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Myocardial infarction (MI) imposes a huge medical and economic burden on
society, and cardiac repair after MI involves a complex series of processes.
Understanding the key mechanisms (such as apoptosis, autophagy,
inflammation, and fibrosis) will facilitate further drug development and patient
treatment. Presently, a substantial body of evidence suggests that the regulation
of epigenetic processes contributes to cardiac repair following MI, with DNA
methylation being among the notable epigenetic factors involved. This article will
review the research on the mechanism of DNAmethylation regulation after MI to
provide some insights for future research and development of related drugs.
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1 Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide and poses a
significant medical and economic burden on countries worldwide (Han, 2019; Sturgeon
et al., 2019; Zhao et al., 2019; Townsend et al., 2022). Among CVD events, myocardial
infarction (MI) has been shown to contribute significantly to disease burden and mortality
(Mathers and Loncar, 2006;White and Chew, 2008; Heidenreich et al., 2013). FollowingMI,
cardiac repair involves a complex series of events, including an inflammatory phase, repair
and proliferation phase, and mature phase (Prabhu and Frangogiannis, 2016). The
inflammatory phase, initiated by tissue damage such as cell necrosis, triggers the
recruitment of immune cells that generate a robust inflammatory response to remove
damaged cells and extracellular matrix components (Frangogiannis, 2012). Transitioning
from the inflammatory phase to the repair and proliferation phase requires the activation of
multiple inhibition pathways to reduce post-infarction inflammation, involving a variety of
cell types and extracellular matrix components such as neutrophils, monocyte-macrophage
systems, and endothelial cells. The success of this transition is critical for effective repair of
the infarcted area (Frangogiannis, 2012; Kain et al., 2014). During the repair and
proliferation phase, inflammation gradually subsides, and fibroblasts transform into
myofibroblast phenotypes, leading to a series of fibrotic reactions that culminate in scar
formation and neovascularization in the mature phase (Nahrendorf et al., 2010). Despite
significant progress in understanding the pathogenesis of MI and the development of novel
treatments such as reperfusion therapy and drug therapy, treating MI patients remains
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challenging (Saleh and Ambrose, 2018). Identifying key molecular
targets, such as those involved in apoptosis, autophagy,
inflammation, and fibrosis, that occur successively after MI may
lead to the development of more effective treatment strategies in
the future.

DNA methylation is a well-known epigenetic modification in
mammalian genomes that is regulated by a family of DNA
methyltransferases (DNMTs). DNMTs catalyze the transfer of a
methyl group from s-adenine methionine to a cytosine residue at
position 5C to form 5 mC (Moore et al., 2013). Dnmt3a and
DNMT3b are responsible for de novo methylation (Figure 1)
during development by establishing a novel methylation pattern
on unmodified DNA (Okano et al., 1999). DNMT1 conveys DNA
methylation patterns during DNA replication of the newly
synthesized daughter strand of the parental strand and plays a
role in maintaining post-replicative methylation in cells (Li et al.,
1992; Sen et al., 2010; Moore et al., 2013). However, some studies
argue for a cooperative role of the three DNMTs during DNA
methylation (Fatemi et al., 2002; Kim et al., 2002). DNAmethylation
predominantly occurs at palindromic cytosine phosphate guanine
dinucleotides (CpGs) in the human genome, with 60%–80% of
approximately 28 million CpGs usually being methylated (Smith
and Meissner, 2013). CpG islands (CpGis), known as CG dense
regions, account for less than 10% of CpGs and are located in
promoter regions of approximately 70% of annotated genes,
including nearly all housekeeping genes, tissue-specific genes, and

developmentally regulated genes, to regulate transcription (Larsen
et al., 1992; Saxonov et al., 2006; Zhu et al., 2008; Deaton and Bird,
2011). DNA methylation can directly interfere with the binding of
specific transcription factors or indirectly bind specific
transcriptional repressors, such as methyl CpG binding protein
(MeCP) and methyl CpG binding domain protein, to repress
chromatin transcriptional states and mediate gene silencing
(Iguchi-Ariga and Schaffner, 1989; Comb and Goodman, 1990;
Falzon and Kuff, 1991; Prendergast et al., 1991; Hendrich and
Tweedie, 2003; Das and Singal, 2004; Russell-Hallinan et al.,
2018). However, DNA methylation may play different roles
depending on the genomic region sequences (Moore et al., 2013).
Intergenic regions, for instance, serve to suppress potentially
harmful genetic factors (Walsh et al., 1998; Gaudet et al., 2004),
while DNA hypermethylation within gene bodies is linked to
increased gene expression (Hellman and Chess, 2007; Ball et al.,
2009; Aran et al., 2011).

