of TCM inhibiting cancer by targeting ferroptosis.
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1 Introduction

In the past decades, the global morbidity of cancer has increased, and cancers have
become the leading cause of mortality worldwide. According to the latest statistics from the
International Agency for Research on Cancer (IARC), there were 19.3 million new cancer
cases and 10.0 million deaths globally in 2020 (Sung et al., 2021). Current knowledge has
established that the ability of cancer cells to evade cell death is the key feature of
tumorigenesis. Nowadays, the regimens of cancer therapy, such as surgery,
chemotherapy, radiotherapy, targeted therapy, and immunotherapy, aim to induce the
death of cancer cells to achieve a therapeutic effect, whereas the intrinsic and acquired
resistance of cancer cells to cell death often results in far from satisfactory treatment
outcomes (Loftus et al., 2022; Wang et al., 2022).

Ferroptosis is a recently discovered form of cell death that is distinct from other forms at
the morphological, biological, and genetic levels. This unique form of cell death is an iron-
and reactive oxygen species (ROS)-dependent form of programmed cell death that is
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controlled by integrated oxidation and antioxidant systems (Dixon
et al., 2012). Numerous studies have confirmed that ferroptosis is an
important player in cancer biology and therapies. Several clinical
drugs approved by the U.S. Food and Drug Administration (FDA),
such as sorafenib, sulfasalazine, and artesunate, can induce
ferroptosis in several cancer cells via inhibiting system Xc−

(Lachaier et al., 2014; Lu et al., 2017; Li Z.-j. et al., 2020). The
sulfasalazine-induced ferroptosis is partially eliminated by efficient
ferroptosis inhibitors, supporting the rationale of applying
ferroptosis to treat cancer in preclinical and clinical settings (Yin
et al., 2023). Accordingly, there is an urgent need to discover
ferroptosis-inducing drugs for the treatment of cancers, especially
drug-resistant cancers.

Traditional Chinese medicines (TCMs) have a long history and
play an important role in treating cancers. Many metabolites of
TCM have been used for prophylaxis and therapeutics of cancers
with unique advantages (Xiang et al., 2019). These metabolites
reverse cancer multidrug resistance, reduce postoperative adverse
reactions, improve patients’ quality of life, and potentiate anti-PD-1/
PD-L1 immunotherapy (Huang F. et al., 2022; Wei et al., 2022; Qin
et al., 2023). However, the exact targets and signal pathways of most
TCM drugs used in the treatment process are not fully elucidated.

The exploration of the mechanism of the metabolites from TCM
drugs in cancer prevention and treatment, or optimization of good
anti-tumor drugs from TCM drugs, has become a major research
focus. In this review, we illustrate the molecular mechanism of
ferroptosis and its regulation, highlight the role of metabolites of
TCMs targeting ferroptosis to treat cancer, and discuss the
challenges in cancer therapy.

2 Molecular mechanisms of ferroptosis

In 2003, the Stockwell Lab identified a non-apoptotic form of
cell death when they used the small molecule erastin to stimulate the
oncogenic RAS-mutant human cancer cell line while screening
anticancer drug libraries (Dolma et al., 2003). In 2008, this lab
reported that an additional complex RAS synthetic lethal 3 (RSL3)
induced a similar cell death form, which could be inhibited by iron
chelates (Yang and Stockwell, 2008). Based on these findings, Brent
R. Stockwell and others officially introduced the concept of
ferroptosis to describe the iron-dependent cell death driven by
lipid peroxidation on the plasma membranes of cells (Dixon
et al., 2012).

FIGURE 1
Molecular mechanisms of ferroptosis induction. Induction mechanisms of ferroptosis are divided into three kinds. Ferroptosis is initiated by two key
signals, i.e., the inhibition of antioxidant system Xc−-glutathione (GSH)-glutathione peroxidase 4 (GPX4) and the accumulation of iron. Cysteine is
transported into the cells by SLC7A11/SLC3A2 complex for GSH synthesis. GSH is the substrate for GPX4, which reduces lipid hydroperoxides (L-OOH) to
the corresponding alcohol (L-OH) or free H2O2 to water, thereby preventing lipid peroxidation. Thus, the inhibition of antioxidant system Xc−-GSH-
GPX4 triggeres ferroptosis. Fe3+ is bound with transferrin (TF) to form TF-Fe3+ complex, then which could be endocytosed through the cell membrane
transferrin receptor 1 (TFR1) into cell. In the cells, Fe3+ is reduced to Fe2+ in the endosome, which is transported out by divalent metal ion transporter 1
(DMT1), and then is involved in the unstable iron pool (LIP). Fe2+ in LIP could be stored in ferritin and is pumped out of cell by ferritin 1 (FPN1). Besides,
ferritin could be degraded in lysosome by ferritinophagy. Fe2+ mediates Fenton reaction and functions as a cofactor for lipoxygenases (LOXs), thus
triggering lipid peroxidation. The peroxidation of PUFAs is the excution of ferroptosis. ACSL4 catalyzes the ligation of long-chain PUFAs with CoA, and
LPCAT3 promotes the esterification and incorporation of these products into membrane phospholipids (PL). PUFA-containing PL is oxidized by iron-
dependent enzymes LOX or iron-mediated Fenton reaction, leading to lipid peroxidation, membrane damage and subsequent ferroptosis.
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Ferroptosis differs from other forms of cell death, such as
apoptosis, necroptosis, pyroptosis, and autophagy.
Morphologically, the mitochondria are smaller with an increase
in mitochondrial membrane density and reduction or disappearance
of mitochondrial cristae as well as rupture of the outer
mitochondrial membrane, but the nuclear size is intact (Dolma
et al., 2003; Dixon et al., 2012). Biochemically, the accumulation of
iron-dependent lipid peroxides and ROS leads to membrane
instability and even rupture, eventually triggering ferroptosis
(Chen et al., 2021b). The main mechanisms of ferroptosis can be
characterized in three aspects: the inhibition of the system Xc

−-
glutathione (GSH)–glutathione peroxidase 4 (GPX4) axis, the
elevation of iron metabolism axis, and the lipid metabolism
(Figure 1).

2.1 The inhibition of the system Xc−-
glutathione (GSH)–glutathione peroxidase 4
(GPX4) axis

The system Xc− is a heterodimeric antiporter on the plasma
membrane, which is composed of solute carrier family seven-
member 11 (SLC7A11/xCT) and solute carrier family three
member 2 (SLC3A2) with a disulfide bond (Sato et al., 1999).
The system Xc− functions to exchange extracellular cystine and
intracellular glutamate at a ratio of 1:1 (Dixon et al., 2012). In the
cell, cystine is reduced to cysteine, which is a precursor for GSH
synthesis. GSH is an indispensable cofactor for the function of
GPX4, which reduces lipid hydroperoxides (L-OOH) to the
corresponding alcohol (L-OH) or free H2O2 to water (Dixon
et al., 2012). Thus, the inhibition of the system Xc−–GSH-GPX4
axis leads to the accumulation of lethal lipid peroxides and the
occurrence of ferroptosis.