While DNA methylation was initially considered a long-lasting
and stable epigenetic modification, current research indicates that it
is a dynamic and reversible biological process (Fardi et al., 2018;
Russell-Hallinan et al., 2018). The process may be mediated by ten-
eleven translocation (Tet) enzymes, namely Tet1, Tet2, and Tet3.
Tet1, in particular, introduces a hydroxyl group to the methyl group
at the 5 mC site, resulting in the formation of 5 hmC (Tahiliani et al.,
2009; Ito et al., 2010). Once formed, 5 hmCmay be converted to 5 fC
and 5 caC under Tet enzyme catalyzed oxidation, followed by

FIGURE 1
Roles of three DNA methyltransferases Dnmt3a and DNMT3b are responsible for de novo methylation during development by establishing a novel
methylation pattern on unmodified DNA. DNMT1 conveys DNAmethylation patterns during DNA replication of the newly synthesized daughter strand of
the parental strand and plays a role in maintaining post-replicative methylation in cells.
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decarboxylation to cytosine (Ito et al., 2011). 5 fC and 5 caC can also
be excised by thymine DNA glycosylase and subsequently subjected
to pathways such as base excision repair to remove methylation
modifications from cytosine (Kohli and Zhang, 2013). There is also
supporting evidence indicating that akin to methylation, 5 hmC can
influence gene expression, leading to notable decreases in the
binding affinity of MeCP2 (Valinluck et al., 2004).

Research has demonstrated alterations in the degree of
methylation of certain genes in individuals with myocardial
infarction (Ek et al., 2016; Rask-Andersen et al., 2016; Ward-
Caviness et al., 2018; Thunders et al., 2019), which are associated
with cardiac function, cardiogenesis, and recovery after ischemic
injury. To understand the early dynamic changes of gene expression
after MI, RNA-seq and MeDIP-seq were used on heart tissues from
AMI mice at different time points (Han et al., 2022; Luo et al., 2022),
and the results showed that DNA methylation plays an important
role in the pathophysiological progression after MI.We reviewed the
existing research and elucidated the role of DNA methylation
regulation in inflammation, fibrosis and other aspects after
myocardial infarction.

2 Roles of DNA methylation after
myocardial infarction

2.1 Inflammation and DNA methylation

After myocardial infarction, hypoxia often leads to endothelial
cell barrier impairment and increased vascular permeability due to
decreased adenylate cyclase activity and intracellular cAMP levels.
This promotes leukocyte infiltration and activates the death process
of myocardial cells, primarily cell necrosis, accompanied by
apoptosis and autophagy (Ogawa et al., 1992; Hotchkiss et al.,
2009; Nahrendorf et al., 2010; Eltzschig and Eckle, 2011; Kain
et al., 2014; Prabhu and Frangogiannis, 2016). Immediate
reperfusion treatment releases soluble inflammatory mediators
that recruit neutrophils, which directly damage endothelial cells
by producing reactive oxygen species (ROS), cytokines, proteases,
and lipids. These further increases leukocyte adhesion and damages
the tight junctions between cells, exacerbating endothelial cell
barrier dysfunction (Ma et al., 1993; Weyrich et al., 1993;
Vinten-Johansen, 2004; Arslan et al., 2011; Timmers et al., 2012).
Endogenous molecules released by damaged or dead cells and
extracellular matrix, called danger-associated molecular patterns
(DAMPs), initiate immune responses after MI, such as high-
mobility group box-1 (HMGB1), heat shock proteins (HSPs), and
fibronectin fragments (Fan et al., 2005; Timmers et al., 2012; Mi
et al., 2019; Gong et al., 2020). These molecules continuously activate
pattern recognition receptors (PRRs), such as Toll-like receptors
(TLRs), in monocytes and neutrophils of innate immunity. The
activation of these molecules initiates intracellular signal
transduction pathways, such as mitogen-activated protein kinase
(MAPK), Janus kinase (JAK), and calcineurin pathway. This induces
the cascade amplification of nuclear factor-kappaB (NF-κB) and
activating protein AP-1 to downstream inflammatory mediators
(Mann, 2011; Newton and Dixit, 2012; Ghigo et al., 2014). An
excessive inflammatory response may lead to pathological
phenomena, such as maladaptive remodeling, interstitial fibrosis,

and impaired myocardial contractility. Therefore, the recruitment of
inflammatory-related cells must be strictly controlled to ensure
functional cardiac healing. For instance, secreting growth
differentiation factor-15, transforming growth factor-β (TGF-β),
and other anti-inflammatory signals can limit the infiltration
range of immune cells (Wilson et al., 2004; Wrigley et al., 2011;
Ghigo et al., 2014).

The initial response of immune cells to damage is regulated
by immediate epigenetic modifications, such as DNA
methylation-mediated key activation. However, limited
research has been conducted on the epigenetic modification of
immune cells during the later stages, particularly during the
repair regression phase (Busslinger and Tarakhovsky, 2014;
Phan et al., 2017; Placek et al., 2019). In an experiment, rats
with MI were administered with 5-azacytidine (5-AZ) as a DNA
methyltransferase inhibitor (DNMTi). This intervention led to a
reduction in the count of M1 phenotype macrophages expressing
iNOS and an elevation in the presence of anti-inflammatory
M2 phenotype macrophages in the infarcted myocardium
(Figure 2). The expression frequency of Arg1 increased,
improving the myocardial diastolic function after MI
(Stresemann and Lyko, 2008; Kim et al., 2014). Dynamic DNA
methylation modification plays a significant role in the self-
renewal and differentiation of immune cells, presenting itself
as a potential target for addressing inflammatory processes in
diseases (Luo et al., 2018; Morales-Nebreda et al., 2019).

Studies have demonstrated that, in addition to coding genes,
long noncoding RNAs (lncRNAs) play a role in the progression of
genetic variations following MI. They are involved in regulating
cardiac development and pathological conditions, such as
myocardial ischemia (Saddic et al., 2017). For example, the
lncRNA potassium voltage-gated channel subfamily Q member
1 overlapping transcript 1 (KCNQ1OT1) is expressed at
significantly higher levels in MI patients compared to healthy
individuals (Vausort et al., 2014). KCNQ1OT1 is responsible for
silencing a gene cluster in cis and is associated with epigenetic
modifications such as DNA methylation and histone modifications
that play a role in colorectal carcinogenesis (Nakano et al., 2006;
Wan et al., 2013). Previous research has shown that knockdown of
KCNQ1OT1 can modulate adiponectin receptor 1 and attenuate
ischemia-reperfusion (I/R) injury after acute myocardial infarction
(AMI) by affecting the p38 MAPK/NF-κB signaling pathways (Li
et al., 2017). In a study on MI mice, it was found that lncRNA
KCNQ1OT1 mediated imprinted gene silencing by recruiting
DNMT1 and elevating the CpGi methylation level in the
promoter region of runt related transcription factor 3 (RUNX3),
which in turn suppressed RUNX3 expression levels. This affected
cardiac microvascular endothelial cells activity and inflammatory
responses in post-MI mice through the Notch1 pathway (Figure 2),
and the dysfunction of endothelial cells was associated with adverse
cardiac remodeling afterMI (Mohammad et al., 2010;Wang Y. et al.,
2019). Furthermore, when RUNX3 is knocked down as a common
downstream target of TGF-β and Notch signal pathways in
cardiovascular disease, it can attenuate hypoxia-induced
endothelial-mesenchymal transition (EndMt) and reverse human
cardiac microvascular endothelial cells function. This suggests that
targeting RUNX3 may be a novel approach to mediating EndMt for
the treatment of CVD (Liu et al., 2017).
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The proto-oncogene SPI1 is considered a key player in the
progression to heart failure (HF) after MI. It is tightly associated
with inflammation, immune activity, and apoptosis, and its possible
target TLR4 plays an equally important role in mediating tissue
damage and inflammatory responses (Niu et al., 2019; Ramirez-
Carracedo et al., 2020). A recent study showed that in MI mice and
hypoxia-exposed HL-1 cells, the levels of DNA methylation at the
SPI1 promoter CpGi were significantly decreased, leading to the
activation of SPI1 transcription. Upregulated SPI1 expression levels
then bound to the TLR4 promoter and activated the TLR4/NF-κB
pathway, exacerbating inflammation and cardiomyocyte apoptosis
(Liu and Huang, 2022) (Figure 2). Previous studies have confirmed
that the activation of the TLR4/NF-κB signaling pathway is involved
in inducing tissue injury and inflammation after MI. Inhibition of
this pathway is a promising and controllable target for anti-
inflammatory treatment after MI (Li et al., 2018; Wang XZ. et al.,
2019; Liu et al., 2019; Li et al., 2020).

During different stages after MI, immune cells exhibit functional
heterogeneity. In the early stages of myocardial injury, functional
changes involving macrophages are accompanied by infiltration of
neutrophils and monocytes that promote inflammation. Later on,
repair-predominant subpopulations gradually replace these cells
(Bajpai et al., 2019; Dick et al., 2019). Further exploration of cell-
specific functional type changes during inflammation, linked to
spatiotemporally specific epigenetic modifications such as DNA

methylation, is necessary to identify the best targets for clinical
treatment after MI.

2.2 Autophagy and DNA methylation

As a dynamic circulatory system, autophagy primarily
transports long-lived proteins and damaged organelles into
lysosomes for degradation (Yang and Klionsky, 2010; Mizushima
and Komatsu, 2011). Autophagy is often associated with ischemic
heart disease (Bravo-San Pedro et al., 2017) and can be further
enhanced by I/R (Valentim et al., 2006). During acute ischemia,
autophagy may play a protective role in maintaining energy supply
and reducing infarct size (Matsui et al., 2007; Zhu et al., 2007;
Kanamori et al., 2011; Chen et al., 2013), while also endowing the
body with some anti-stress ability (Yan et al., 2006). However,
excessive activation of autophagy by oxidative stress during
reperfusion (Liu et al., 2018), which clears damaged organelles
intracellularly, can be harmful to the organism. Autophagy is a
controversial topic, as many studies have shown that autophagy, as a
stress response mechanism, is upregulated in myocardial
reperfusion injury, and the impairment of autophagy clearance
ability can lead to cell death (Ma et al., 2012). Therefore,
balancing autophagy activity in a timely manner to keep it within
a safe range is crucial to maintain the stability of myocardial cells