Inhibition of system Xc− (inhibiting SLC7A11 expression)
influences the GSH synthesis, which decreases GPX4 activity and
ultimately triggers ferroptosis. In the case of iron overload, the loss
of SLC7A11 contributes to ferroptosis-related liver injury (Wang
et al., 2017). Moreover, the small molecules erastin and sorafenib
could block system Xc− function, triggering ferroptosis in cancer
cells derived from the liver, kidney, and lung (Louandre et al., 2013;
Dixon et al., 2014; Lachaier et al., 2014). In addition, P53 could
downregulate the SLC7A11 expression to inhibit cystine uptake,
thereby affecting GPX4 activity and ultimately promoting the
occurrence of ferroptosis (Jiang et al., 2015). However,
SLC7A11 KO mice were normal in appearance and fertile in
vivo, whereas SLC7A11−/− embryonic fibroblasts underwent cell
death in routine culture medium in vitro but could proliferate
normally in the presence of 2-mercaptoethanol (2ME), N-acetyl
cysteine (NAC), or vitamin E (Stipanuk, 2004; Sato et al., 2005). The
difference could be attributed to the absorption of cystine (or
cysteine) or acquisition of intracellular cysteine by the additional
transport systems to compensate for the loss of SLC7A11. This can
be exemplified in the case of homocysteine. Homocysteine could be
converted into cystathionine (the precursor of cysteine), and thus,
cysteine was supplemented via the trans-sulfuration pathway
(McBean, 2012). The deletion of cysteinyl-tRNA synthetase
(CARS) resulted in the accumulation of cystathionine and
inhibited the elevation of erastin-induced lipid reactive oxygen

species, thus suppressing ferroptosis (Hayano et al., 2016). These
findings indicate that the trans-sulfuration pathway functions as a
negative regulator in the process of ferroptosis.

Inhibition of GSH synthesis triggers ferroptosis. GSH is
synthesized from glutamic acid, cysteine, and glycine, which is
catalyzed by glutamate–cysteine ligase (GCL). GCL consists of a
catalytic subunit, GCLC, and a modifier subunit, GCLM. The
synthesis of GSH is a two-step ATP-dependent enzymatic
reaction. GCL catalyzes glutamate and cysteine to convert into γ-
glutamylcysteine (γ-GCS). Thereafter, γ-GCS and a molecule of
glycine are catalytically converted to GSH by glutathione synthetase
(GSS). GSH is a crucial antioxidant in cells and scavenges ROS
(Gutierrez-Escobedo et al., 2013). The depletion of GSH results in
lipid ROS accumulation, protein or membrane injury, and finally,
ferroptotic cell death (Martin and Teismann, 2009). Multidrug
resistance protein 1 (MRP1) prevents GSH efflux from the cells
and strongly inhibits ferroptosis (Cao et al., 2019). Cisplatin, a
common anti-tumor agent, could significantly reduce the level of
GSH and thereby induce ferroptosis (Guo et al., 2018). In addition,
abnormal synthesis of GSH could induce ferroptosis, as illustrated
by the finding that inhibition of γ-GCS mediated by
buthionine–sulfoximine was sufficient to trigger ferroptosis (Yang
et al., 2014).

Inhibition of GPX4 induces ferroptosis. GPX4 is a peroxidase
that converts GSH into oxidized glutathione (GSSH) and decreases
the cytotoxic L-OOH to the corresponding harmless alcohol in
membrane lipid bilayers. Hence, the inactivation or loss of
GPX4 due to genetic inhibition or inhibitors or GSH depletion
could result in L-OOH accumulation, triggering ferroptotic cell
death (Yang et al., 2014). A study reported that the mice with
the GPX4 gene knocked-out died of acute renal failure (Friedmann
Angeli et al., 2014). GPX4, a seleno-protein, has seleno-cysteine as its
active site (Bridges et al., 2012), which is the direct target of the
canonical ferroptotic inducer RSL3 (Yang et al., 2014; Yang et al.,
2016). In addition, the synthetic small-molecule inducers ML162 (or
DPI7), ML210 (or DPI10), the approved anticancer agent
altretamine, and the new inducer FIN56 could directly act on
GPX4 and suppress GPX4 activity (Weiwer et al., 2012; Yang
et al., 2014; Woo et al., 2015; Shimada et al., 2016). The genetic
code of the active site seleno-cysteine is UGA, which is the same as
the termination codon, thus requiring special seleno-cysteine-tRNA
(Sec-tRNA) transport (Friedmann Angeli and Conrad, 2018). The
maturation of Sec-tRNA is regulated by the intermediate
isopentenylpyrophosphate (IPP) and CoQ10 from the mevalonate
(MVA) pathway (Moosmann and Behl, 2004). Therefore, MVA
pathway inhibitors (statins) could block the maturation of Sec-
tRNA, subsequently affecting GPX4 synthesis and inducing
ferroptosis (Chen et al., 2021a).

2.2 The iron metabolism axis

Iron is an essential trace element in the human body, mainly in
the form of divalent iron (Fe2+) and trivalent iron (Fe3+). As a
cofactor of some enzymes, iron is involved in multiple metabolic
processes, such as the synthesis of ferroheme, oxygen transport,
electron transport, cell proliferation, and DNA synthesis. The body
maintains the stability of iron content by means of food absorption
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and iron circulation. Excessive absorption or an imbalance of iron
circulation can easily lead to iron overload, which will contribute to
oxidative damage and even cell death due to iron’s ability to accept
and donate electrons (CC, 1995).

Most mammalian cells uptake iron (Fe2+) mainly in two ways:
intestinal absorption and senescent erythrocyte degradation. In the
serum, Fe2+ is oxidized by ceruloplasmin to Fe3+ and then binds with
transferrin (TF) to form a TF–Fe3+ complex, which is endocytosed
through the cell membrane transferrin receptor 1 (TFR1) (Frazer
and Anderson, 2014). In the endosome, Fe3+ is reduced to Fe2+, and
the latter is transported out by the divalent metal ion transporter 1
(DMT1) or the zinc-iron-regulatory protein family 8/14 (ZIP8/14)
(Bogdan et al., 2016). Subsequently, Fe2+ is involved in the unstable
iron pool (LIP). Ferritin is the major intracellular iron storage
protein, which is composed of ferritin light chain (FTL) and
ferritin heavy chain 1 (FTH1). Ferritin could be degraded in
lysosomes by ferritinophagy to increase free iron levels
(Gammella et al., 2015; Hou et al., 2016). In addition,
FTH1 functions as ferroxidase, oxidizing Fe2+ to Fe3+. Because
the oxidation–reduction of Fe2+ to Fe3+ requires electron transfer,
iron is involved in the electron migration between substrates
(Bennett and Gralnick, 2019). In 1894, Fenton first reported the
Fenton reaction between Fe2+ or Fe3+ ions and hydrogen peroxide
(H2O2) to produce highly reactive hydroxyl radicals (Fenton, 1894),
which increased ROS level in cells and triggered the peroxidation of
polyunsaturated fatty acids (PUFAs) or saturated fatty acids in
membrane lipids (Lachaier et al., 2014). In addition, Fe2+ is a
cofactor of lipoxygenases (LOXs) that catalyzes PUFA-containing
phospholipids into pro-ferroptotic lipid peroxidation (Yang et al.,
2016). Furthermore, intracellular Fe2+ is pumped into the
extracellular space through membrane ferritin 1 (SLC40A1/
FPN1) to strictly maintain cellular iron homeostasis (Bogdan
et al., 2016). In general, the dysregulation of iron metabolism-
related proteins and an increase of the active iron pool to an
iron overload state can induce ferroptosis.