FIGURE 2
Regulation of DNA methylation on inflammation after myocardial infarction (Han, 2019) Rats with MI were administered with 5-Az, resulting in a
decrease in the number of M1 phenotype macrophages expressing iNOS and an increase in the level of anti-inflammatory M2 phenotype macrophages.
(Zhao et al., 2019). lncRNA KCNQ1OT1mediated imprinted gene silencing by recruiting DNMT1 and elevating the CpGi methylation level in the promoter
region of RUNX3, which in turn suppressed RUNX3 expression levels and affected inflammatory responses through the Notch pathway (Townsend
et al., 2022). After MI, the levels of DNAmethylation at the SPI1 promoter CpGi were significantly decreased, upregulated SPI1 expression levels bound to
the TLR4 promoter and activated the TLR4/NF-κB pathway, exacerbating inflammation.
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and overall cardiac structure and function (Nakai et al., 2007; Xu
et al., 2015) and prevent cardiac dysfunction after MI. Currently,
there is no effective intervention strategy for regulating autophagy-
related cardiovascular diseases in clinical practice (Zhou et al., 2019).
However, epigenetic modifications such as DNA methylation have
shown some therapeutic prospects in regulating autophagy after MI.

Poorly regulated autophagy is associated with cardiovascular
diseases, including myocardial infarction (Tanaka et al., 2000;
Yamamoto et al., 2000; Maejima et al., 2013). PTEN-induced
putative kinase 1 (Pink1) is downregulated in advanced stages of
human HF and is believed to be crucial for maintaining normal
cardiac function (Billia et al., 2011). Family with sequence similarity
65 member B (FAM65B) is involved in several cellular processes,
such as cell differentiation, but its role in regulating autophagy in
cardiomyocytes was previously unknown (Balasubramanian et al.,
2014; Diaz-Horta et al., 2014). Recently, a study revealed that
autophagy-related circular RNA (ACR) directly binds to
DNMT3b and prevents DNA methylation of the Pink1 promoter,
a process regulated by DNMT3b. ACR activates the expression of
the Pink1 promoter by targeting a reduction in its DNAmethylation
level. Additionally, it facilitates the phosphorylation of FAM65B,
leading to the inhibition of autophagy and cell death. This process
reduces ischemia/reperfusion injury and the area of myocardial
infarction (Figure 3). The existing evidence demonstrates that the
ACR-Pink1-FAM65B axis, which is regulated by the DNA
methylation pathway, can be utilized as a regulator of cardiac

autophagy (Zhou et al., 2019). Circular RNA interacts with
DNMT and participates in the regulation of DNA methylation,
which highlights its potential as a therapeutic target for MI and
I/R injury.

Ischemic postconditioning (IPostC) is a potential strategy for
protecting cardiomyocytes during early reperfusion by
intermittently interrupting coronary blood flow, thereby reducing
I/R injury and final infarct size (Zhao et al., 2003; Heusch et al.,
2011). IPostC has been implicated in regulating autophagy and may
offer myocardial protection in I/R injury (Ma et al., 2011; Wang
et al., 2016). The methylation status of miRNA promoters may serve
as potential epigenetic biomarkers for clinical applications and
directly regulate their expression levels (Vera et al., 2017; Ortiz
et al., 2018). A study investigating hypoxic postconditioning
(HPostC) in aging cardiomyocytes exposed to hypoxia
reoxygenation (H/R) injury revealed that DNMT3b mediates
hypomethylation of the miR-30a promoter, leading to an increase
in the expression levels of miR-30a. This results in the targeting of
the autophagy related gene BECN1 by miR-30a, inhibiting
autophagy induction in aging cardiomyocytes, and promoting
HPostC to exert cardioprotective effects (Figure 3). Suppressed
DNMT3b activity leads to miR-30a hypomethylation and
increases its expression, providing an additional epigenetic
regulatory pathway (Wang et al., 2020). This study not only
uncovers the protective effect of IPostC against I/R injury in
aging cardiomyocytes but also sheds light on the underlying

FIGURE 3
Regulation of DNA methylation on autophagy after myocardial infarction (Han, 2019) ACR binds to DNMT3b and prevents DNA methylation of the
Pink1 promoter, which activates the expression of the Pink1, and it mediates FAM65B phosphorylation to inhibit autophagy and cell death (Zhao et al.,
2019). Suppressed DNMT3b activity leads to miR-30a hypomethylation and increases its expression, which results in the targeting of the autophagy
related gene BECN1 by miR-30a, inhibiting autophagy induction in aging cardiomyocytes (Townsend et al., 2022). DRAM1 was found to be
negatively regulated in the rat model of AMI. Regulating the autophagic flow of DRAM1-Atg7-Atg12/Atg5 under the stress condition of myocardial
ischemia can alleviate autophagic flow and regulating the mechanism of myocardial cell protection.
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molecular mechanism of I/R injury via autophagy regulation. It
provides a highly promising DNA methylation-related therapeutic
target for achieving precise treatment and improving myocardial
injury in elderly patients with MI, in agreement with previous
clinical reports (Wang et al., 2016; Zhang et al., 2018).

Damage-regulated autophagy modulator 1 (DRAM1) is a
lysosomal membrane protein that is be beneficial in attenuating
autophagic flux impairment and cardiac functional maladaptation
in acute myocardial infarction (AMI) due to ischemic stress,
ultimately improving cardiac outcomes in patients (Crighton
et al., 2006; Wu et al., 2014; Wu et al., 2018). A recent study
using an AMI rat model demonstrated that DRAM1 upregulates
the mRNA level of Atg12 in cardiomyocytes in vitro and in vivo,
while decreasing the levels of free Atg12 protein. Additionally, an
increase in the formation of Atg12-Atg5 conjugates was identified.
DRAM1 showed a significant direct interaction only with Atg7,
which regulated the autophagic flow of DRAM1-Atg7-Atg12/
Atg5 under the stress condition of myocardial ischemia, thereby
alleviating autophagic flow and regulating the mechanism of
myocardial cell protection (Wu et al., 2018) (Figure 3).
Moreover, DRAM1 was found to be negatively regulated in the
rat model of AMI, where ischemia-induced aberrant DNA
hypermethylation status at multiple promoter CpG sites of
DRAM1 was associated with decreased DRAM1 expression levels
in the infarct border zone. In summary, these findings suggest that
targeting DNA methylation and autophagy pathways via
DRAM1 could be a promising therapeutic strategy to regulate
autophagy flux and improve outcomes in patients with AMI.

In recent years, epigenetic regulation such as DNA methylation
and histone modification has been extensively investigated in the
context of autophagy. These modifications can not only directly
modify autophagy-related genes but also influence signaling
molecules that regulate these genes (Klionsky et al., 2021). In
cancer research, the methylation status of autophagy-regulating
effector molecules has been found to play a significant role in
exhibiting biphasic regulatory effects (Liu H. et al., 2013; Liao
et al., 2014; Nihira et al., 2014; Zhang et al., 2016; Bhol et al.,
2020). Similarly, DNA methylation in conjunction with autophagy
in the context of MI and I/R injury presents a promising avenue for
research. Targeted therapy strategies based on the aberrant DNA
methylation status of autophagy-related molecules in
cardiomyocytes may become a crucial clinical direction in the
near future.

2.3 Fibrosis and DNA methylation

In tissues affected by myocardial infarction, ongoing ischemia,
hypoxia, inflammation, and other stimuli induce cardiac fibrosis and
abnormal cardiac remodeling, which are inevitable pathological
changes in MI progression (van den Borne et al., 2010;
Barallobre-Barreiro et al., 2012; Opie et al., 2006; Brown et al.,
2005). Interstitial fibroblasts respond to elevated TGF-β and changes
in the extracellular matrix by transforming into myofibroblasts,
leading to further increases in proliferative activity (Willems et al.,
1994; Frangogiannis et al., 2000; Souders et al., 2009; Turner and
Porter, 2013). These pathways serve as markers for the proliferative
phase of repair after MI and are highly involved in regulating cardiac

fibrosis-related remodeling, which has a major impact on cardiac
function (Hinz et al., 2007). Under stress conditions, cardiac
fibroblasts express α-smooth muscle actin (α-SMA) and the
smooth muscle dedifferentiation marker myosin heavy chain
embryonic isoform (Frangogiannis et al., 2000). This disrupts the
equilibrium between matrix metalloproteinases (MMPs) and tissue
inhibitors of metalloproteinases, leading to the production of an
extracellular matrix (ECM) that distinguishes fibroblasts (Berk et al.,
2007). The reparative proliferation process of the myocardium in the
infarcted area involves the regulated deposition and breakdown of
ECM, particularly collagen, which is controlled by regulatory
elements such as MMPs (Watson et al., 2014; Olsen et al., 2017).
Although fibrosis initially reflects adaptive protective mechanisms,
dysregulation of the balance can lead to excessive ECM deposition,
resulting in pathological reactive fibrosis that increases myocardial
stiffness, disrupts tissue architecture, and impairs cardiac function
(Levick et al., 2009; Qi et al., 2014; Murtha et al., 2017).
Accumulating evidence suggests that the hyperactive fibrotic
phenotype may be attributed to the accumulation of gene
expression within the interstitium, and the causal role that
epigenetics plays in fibrosis is gradually being recognized. DNA
methylation may play an important role in the progression of
cardiac fibrosis (Gabrielsen et al., 2007; Mann and Mann, 2013;
Watson et al., 2014; Yang and Schwartz, 2015; Kale et al., 2021).