Many studies have demonstrated that iron metabolism-related
proteins could be used as targets to regulate ferroptosis. The
combination of the lysosome disruptor siramesine and the tyrosine
kinase inhibitor lapatinib increased the expression of TF and reduced
the expression of FPN1 in breast cancer cells, thereby promoting iron
overload in the lysosome and ultimately inducing ferroptosis (Ma
et al., 2016). Heat shock protein β-1 (HSPB1) suppressed
TFR1 expression and downregulated TFR1-mediated iron uptake
by stabilization of actin cytoskeleton, further reducing intracellular
iron concentrations. Thus, the overexpression of HSPB1 could inhibit
ferroptosis (Chen et al., 2006; Sun et al., 2015). Furthermore, iron-
regulatory proteins (IRPs), comprising IRP1and IRP2, regulated the
expression of TF, TFR1, DMT1, and FPN1 by binding to a stem-loop
structure located in the 3′- or 5′-untranslated region of the target
mRNA for stabilization (Wang and Pantopoulos, 2011). Nuclear
receptor coactivators 4 (NCOA4) mediated the autophagic
degradation of ferritin in lysosomes, resulting in the release of free
iron from ferritin to promote ferroptosis (Mancias et al., 2014). In
addition, the main transcription factor of iron metabolism, iron
response element binding protein 2 (IREB2), could enhance the
FTL and FTH1 expression and decrease ferrous ion
concentrations, thereby inhibiting erastin-induced ferroptosis
(Gammella et al., 2015).

Ferroptosis could be induced by directly supplementing the cell’s
active iron pool to establish an iron overload state. Supplementation of
ferric ammonium citrate induced the death of human fibrosarcomaHT-
1080 cells. That cell death was effectively inhibited by two ferroptosis
inhibitors, ferristatin-1 and liproxstatin-1 (Fang et al., 2018). Some
researchers have successfully induced ferroptosis of neuroblastoma
cells with ammonium ferrous sulfate (Hassannia et al., 2018). Heme
oxygenase-1 (HO-1) is an important source of intracellular iron that
accelerates erastin-mediated ferroptotic cell death by provision of iron
(Kwon et al., 2015).

2.3 Lipid metabolism

The trigger of ferroptosis is lipid peroxidation accumulation in the
cell membrane. When the membrane lipid was peroxided, the physical
properties of lipid bilayers were altered: membrane fluidity was reduced,
the ion gradientwas destroyed,membrane permeability was elevated, and
lateral diffusion was retarded (Catala andDiaz, 2016; Feng and Stockwell,
2018). Lipid peroxidation has toxic effects on cancer cells by two
mechanisms: one is further decomposition of peroxide phospholipids
into active substances, depleting nucleic acid and protein and then leading
to cell iron poisoning (Kagan et al., 2017); the other is that excessive lipid
peroxidation leads to the thinning and the increased curvature of the
membrane, resulting in membrane instability and micelle formation,
eventually causing ferroptotic cell death (Agmon et al., 2018).

PUFAs in the phospholipids (PLs) of cell membranes, rather than
mono-unsaturated FA, cholesterol, and cardiolipin, are highly prone to
lipid peroxidation (Yang et al., 2016). Among the PLs related to PUFAs,
phosphatidylethanolamines (PEs) containing arachidonic acid (AA) or
its derivative adrenic acid (AdA) have been found to be the key substrates
for oxidation in ferroptosis (Kagan et al., 2017). Two key enzymes, acyl-
CoA synthetase long-chain family member 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3), are involved in
the biosynthesis and remodeling of PEs, activation of PUFAs, and
insertion of PUFAs into membrane PLs (Doll et al., 2017).
ACSL4 could convert AA and AdA into AA CoA and adrenal CoA,
respectively, thus participating in the synthesis of membrane
phospholipids (Dixon et al., 2015; Doll et al., 2017; Kagan et al.,
2017), while LPCAT3 preferentially catalyzes the insertion of acylated
AA into membrane phospholipids (Dixon et al., 2015). Therefore,
inhibition of the ACSL4 and LPCAT3 expression decreased the
intracellular accumulation of lipid peroxide substrates, thus
suppressing ferroptosis (Doll et al., 2017; Kagan et al., 2017). In renal
clear cell carcinoma,HIF2α stimulated the specific enrichment of PUFAs
in an ACSL4-dependent manner and promoted the sensitivity to
ferroptosis (Zou et al., 2019). In addition, lipoxygenase (LOX) could
oxygenate PUFA-PE to produce fatty acid hydroperoxides, thus driving
cell ferroptosis (Kagan et al., 2017).

3 The metabolites of TCM drugs
targeting ferroptosis for cancer therapy

3.1 Alkaloids

Solasonine, a steroidal glycoalkaloid derived from Solanum
nigrum L. [Solanaceae; S. nigrum fruits], presents anti-tumor
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TABLE 1 The metabolites from TCM targeting ferroptosis in animal models or cells.

Classifications Metabolites Structure Cancer type Model/Cell (dosage) Related molecular
mechanisms

Refs

Alkaloids Solasonine Lung adenocarcinoma
Hepatocellular carcinoma
Pancreatic cancer

Calu-1 and A549 cells (20 μM, 25 μM,
and 30 μM)
HepG2 and HepRG cells (15 ng/mL)
HepG2 xenograft model (50 mg/kg/d)
PANC-1 and CFPAC-1 cells (25 μMand
50 μM)

Inhibition of GPX4 and SLC7A1
expression

Jin et al. (2020), Liang et al. (2022),
Zeng et al. (2022)

Piperlongumine Colon cancer
Hepatocellular carcinoma
Breast cancer
Pancreatic cancer

HT29 and SW620 cells (2.5.5 μM)
HepG2, Huh7, and LM3 cells (10 μM
and 20 μM)
MCF-7 cells (5 μM)

Increased Nrf-2-mediated HO-1
expression

Chen et al. (2015), Lee et al. (2015),
Basak et al. (2016), Yamaguchi et al.

(2018)

Trigonelline Head and neck cancer SNU-1041, -1,066, and -1,076 cells
(0.15 mM or 0.3 mM)
Cisplatin-resistant HNC and SNU cells
(100 μM)
HN9 cell xenograft model (50 mg/kg/d)

Inhibition of the Nrf2-ARE pathway Roh et al. (2017), Shin et al. (2018)

Sanguinarine Non-small cell lung
cancer

A549 and H3122 cells (10 μM)
A549 cells xenograft model (5 mg/kg/d)

Decreased GPX4 expression via STUB1-
mediated ubiquitination and degradation

Xu et al. (2022)

Terpenoids Artemisinin and active metabolite
Dihydroartemisinin

T-cell leukemia/
lymphoma
Renal cell carcinoma
Pancreatic cancer

HTLV-1-infected T-cell lines (0–10 μM)
Sunitinib-resistant KTCTL-26 cell
(50 μM)
Panc-1 cells (50 μM)

Decreased GSH and GPX4 expression,
lysosomal iron-dependent pathway

Eling et al. (2015), Ishikawa et al.
(2020), Markowitsch et al. (2020)

(Continued on following page)

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
5

T
an

g
e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
4
.12

8
0
779

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1280779


TABLE 1 (Continued) The metabolites from TCM targeting ferroptosis in animal models or cells.