NEIL3 is a mammalian oxidized base-specific DNA glycosylase
in the base excision repair pathway. It is elevated in the myocardium
of patients with HF, and its expression increases significantly in
fibroblast enriched fractions after myocardial infarction in mice (Liu
M. et al., 2013; Olsen et al., 2017). NEIL3 regulates cell proliferation
in various human tumor tissues, murine hematopoietic tissues, and
various stem cell populations in mice (Torisu et al., 2005;
Hildrestrand et al., 2009; Regnell et al., 2012; Reis and
Hermanson, 2012; Rolseth et al., 2013). Some studies suggest that
NEIL3 affects the balance between methylation and oxidative
demethylation of cytosine related epigenetic modifications in the
heart. These modifications include differential regulation of both
5 mC and 5 hmc. Alternatively, NEIL3 may regulate the
proliferation and differentiation of fibroblast-like cells during
post-MI repair by affecting DNA methylation sites. The results
show that NEIL3 deficient mice have a decreased ability to regulate
cell proliferation after MI, implying a deregulation of fibroblast-like
cells proliferation and differentiation. This leads to a disruption of
the extracellular matrix balance, including increased
MMP2 production and consequent fatal consequences such as
myocardial rupture. Therefore, understanding the regulatory
mechanisms of fibroblast-like cell proliferation and differentiation
and ECM balance is important for developing clinical antifibrotic
drugs. NEIL3 could be a potential therapeutic target for this purpose.

After MI, ischemic hypoxic injuries commonly occur and may
require long-term adaptation involving epigenetic modifications to
maintain the fibrotic phenotype. A study quantified the expression
levels of the CAIX gene, regulated by hypoxia-inducible factor-1
(HIF-1), as a means to assess the degree of myocardial tissue
hypoxia. Prolonged exposure of human cardiac fibroblasts to 1%
hypoxia resulted in a profibrotic state, and the degree of hypoxia
correlated with collagen 1 (Col1) and α-SMA expression levels and
collagen deposition (Holotnakova et al., 2008). HIF-1a plays a role in
regulating global DNA hypermethylation and a profibrotic state,
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potentially through the binding of hypoxia response elements (HRE)
to DNMT1 and DNMT3b promoter sites, resulting in a significant
increase in DNMT1 and DNMT3b expression levels (Watson et al.,
2014). Moreover, under hypoxic conditions, the profibrotic effect of
TGF-β, a profibrotic agonist, can be inhibited by the DNMTi 5-aza-
2′- deoxycytidine (5-aza), which significantly reduces the expression
levels of α-SMA and Col1 (Figure 4). However, previous studies have
shown that TGF-β1 may inhibit DNMT expression levels and
overall activity, while upregulating Col1A1 in cardiac fibroblasts.
The role of DNA methylation in the fibrotic process in vivo during
hypoxia induction requires further investigation, but the strong
correlation of DNMT1 and DNMT3b in hypoxic injury and
fibrosis suggests the potential for investigating basic and fibrosis-
targeted therapies (Watson et al., 2014).

The differentiation of cardiac fibroblasts into α-SMA expressing
myofibroblasts is a crucial aspect of the fibrotic process after MI.
Recent studies have suggested that post-MI α-SMA expression is
regulated by DNAmethylation, highlighting the importance of both
in cardiac fibroblast differentiation (Hinz et al., 2007; Souders et al.,
2009; Williams et al., 2014; He et al., 2019). In the infarcted area of
MI rats, α-SMA is overexpressed, but DNMT1 expression levels are
decreased. In vitro treatment of cardiac fibroblasts with TGF-β1 has
been shown to induce upregulation of α-SMA expression by
significantly inhibiting DNMT1-mediated DNA methylation at
multiple CpG sites in the α-SMA promoter. The Smad and
MAPK pathways also play a role in regulating
DNMT1 expression in cardiac fibroblasts (He et al., 2019).

Although there are still controversies regarding cardiac
fibroblast differentiation, it is undeniable that DNA methylation

plays an essential role in maintaining the fibrotic phenotype during
the profibrotic process after MI. Further research is needed to
resolve the existing contradictions and to investigate the specific
manifestations of post-MI epigenetic modifications in the fibrotic
process (Pan et al., 2013; Watson et al., 2014; He et al., 2019).
DNMT-related drug targets hold great potential for regulating
expression in both fibrosis and the control of cardiac fibroblast
differentiation, making them highly valuable as clinical therapeutic
properties (Tao et al., 2014; Watson et al., 2014).

2.4 Cardiomyocyte proliferation and DNA
methylation

The imbalance of cardiomyocyte death and regeneration is one
of the factors contributing to adverse myocardial remodeling and
cardiac dysfunction (Gill et al., 2002; van Empel et al., 2005). The
heart, being one of the least regenerative organs in the mammalian
body, has limited regenerative capacity in the adult period, as
cardiomyocytes essentially exit the mitotic cell cycle and stop cell
proliferation (Drenckhahn et al., 2008; Walsh et al., 2010; Laflamme
andMurry, 2011). This lack of regenerative capability is the basis for
functional deficits in the regeneration and repair of the adult heart in
response to pathological insults, such as MI, ultimately leading to
cardiac dysfunction and HF (Ponnusamy et al., 2019). However,
non-mammals such as amphibians and teleosts maintain significant
cardiac regenerative capacity throughout life (Oberpriller and
Oberpriller, 1974; Jopling et al., 2010; Kikuchi et al., 2010), and
adult zebrafish can induce cardiomyocyte proliferation and