Classifications Metabolites Structure Cancer type Model/Cell (dosage) Related molecular
mechanisms

Refs

Lung cancer
Hepatocellular carcinoma
Head and neck carcinoma
Leukemia

HEP-2 and CNE-1 cells (18 μM)
NCI-H23 and XWLC-05 cells (40 μM
and 60 μM)
Huh-7 and HepG2 cells (20 mg/kg/d and
40 μM)
Huh-1 xenograft model (7 mg/kg/
d,14 mg/kg/d, and 28 mg/kg/d)
HT1080 cells (20 μM)
HL60, KG1, and THP-1 (10 μM)
HL60 xenograft model (50 mg/kg/d)

Decreased SLC7A11, GSH, and GPX4
expression, elevated cellular free iron pool

Lin et al. (2016), Du et al. (2019), Chen
et al. (2020a), Yuan et al. (2020), Su et

al. (2021)

β-elemene (treated with cetuximab) Colorectal cancer KRAS-mutant CRC cell HCT116 and
Lovo (125 μg/mL)
HCT116 xenograft model (50 mg/kg/d)

Increased HO-1 and transferrin
expression, decreased GPX4, SLC7A11,
FTH1, and SLC40A1 expression

Chen et al. (2020b)

Curcumenol Lung cancer H1299 and H460 cells (300 μg/mL)
H460 xenograft model (200 mg/kg/d)

lncRNA H19/miR-19b-3p/FTH1 axis Zhang et al. (2022b)

Cryptotanshinone Lung cancer
Liver cancer

A549 and NCI-H520 cells (40 μM)
HepG2 cell (93.73 μM)

Decreased GPX4 activity/level, increased
iron load

Liu et al. (2021b), Li et al. (2021)

DihydroisotanshinoneⅠ Breast cancer MCF-7 and MDA-MB-231 cells
(10 μM)
MCF-7 cells xenograft model (30 mg/kg/
2d)
A549 and H460 cells (30 μM)

Inhibition of GPX4 expression Lin et al. (2019), Wu et al. (2021)
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TABLE 1 (Continued) The metabolites from TCM targeting ferroptosis in animal models or cells.

Classifications Metabolites Structure Cancer type Model/Cell (dosage) Related molecular
mechanisms

Refs

TanshinoneⅡA Gastric cancer BGC-823 and NCI-H87 cells (2 μM and
4 μM)
BGC-823 cell xenograft model (50 mg/
kg/d)

Downregulated p53-mediated SLC7A11
expression

Guan et al. (2020)

Celastrol (treated with erastin) Lung cancer HCC827, A540, and H1299 cells
(1.25 μM)
HCC827 cell xenograft model (1 mg/
kg/d)

Elevated ROS level, disrupted
mitochondrial membrane potential

Liu et al. (2021b)

Cucurbitacin B Nasopharyngeal cancer CNE1 cells (50 μM)
CNE1 cell xenograft model (0.5 mg/kg/d
and 1 mg/kg/d)

Decreased GPX4 and GSH expression,
accumulation of iron

Huang et al. (2021)

Oleanolic acid Cervical cancer Hela cells (20 μM)
Hela cell xenograft model (40 mg/kg/d
and 80 mg/kg/d)

Increased ACSL4 expression Xiaofei et al. (2021)

Ursolic acid (treated with erastin) — Various human cancer cells (6 μM)
HCT116 cell xenograft model (200 mg/
kg/2d)

Decreased SLC7A11 level Li et al. (2022b)

Flavonoids Baicalein Pancreatic ductal
adenocarcinoma
Acute lymphoblastic
leukemia

PANC1 and BxPc3 cells (10 μM)
Acute lymphoblastic leukemia (ALL)
cells (5 μM)

Decreased erastin-induced ferrous iron
level and erastin-mediated degradation of
GPX4

Perez et al. (2009), Xie et al. (2016),
Probst et al. (2017)

Robustaflavone A Breast cancer MCF-7 cells (5 μM and 10 μM) Decreased E3 ubiquitin ligase NEDD4
expression

Xie et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) The metabolites from TCM targeting ferroptosis in animal models or cells.

Classifications Metabolites Structure Cancer type Model/Cell (dosage) Related molecular
mechanisms

Refs

Gambogenic acid (treated with
5 ng/mL)

Melanoma A375 and A2058 cells (1 μM, 2 μM,
and 4 μM)

Activated p53/SLC7A11/GPX4 pathway Wang et al. (2020)

Ginkgetin (treated with cisplatin) Non-small cell lung
cancer

A549 cells (5 μM)
A549 cell xenograft model (30 mg/kg/d)

Decreased SLC7A11 and GPX4 expression,
increased labile iron pool

Lou et al. (2021)

Saponin Ophiopogonin B Gastric cancer
Non-small cell lung
cancer

AGS and NCI-N87 cells (10 μM or
20 μM)
AGS cell xenograft model (50 mg/kg/d)
A549 cells (5 μM)
A549 cell xenograft model (2.5 mg/kg/d)

Decreased GPX4, SLC7A11, FTL, and
FTH1 expression

Li et al. (2022a), Zhang et al. (2022a)

Ginsenoside Rh4 Colorectal cancer HT29 and HCT116 cells (5 μM, 100 μM,
and 200 μM)
HT29 or HCT116 xenograft model
(40 mg/kg/d)

Activated ROS/p53 pathway Wu et al. (2022)

Ardisiacrispin B Leukemia CCRF-CEM leukemia cells (50 μM) Increased ROS level Mbaveng et al. (2018b)

Typhaneoside Leukemia Kas-1, HL60, NB4, and K562 cells
(20 μM, 30 μM, and 40 μM)
HL60 cell xenograft model (10 mg/kg/d,
20 mg/kg/d, and 30 mg/kg/d)

Autophagy-dependent degradation of
ferritin by activating the AMPK pathway

Zhu et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) The metabolites from TCM targeting ferroptosis in animal models or cells.

Classifications Metabolites Structure Cancer type Model/Cell (dosage) Related molecular
mechanisms

Refs

Polyphenols Amentoflavone Endometrial cancer KLE cells (50 μM, 75 μM, and 100 μM)
U251 and U373 cells (10 μM and
20 μM)
U251 cells xenograft model (40 mg/kg/d
and 80 mg/kg/d)

Decreased SLC7A11, GPX4 and FTH1
expression and increased ACSL4
expression by activating the ROS/AMPK/
mTOR pathway

Chen et al. (2020d), Sun et al. (2022)

Gallic acid (treated with low-level
laser irradiation)

Breast cancer
Melanoma

HeLa, H446, and SH-SY5Y cells (50 μg/
mL)
MDA-MB-231 and A375 cells
(25 μg/mL)

Decreased GPX4 activity Tang and Cheung (2019), Khorsandi et
al. (2020)

Honokiol Colon cancer
Acute myeloid leukemia

SW480 and RKO cells (1 μM, 10 μM,
and 30 μM)
RKO cell xenograft models (0.5 mg/kg/
w)
THP-1, U-937, and SKM-1 (15 μM and
20 μM)

Decreased GPX4 activity, upregulated HO-
1 expression

Guo et al. (2021), Lai et al. (2022)

Curcumin Breast cancer MCF-7 and MDA-MB-231 cells (40 μM
and 50 μM)

Upregulated HO-1 expression Li et al. (2020a)

6-Gingerol Lung cancer A549 cells (20 μM, 40 μM, and 80 μM)
A549 cell xenograft models (0.25 mg/kg/
d and 0.5 mg/kg/d)

Increased autophagosomes by inhibiting
USP14 expression

Tsai et al. (2020)

Polysaccharide Red ginseng polysaccharide — Lung cancer
Breast cancer

A549 and MDA-MB-231 cells
(200 μg/mL)

Downregulated GPX4 expression Zhai et al. (2022)

Scutellaria barbata — Hepatocellular carcinoma SMMC-7721 (44.26 mg/mL)
HepG2 (42.19 mg/mL) and Huh7 cells
(52.01 mg/mL)
HepG2 and Huh7 cell xenograft models
(14 mg/kg/d)

Decreased GPX4 and SLC7A11 expression Li et al. (2022b)

(Continued on following page)
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TABLE 1 (Continued) The metabolites from TCM targeting ferroptosis in animal models or cells.