FIGURE 4
Regulation of DNAmethylation on fibrosis aftermyocardial infarctionHIF-1a plays a role in regulating global DNA hypermethylation and a profibrotic
state, potentially through the binding of hypoxia response elements (HRE) to DNMT1 and DNMT3b promoter sites, resulting in a significant increase in
DNMT1 and DNMT3b expression levels. Under hypoxic conditions, the profibrotic effect of TGF-β can be inhibited by the 5-Aza, which significantly
reduces the expression levels of α-SMA and Col1.
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overcome scar formation after removing 20% of their ventricles,
achieving complete cardiac regeneration (Poss et al., 2002). Recent
studies have shown that humans and other mammals still maintain
some renewal capacity throughout their lifespan, including after MI
(Beltrami et al., 2001; Bergmann et al., 2009). A small number of
cardiomyocytes undergoing mitotic proliferation have been
observed in the infarct border zone after MI in patients (Beltrami
et al., 2001). However, eventually, the myocardium does not
regenerate appreciably but instead replaces it with a fibrotic scar
(Nag et al., 1983). In ischemic heart disease, 152 cardiomyocytes per
million undergo proliferation, a tenfold elevation compared with the
normal left ventricle (Kajstura et al., 1998). Achieving therapeutic
cardiac regeneration, such as activating cardiomyocyte proliferation
in situ, is currently an important biomedical goal of therapeutic
strategies after MI (Karra and Poss, 2017). Nonetheless, strong and
precise targeting of cardiomyocyte proliferation is necessary to
prevent unintended proliferative events in non-cardiomyocytes
and to avoid any neoplastic effects, ensuring safety (Lin and Pu,
2014; Gabisonia and Recchia, 2018).

Cardiac progenitor cells (CPCs) are crucial resident cells of the
heart with multipotent, clonogenic, and self-renewal abilities for
cardiac regeneration (Urbanek et al., 2006; Sanada et al., 2014; Leri
et al., 2015). These cells can differentiate into cardiomyocytes,
endothelial cells, and vascular smooth muscle cells, playing a
significant role in protecting the heart and generating blood
vessels to prevent adverse cardiac remodeling after MI (Beltrami
et al., 2003; Matsuura et al., 2009; van Berlo et al., 2014; Liu et al.,
2015). However, after MI, the population of distinct cardiac side-
population cells is reduced to less than half of their original levels
1 day after the injury, and only a few CPCs remain once large
numbers are transplanted to the injured heart (Mouquet et al., 2005;
Su et al., 2018). Moreover, patients who suffered from MI showed
higher levels of serum HMGB1, a protein closely related to
inflammatory response, cell proliferation, and apoptosis (Bell
et al., 2006; Goldstein et al., 2006; Gwak et al., 2012; Kang et al.,
2014). Studies have reported that CPCs treated with hypoxia
significantly increased the level of expressed HMGB1, and
knockdown of HMGB1 could attenuate hypoxia-induced
apoptosis in these cells. This mechanism was found to be due to
the hypoxic stimulus inhibiting the expression of DNMT1. This
reduction in DNMT1 led to a decrease in the methylation of CpGi at
HMGB1 promoter in CPCs, subsequently upregulating the
HMGB1 expression level. Additionally, the MAPK signaling
pathway is also involved in regulating the mechanism of post-
hypoxic apoptosis of CPCs mediated by HMGB1. This study
identified an important role of the MAPKs/DNMT1/
HMGB1 signaling axis in regulating post-hypoxic apoptosis of
CPCs and provided a new direction for CPCs apoptosis and
proliferation, contributing to the development of valuable targets
for stem cell therapy after MI (Su et al., 2018).

Numerous studies have demonstrated the involvement of the
Notch signaling pathway in processes relevant to the regulation of
cardiomyocyte proliferation during heart development (Pedrazzini,
2007; Niessen and Karsan, 2008; de la Pompa and Epstein, 2012;
MacGrogan et al., 2018; Wang et al., 2021). In particular, Notch1 is
highly expressed in immature proliferating cardiomyocytes during
the early neonatal period to protect them from apoptosis (Collesi
et al., 2008). Reactivation of the Notch signaling pathway has been

shown to induce embryonic stem cell-derived ventricular myocytes
to re-enter the cell cycle (Campa et al., 2008). Studies have
demonstrated that DNA methylation serves as an irreversible
marker of transcriptional repression (Cedar and Bergman, 2009),
and after birth in neonatal rats, cardiomyocyte proliferation is
reduced coincident with a significant reduction in
Notch1 signaling levels (Felician et al., 2014). Yet, utilizing
adeno-associated virus vectors for gene transfer to activate the
Notch1 signaling pathway after MI in adult mice proves
ineffective. Additionally, deliberately activating the
Notch1 pathway does not succeed in inducing cardiomyocyte
proliferation in adult mice after MI. It has been proposed that
the terminal differentiation state of cardiomyocytes is associated
with the temporally progressive DNA methylation of
Notch1 promoters and its target genes (Hes1, Hey1, and Hey2).
Treatment with DNMTi 5-aza has been confirmed to correlate with
the repressive role of Notch gene promoter methylation. This study
argues that induction of adult cardiomyocyte proliferation by Notch
pathway stimulation is not a suitable strategy to promote cardiac
regenerative responses in adult mice. However, as research
progresses, DNA demethylation-related epigenetic modifications
and epigenetic drugs such as DNMTi advance clinical
experiments in the field of cancer (Jones et al., 2016; Wu and
Zhang, 2017; Soler-Botija et al., 2020). The methylation sites of
Notch and its target genes may become highly promising
therapeutic targets soon.