Classifications Metabolites Structure Cancer type Model/Cell (dosage) Related molecular
mechanisms

Refs

Quinones Juglone Endometrial carcinoma Ishikawa cells (15 μM and 20 μM) Downregulated GPX4 expression,
Upregulated HO-1 expression, ferritin
phagocytosis

Zhang et al. (2021)

Physcion 8-O-β-glucopyranoside Gastric cancer MGC-803 and MKN-45 cells (20 μM)
MGC-803 cell xenograft models (30 mg/
kg/d or 50 mg/kg/d)

Decreased GLS2 expression by miR-
103a-3p

Niu et al. (2019)

Plumbagin Glioma Various glioma g/kg μM cells (4 μM) Decreased xCT expression, increased the
lysosome-dependent GPX4 degradation

Zhan et al. (2022)

Annotations: using cells as research subjects indicates in vitro; using xenograft models as research subjects indicates in vivo.
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effects that are related to ferroptosis (Table 1). Solasonine induced
iron overload, mitochondrial injury, and the destruction of the
glutathione redox system by inhibiting the expression of
GPX4 and SLC7A11 in lung adenocarcinoma cells (Zeng et al.,
2022). Solasonine also contributed to the ferroptosis of
hepatocellular carcinoma cells by the destruction of the
glutathione redox system with increasing lipid ROS levels as well
as significantly decreasing the levels of GPX4, GSS mRNA, and
protein (Jin et al., 2020). In addition, solasonine inhibited pancreatic
cancer progression. Further research has revealed that solasonine
suppressed TFAP2A protein expression by combining with Lys257,
Arg255, ala256, and gly250 of TFAP2A via a hydrogen bond.
TFAP2A could bind to the promoter region of the de-
ubiquitination enzyme OTUB1, thus enhancing
OTUB1 expression. In this case, solasonine enhanced the
degradation of OTUB1-mediated SLC7A11 via TFAP2A,
activating ferroptosis in pancreatic cancer (Liang et al., 2022). In
short, the inhibition of the GPX4–GSH axis is responsible for the
effect of solasoine on cancers.

Piperlongumine (PL) is a pyridine alkaloid from Piper longum
L. [Piperaceae; P. longum fruit]. PL significantly increased ROS
levels and protein glutathionylation with a concomitant elevation
in Nrf-2 expression, thus inducing the redox imbalance to kill two
human colon cancer cell lines with mutant p53, HT29 and SW620
(Basak et al., 2016). Additionally, PL selectively destroyed
hepatocellular carcinoma cells rather than normal hepatocytes
via ROS–endoplasmic reticulum (ER)–MAPK–CHOP axis, thus
significantly suppressing hepatocellular carcinoma cell migration
and invasion (Chen et al., 2015). Similarity, PL selectively killed
human breast cancer MCF-7 cells instead of human MCF-10A
breast epithelial cells. Mechanically, PL directly interacted with
Kelch-like ECH-associated protein-1 (Keap1), which resulted in
Nrf-2-mediated HO-1 expression (Lee et al., 2015). HO-1 is a
critical source of intracellular iron. The above results suggest that
PL may induce ferroptosis. This hypothesis that PL induced
human pancreatic cancer cell death mainly via the induction of
ROS-mediated ferroptosis, on the grounds that the cell death could
be suppressed by ferroptosis inhibitors (ferrostatin-1 and
liproxstatin-1) and the iron chelator deferoxamine (DFO)
(Yamaguchi et al., 2018). Furthermore, the triple combined
treatment with PL, cotylenin A (CN-A; a plant growth
regulator), and sulfasalazine (SSZ, a clinically approved
ferroptosis inducer) was highly effective against pancreatic
cancer but was not responsive to mouse embryonic fibroblasts
(MEFs) (Yamaguchi et al., 2018). In general, PL is expected to
reduce chemotherapeutic drug-induced side effects in clinic.

Trigonelline (TRG) is a plant alkaloid in Trigonella foenum-
graecum L. [Fabaceae; T. foenum-graecum dried ripe seed]. TRG
sensitized chemo-resistant head and neck cancer (HNC) cells to
in vitro and in vivo RSL3 treatment by decreasing the activity of the
Nrf2-ARE pathway (Shin et al., 2018). TRG also overcame the
resistance of cisplatin-resistant HNC cells to artesunate-induced
ferroptosis in vitro and in vivo by the inhibition of the Nrf2-ARE
pathway (Roh et al., 2017). In a nutshell, TRG overcomes cancer
resistance to chemotherapies through the inhibition of the NRF2-
ARE pathway. Thus, TRG is expected to break the dilemma of tumor
drug resistance and improve chemotherapy efficacy.

Sanguinarine (SAG) is a natural benzophenanthridine alkaloid
from Sanguinaria Canadensis L. [Papaveraceae; Sanguinaria
Canadensis radix et rhizome]. SAG contributed to ferroptosis by
increasing the Fe2+ concentration and ROS levels and decreasing
GSH levels, thus repressing the growth and metastasis of non-small
cell lung cancer (NSCLC). Further research regarding the
mechanism demonstrated that SAG enhanced the expression of
E3 ubiquitin ligases STUB1 and led to the subsequent ubiquitination
and degradation of GPX4 (Xu et al., 2022).

3.2 Terpenoids

Artemisinin (ART) is a natural sesquiterpene lactone extracted from
Artemisia annua L. [Asteraceae; A. annua dried aerial parts], known as
an anti-malarial drug. In adult T-cell leukemia/lymphoma (ATLL), ART
induced intracellular ROS- and iron-dependent cytotoxicity, which was
partly inhibited by treatment with an iron chelator or ferroptosis
inhibitor (Ishikawa et al., 2020). ART significantly reduced GSH
content and GPX4 expression in sunitinib-resistant KTCTL-26 renal
cell carcinoma cells to induce ferroptosis, thus exhibiting more potent
anti-tumor effects (Markowitsch et al., 2020). Likewise, ART specifically
triggered ROS- and lysosomal iron-dependent cell death in pancreatic
cancer cell (PDAC) lines (Eling et al., 2015). Thus, ART functions as a
specific activator of ferroptosis. Dihydroartemisinin (DHA), the main
active metabolite of ART, also has anti-tumor activity by inducing
ferroptosis. DHA downregulated the SLC7A11 expression and
reduced the GSH and GPX4 levels along with increasing the cellular
lipid ROS level in lung cancer cells, hepatocellular carcinoma cells, and
head and neck carcinoma cells (Lin et al., 2016; Yuan et al., 2020; Su et al.,
2021). Moreover, DHA enhanced the degradation of ferritin and
elevated the free iron pool to regulate iron homeostasis in a lysosome
and autophagy manner by regulating the activity of the AMPK/mTOR/
p70S6k signaling pathway in leukemia cells (Du et al., 2019; Chen G. Q.
et al., 2020). Furthermore, DHAwas associated with free iron to provoke
the binding of iron-regulatory proteins (IRPs) with mRNA molecules
containing an iron-responsive element (IRE) sequence, which further
increased cellular free iron (Chen G. Q. et al., 2020). One study reported
that DHA upregulated the PEBP1 expression by inhibiting its
ubiquitination degradation, thus promoting the formation of PEBP1/
15-LO (lipoxygenase) and cell membrane lipid peroxidation, finally
inducing ferroptosis of hepatocellular carcinoma (Su et al., 2021). In
brief, ART and DHA induce ferroptosis through a
multipronged mechanism.

β-elemene is a sesquiterpene metabolite extracted from Curcuma
longa L. [Zingiberaceae; C. longa rhizome]. Combinative treatment of
β-elemene and cetuximab could induce ferroptosis of KRAS-mutant
colorectal cancer cells (CRC) by iron-dependent ROS accumulation,
GSH depletion, lipid peroxidation, upregulation of HO-1 and
transferrin, and downregulation of negative regulatory proteins for
ferroptosis (GPX4, SLC7A11, FTH1, glutaminase, and SLC40A1),
thus inhibiting tumor growth and lymph node metastases in vivo
(Chen et al., 2020b). Curcumenol, a sesquiterpenoid metabolite, is an
important monomer extracted from Curcuma zedoaria
[Zingiberaceae; C. zedoaria rhizome]. Curcumenol induced
ferroptosis of lung cancer cells via the lncRNA H19/miR-19b-3p/
FTH1 axis (Zhang L. et al., 2022).
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Cryptotanshinone (CTN) is a quinoid diterpene extracted from
Salvia miltiorrhiza Bunge [Lamiaceae; Salviae miltiorrhizae radix
rhizome]. CTN decreased GPX4 activity and ferroportin levels and
increased iron load, which induced iron-dependent lipid peroxidation.
Thus, CTN triggered ferroptosis in lung cancer cells (Li et al., 2021). In
addition, CTN induced ferroptosis of human liver cancer HepG2 cells
by significantly enhancing ROS accumulation, reducing GSH level, and
downregulating the xCT and GPX4 expression, which could be
inhibited by ferrostatin-1 (Fer-1, ferroptosis inhibitor) (Liu JL. et al.,
2021). DihydroisotanshinoneⅠ(DT) is a diterpenoid metabolite in S.
miltiorrhiza. DT induced ferroptosis and apoptosis of breast and lung
cancer cells by repressing GPX4 expression, thus significantly inhibiting
tumor growth without adverse effects in a xenograft nudemousemodel
(Lin et al., 2019; Wu et al., 2021). TanshinoneⅡA (Tan ⅡA) is another
natural lipophilic diterpene isolated from S. miltiorrhiza. Tan ⅡA
induced ferroptosis by P53-mediated SLC7A11 downregulation to
inhibit the proliferation of gastric cancer (Guan et al., 2020). In
brief, terpenoids extracted from S. miltiorrhiza regulate the system
Xc−-GSH-GPX4 axis to induce ferroptosis.

Celastrol is a triterpene extracted from Tripterygium wilfordii
Hook. F. [Celastraceae; T. wilfordii root]. The combination of
celastrol with erastin significantly elevated ROS levels, disrupted
mitochondrial membrane potential, and promoted mitochondrial
fission. Thus, co-treatment with celastrol and erastin induced
NSCLC ferroptosis by activating the ROS–mitochondrial
fission–mitophagy axis in an HSF1-dependent manner (Liu JL.
et al., 2021). Cucurbitacin B (CuB) is a triterpenoid molecule
isolated from Trichosanthes kirilowii Maxim. [Cucurbitaceae; T.
kirilowii dried root]. CuB incited the accumulation of iron and
GSH depletion, subsequently downregulating GPX4 expression to
increase lipid peroxidation and eventually triggering cell death of
human nasopharyngeal cancer cells in the form of ferroptosis.
Therefore, CuB markedly inhibited tumor progression without
obvious side reactions in vivo (Huang et al., 2021).

Oleanolic acid (OA) is a pentacyclic triterpene widely distributed in
the leaves, fruits, and seeds of Oleaceae plants, such as Olea europaea L.
[Oleaceae; O. europaea leave and fruit] and Ligustrum lucidum
W.T.Aition [Oleaceae; L. lucidum fruit]. OA resulted in the
accumulation of Fe2+ and elevated the ferroptosis-related protein and
ACSL4 expressions to activate the ferroptosis of cervical cancer HeLa
cells, thus suppressing cancer cell proliferation. In knocked-down
ACSL4, the anticancer effect of OA was canceled, and the levels of
ROS andGPX4were decreased, suggesting that OA triggered ferroptosis
by promoting the expression of ACSL4 (Xiaofei et al., 2021).

Ursolic acid (UA) is a natural pentacyclic triterpene derived from a
great variety of traditional medicinal plants and most fruits and
vegetables. Sorafenib/UA induced ferroptosis in various human
cancer cells by decreasing the level of SLC7A11 and inciting
dramatic accumulation of intracellular ROS. In addition, this
combination treatment also induced apoptosis by promoting myeloid
cell leukemia-1 (Mcl-1) degradation (Li L. et al., 2022). Therefore, UA
boosted the anti-tumor activity of sorafenib in tumor xenograft models.

3.3 Flavonoids

Baicalein is a flavonoid active metabolite extracted from the root of
Scutellaria baicalensis Georgi [Lamiaceae; S. baicalensis root]. A

previous study showed that baicalein could decrease the yield of
thiobarbituric acid, oxygen consumption rate, and iron reduction
rate in the reaction system of ascorbic acid and FeCl3, and it
showed a similar effect with iron chelators. Baicalein was combined
with the microsomal membrane to inhibit lipid peroxidation through
the formation of the iron–baicalein complex (Gao et al., 1996).
Subsequent research revealed that baicalein decreased erastin-
induced ferrous iron levels and erastin-mediated degradation of
GPX4, GSH depletion, and lipid peroxidation in the human
pancreatic ductal adenocarcinoma cell lines PANC1 and BxPc3 (Xie
et al., 2016). The O6/O7 oxygen atoms of the A-ring on baicalein serve
as the iron-binding site. Baicalein also strongly inhibited the Fe-
promoted Fenton chemistry via a combination of chelation and
radical scavenging mechanisms under physiologically relevant
conditions (Perez et al., 2009). In acute lymphoblastic leukemia
(ALL) cells, baicalein reduced lipid peroxidation and ROS
production to impede RSL3-induced ferroptosis (Probst et al., 2017).
Thus, baicalein is a potent inhibitor of ferroptosis and is expected to be a
potential drug to prevent ferroptosis-associated tissue injury. However,
a controversial result revealed that baicalein-mediated ferroptosis of
bladder cancer cells was triggered by downregulating FTH1,
accompanied by the accumulation of ROS and iron (Kong et al.,
2021). This opposite result may be related to the cell line.

RobustaflavoneA (RF-A) is a bioflavonoid isolated from Selaginella
trichoclada Alston [Selaginellaceae; S. trichoclada whole plant]. RF-A
enhanced VDAC2 channel level and decreased E3 ubiquitin ligase
NEDD4 expression, resulting in lipid peroxidation andROS production
to trigger ferroptosis in breast cancer cells (Xie et al., 2021). It is worth
emphasizing that RF-1 was isolated and purified by researchers, and the
purity of this metabolite was not disclosed in this study. Gambogenic
acid (GNF) is a polyprenylated xanthone extracted from the plant
Garcinia morella Desr. GNF triggered ferroptosis in TGF-β1-treated
melanoma cells by activating the p53/SLC7A11/GPX4 axis (Wang et al.,
2020). Ginkgetin is a bioflavonoid derived from Ginkgo biloba L.
[Ginkgoaceae; G. biloba leaves and seed]. The combination of
ginkgetin and cisplatin (DDP) decreased the SLC7A11 and
GPX4 expression as well as the GSH/GSSG ratio and increased
labile iron pool and lipid peroxidation to mediate ferroptosis in
EGFR wild-type non-small-cell lung cancer. In addition, ginkgetin
significantly decreased DDP-induced elevation of the binding of
Nrf2 to the HO-1 promoter, thus decreasing HO-1 nuclear
expression and reversing DDP-induced HO-1 nuclear translocation,
ultimately enhancing the therapeutic effect of DDP (Lou et al., 2021).

3.4 Saponin

Ophiopogonin B (OP-B) is a saponin extracted from
Ophiopogon japonicas (Thunb.) Ker Gawl. [Asparagaceae;
Ophiopogon japonicus root tuber]. OP-B decreased the expression
of GPX4 and SLC7A11 but had no effect on NCOA4 and
FTH1 expression, thereby inducing ferroptosis in gastric cancer
in vitro and in vivo, thus reducing the volume and weight of tumors
in tumor-bearing nude mice (Zhang R. et al., 2022). In addition, OP-
B induced ferroptosis by downregulating the ferroptosis-negative
regulatory Aurora kinase A (AURKA) in NSCLC (Li Y. et al., 2022).

Ginsenoside Rh4 is an active metabolite of triterpenoid saponins in
Panax ginseng C.A.Mey. [Araliaceae; P. ginseng root and rhizome].
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Rh4 induced ferroptosis via autophagy activation in colorectal cancer
cells, which was related to the activation of the ROS/p53 signaling
pathway (Wu et al., 2022). Ardisiacrispin B is a triterpenoid saponin
extracted from Ardisia staudtii Gilg [Primulaceae; A. staudtii fruit].
Ardisiacrispin B showed cytotoxic effects on multi-factorial drug-
resistant cancer cells via increased ROS-mediated ferroptosis and
apoptosis (Mbaveng et al., 2018b). Typhaneoside (TYP) is a main
flavonoid in the extract of Typha angustifolia L. [Typhaceae; T.
angustifolia dried pollen]. TYP incited the autophagy-dependent
degradation of ferritin and ROS accumulation by activating the MP-
activated protein kinase (AMPK) signaling pathway and then inducing
the ferroptosis of acute myeloid leukemia (AML) cells (Zhu et al., 2019).

3.5 Polyphenols

Amentoflavone (AF) is a polyphenolic metabolite extracted from
Selaginella tamariscina (P.Beauv.) [Selaginellaceae; S. tamariscina whole
plant]. AF evoked ferroptosis alongwith decreasing SLC7A11,GPX4, and
FTH1 expression and increasing ACSL4 expression by regulating the
activation of ROS/AMPK/mTOR signaling, which suppressed the
viability, proliferation, and malignant progression of endometrial
cancer cells (Sun et al., 2022). In addition, AF triggered autophagy-
dependent ferroptosis by blocking intracellular iron trafficking and
storage to destroy iron homeostasis in human glioma, which was
related to the activation of AMPK/mTOR/p70S6K signaling (Chen G.
Q. et al., 2020). In brief, AF induces ferroptosis by regulating the AMPK/
mTOR signaling pathway.

Gallic acid (GA), a natural polyhydroxy phenolic metabolite, is
identified in various edible mushrooms, fruits, and vegetables. GA
caused multiple forms of cell death, such as apoptosis characterized
by mitochondrial cytochrome c release and caspase-3 activation,
ferroptosis characterized by lipid peroxidation, and necroptosis
characterized by loss of plasma membrane integrity, in an iron-
dependent manner (Tang and Cheung, 2019). Moreover, GA
combined with low-level laser irradiation increased ROS production
and decreasedGPX4 activity to trigger ferroptosis and apoptosis of breast
and melanoma cancer cells (Khorsandi et al., 2020).

Honokiol (HNK) is a biphenolic metabolite in Magnolia officinalis
Rehder and E.H.Wilson [Magnoliaceae;M. officinalis dried stembark, root
bark, and branch bark]. In colon cancer cells, HNK increased ROS and
Fe2+ levels by decreasing the GPX4 activity without influencing system
Xc− to induce ferroptosis, thus reducing cancer cell viability (Guo et al.,
2021). Additionally, HNK induced the ferroptosis of acute myeloid
leukemia (AML) in a non-canonical manner by significantly
upregulating HO-1 expression instead of downregulating
SLC7A11 expression (Lai et al., 2022). Together, the system Xc− is
not a target for HNK.

Curcumin is a phytopolylphenol metabolite isolated from C. longa L.
[Zingiberaceae; C. longa radix rhizome]. Curcumin induced the
ferroptotic death of breast cancer cells by upregulating HO-1
expression characterized by a marked accumulation of intracellular
iron, ROS, lipid peroxides, and the downregulated GSH level (Li R.
et al., 2020). 6-Gingerol is a phenol in Zingiber officinale Roscoe
[Zingiberaceae; Z. officinale dried rhizome]. 6-Gingerol enhanced
autophagy-dependent ferroptosis of lung cancer cells by decreasing
the expression of autophagy-related proteins ubiquitin-specific
peptidase (USP14) and increasing iron concentrations and ROS levels,

thereby presenting an anti-tumor effect in vivo and in vitro (Tsai
et al., 2020).

3.6 Polysaccharide

Red ginseng polysaccharide (RGP) is an active metabolite from
P. ginseng C.A.Mey [Araliaceae; P. ginseng radix rhizome]. RGP
promotes ferroptosis of lung and breast cancer cells by
downregulating GPX4 expression (Zhai et al., 2022). Scutellaria
barbata is a polysaccharide in the dried botanical drug of
Scutellaria barbata D. Don [Lamiaceae; S. barbata whole plant].
Scutellaria barbata reduced GPX4 and SLC7A11mRNA and protein
levels to induce ferroptosis characterized by iron-mediated lipid
peroxidation and ROS metabolism in hepatocellular carcinoma,
thus suppressing HCC tumorigenicity in vivo (Li H. et al., 2022).

3.7 Quinones

Juglone is a naphthoquinone isolated from the green peel of Carya
cathayensis Sarg. [Juglandaceae; C. cathayensis green peel]. Juglone
resulted in the downregulation of GPX4 expression, GSH depletion,
and the upregulation of HO-1 expression. In addition, juglone induced
ferritin phagocytosis to increase Fe2+, which inhibited the migration and
invasion of endometrial carcinoma Ishikawa cells (Zhang et al., 2021).
Physcion 8-O-β-glucopyranoside (PG), an anthraquinone extracted
from Rumex japonicus Houtt. [Polygonaceae; R. japonicus root and
fruit], upregulated ROS levels and intracellular Fe2+ levels by
downregulating the inhibitory effect of miR-103a-3p on glutaminase
2 (GLS2) expression to induce ferroptosis of gastric cancer (Niu et al.,
2019). GLS2 is a positive ferroptosis regulator that promotes the
transformation of glutamine to glutamate in cancer cells (Li et al., 2015).

Plumbagin is a naphthoquinone substance obtained from
Plumbago zeylanica L. [Plumbaginaceae; P. zeylanica root].
Plumbagin increased NAD(P)H quinone dehydrogenase 1
(NQO1) activity and decreased xCT expression, resulting in
NQO1-dependent glioma cell death. It also induced the
lysosome-dependent degradation of GPX4 and caused GPX4-
dependent glioma cell death (Zhan et al., 2022).

3.8 Miscellaneous

Erianin is a dibenzyl metabolite isolated from Dendrobium
chrysotoxum Lindl. [Orchidaceae; D. chrysotoxum stem]. Erianin
induced ferroptotic lung cancer cell death via Ca2+/CaM signaling
accompanied by ROS accumulation, lipid peroxidation, and GSH
depletion and increased HO-1 and transferrin levels, thus suppressing
cancer cell growth and migration (Chen et al., 2020c). In bladder
cancer cells, erianin evoked ferroptosis by inducing NRF2 inactivation
characterized by decreased FTH1, GPX4, HO-1, and xCT/
SLC7A11 expression as well as the accumulation of ROS and the
depletion of GSH (Xiang et al., 2021).

Epunctanone, a benzophenone metabolite from Garcinia epunctata
Stapf [Clusiaceae; G. epunctata whole plant], induced ferroptosis and
apoptosis of multidrug-resistant cancer cells by increasing the
production of ROS (Mbaveng et al., 2018a). The metabolite of the
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natural product parthenolide, DMOCPTL, induced ferroptosis via
ubiquitination of GPX4 in triple-negative breast cancer cells (TNBC),
thus effectively inhibiting breast tumor growth (Ding et al., 2021).

Alloimperatorin (AM) is a metabolite derived from Angelica
dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav.[Apiaceae;
Angelica dahurica root]. AM resulted in remarkable mitochondrial
shrinkage, enhanced Fe2+ and ROS levels, and significantly
decreased mRNA and protein expression of SLC7A11 and
GPX4 in breast cancer cells, indicating that AM suppressed cell
growth and invasion via ferroptosis (Zhang J. et al., 2022). Bufotalin
(BT) is a steroid lactone isolated from Venenum bufonis. BT caused
lipid peroxidation in NSCLC by accelerating the ubiquitination-
dependent degradation of GPX4 and increasing the intracellular Fe2+

level (Zhang W. et al., 2022). Agrimonolide is isolated from
Agrimonia pilosa Ledeb. [Rosaceae; A. pilosa dried aerial parts]. It
directly inhibited the stearoyl-CoA desaturase-1 (SCD1) protein to
trigger ferroptosis of ovarian cancer, evidenced by the increased
ROS, total iron, and Fe2+ levels and downregulation of ferroptosis
inhibitors (SLC7A11 and GPX4), thus suppressing cancer
progression in the SKOV-3 xenograft model (Liu et al., 2022).

Some TCM botanical drugs could induce ferroptosis of cancer cells,
but the specific metabolites have not been identified or isolated. Betula
pendula subsp. Pendula [Betulaceae; B. pendula subsp. Pendula radix]
bark methanolic extract enhanced an oxidative cellular
microenvironment, leading to ferroptosis-mediated CaCo2 cell death
by HO-1 hyper-expression (Malfa et al., 2019). Scleromitrion diffusum
(Willd.) R.J.Wang [Rubiaceae; S. diffusum whole plant] regulated
VDAC2/3 activity by promoting BAX via repressing
Bcl2 expression, thus triggering ferroptosis in lung adenocarcinoma
cells (Huang J. et al., 2022). Actinidia chinensis Planch. (ACP)
[Actinidiaceae; A. chinensis radix] promoted the accumulation of
ROS via suppressing GPx4 and xCT (SLC7A11) proteins to trigger
ferroptosis, thus preventing the proliferation and migration of gastric
cancer (Gao et al., 2020).

In addition, some natural drugs promote ferroptosis of cancer cells,
but the understanding of the mechanism is in its infancy. MAP30, a
bioactive protein isolated from seeds of Momordica charantia L.
[Cucurbitaceae; M. charantia whole plant], played a synergistic role
with cisplatin in inhibiting ovarian cancer by altering metabolism and
inducing ferroptosis in vivo (Chan et al., 2020). The chloroform extract
of Fumaria officinalis L. [Papaveraceae; F. officinalis whole flowering
plant] induced iron-dependent cell death in multiple myeloma cells
(Adham et al., 2021). Thymus vulgaris L. [Lamiaceae; T. vulgaris whole
plant] and Arctium lappa L. [Asteraceae; A. lappa dried ripe fruit]
extracts inhibited cell proliferation of leukemia andmultiplemyeloma by
inducing ferroptosis (Aveen et al., 2020). Ferroptosis partly contributed
to andrographis-mediated chemosensitization in colorectal cancer
(Sharma et al., 2020).

4 Conclusions and perspectives

Various natural pharmaceutical metabolites induce ferroptosis in
cancer cells via multiple pathways and multiple targets. These studies
validate that natural pharmaceutical metabolites from TCM can cause
changes in ferroptosis-related proteins, but the in-depth mechanism of
protein changes has not been clarified. Furthermore, the current results
are obtained from cell and animal models. Considering that the

pathogenesis of human and animal diseases may be completely
different and animal models cannot predict the safety and efficiency
of drugs on humans, clinical trials are essential for applying TCM drugs
to induce ferroptosis for cancer therapy. Clinical trial studies will better
discover or verify the efficacy, adverse reactions, permeability,
persistence, and excretion of TCM drugs.

In addition, the significant feature of TCM drugs is that the
compatibility of different Chinese botanical drugs will achieve
unexpected therapeutic effects. Therefore, future research should
study of the compatibility of different active metabolites to form a
traditional Chinese medicine formula to treat cancer. For example,
Fuzheng JieduXiaoji formulation (FZJDXJ) is amixture of the botanical
drugs Codonopsis pilosula (Franch.) Nannf. [Campanulaceae; C.
pilosula root], Astragalus mongholicus Bunge [Fabaceae; A.
mongholicus root], and Angelica sinensis (Oliv.) Diels [Apiaceae; A.
sinensis root]. It is most commonly prescribed for HCC treatment in
Beijing Ditan Hospital (Yang et al., 2021). Animal experiments have
shown the natural metabolites contained in FZJDXJ could regulate
ferroptosis. Thus, FZJDXJ combined with ferroptosis inducers may
achieve unexpected effects in clinical scenarios.

In addition, the combination therapy of TCM and current
chemotherapeutic drugs may hold promise as an efficient therapy
option for the selection of patients with therapy-resistant cancers or
unwanted off-target effects. However, some studies have shown that
excessive ferroptosis can lead to the release of damage-associated
molecular patterns and the activation of immune responses triggered by
ferroptotic damage, which promote tumor growth andmetastasis. Precisely
regulating the activation intensity of ferroptosis to inhibit cancers is an
important scientific issue that needs to be addressed in future research.
Additionally, it is necessary to evaluate what cancer types or patient groups
aremore suitable for targeting ferroptosis. Iron levels and ferroptosis-related
gene expression or mutations should be combined to evaluate which
patients are most likely to benefit from treatment targeting ferroptosis.
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