A long non-coding RNA named cardiomyocyte proliferation
regulator (CPR) has potential regulatory effects on cardiomyocyte

FIGURE 5
The interaction between CPR and DNMT3a inhibits
cardiomyocyte proliferation by inhibiting Mcm3. The interaction of
CPR with DNMT3a guides DNMT3a to bind CpGi sites of
Mcm3 promoter region, directionally elevating methylation
levels, thereby reducing Mcm3 expression and inhibiting
cardiomyocyte proliferation.
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proliferation and cardiac repair. Studies have found that CPR
negatively regulates cardiomyocyte proliferation and regeneration,
whereas silencing CPR significantly increases cardiomyocyte
proliferation in postnatal and adult hearts and restores cardiac
function after MI (Ponnusamy et al., 2019). The interaction of
CPR with DNMT3a guides DNMT3a to bind CpGi sites of the
minichromosome maintenance protein 3 (Mcm3) promoter region,
an initiator of eukaryotic genome replication and cell cycle
progression. This targeted binding leads to an increase in
methylation levels, subsequently diminishing the expression of
Mcm3 and inhibiting cardiomyocyte proliferation (Figure 5).
Loss of cardiomyocyte cell cycle activity induces robust fibrosis
response and scar formation in the adult heart after injury (Porrello
et al., 2011). Aberrant fibrosis, scarring, and loss of cardiac
regenerative capacity after MI are all critical contributors to
adverse cardiac remodeling. The reduction of methylation levels
of the Mcm3 promoter region by targeted inhibition of CPR
expression or using epigenetic modifying drugs such as DNMTi
may be a constructive view to promote cardiomyocyte proliferation
after MI and alleviate adverse cardiac remodeling (Ponnusamy
et al., 2019).

Epigenetic reprogramming exhibits great potential after MI,
such as transplantation to treat MI by in vitro DNA methylation
modification, converting bone marrow progenitor cells into cardiac
progenitor cells (Rajasingh et al., 2011), and reprogramming of
fibroblasts into functional cardiomyocyte-like cells or inducing
cardiomyocyte proliferation (Ieda et al., 2010; Liu and Schwartz,
2012; Qian et al., 2012). Through continued research progress, we
can bridge the gap in clinical trials related to epigenetic drugs for
cardiomyocyte proliferation in cardiovascular diseases and identify
the most effective targets to promote cardiac tissue
regeneration after MI.

2.5 Drug treatment and DNA methylation

Currently, medications such as aspirin, warfarin, tissue
plasminogen activator, and interventional therapy, such as
percutaneous coronary intervention (PCI), are the mainstay of
treatment for AMI (Lu et al., 2015; Doenst et al., 2019; Sabatine
and Braunwald, 2021). However, unpredictable complications
such as bleeding, ischemia/reperfusion injury, and coronary
restenosis may occur, highlighting the need for safer and more
innovative therapeutic strategies to optimize clinical outcomes
(McCarthy et al., 2018; Doenst et al., 2019; Mackman et al., 2020;
Zhang et al., 2022).Several studies have observed significant
individual methylation differences in patients with MI (Ek
et al., 2016; Rask-Andersen et al., 2016; Thunders et al., 2019;
Han et al., 2022; Luo et al., 2022; Ren et al., 2022). Further
exploration of the regulatory mechanisms of DNA methylation
and its potential impact on metabolism and vascular physiology
after MI may help reduce the incidence of post-MI complications
(Ward-Caviness et al., 2018). Epigenetic modification-related
drugs, particularly DNMT inhibitors, have demonstrated
efficacy in the treatment of acute myeloid leukemia and
myelodysplastic syndrome (Sudan et al., 2006; Cashen et al.,
2010; Lübbert et al., 2012; Saunthararajah et al., 2012). Although
the research on DNA methylation-related drugs in

cardiovascular diseases is relatively lacking, the existing
achievements reflect considerable value and promise, given the
success of epigenetic drugs in other fields such as cancer.

Clopidogrel is a medication that significantly reduces the risk of
adverse ischemic events after PCI compared to aspirin (Steinhubl
et al., 2002). However, resistance to clopidogrel remains an
important factor contributing to the recurrence of ischemic
events following antiplatelet therapy (Mehta et al., 2001). Recent
studies have shown that clopidogrel resistance is associated with
increased DNA methylation levels at the promoters of genes such as
ABCB1, P2Y12, and PON1 (Su et al., 2014; Su et al., 2017; Su et al.,
2019). Furthermore, CYP2C19, a key enzyme in the
biotransformation of clopidogrel, and its reduction in DNA
methylation have been found to increase the risk of resistance
and worsen clinical outcomes in STEMI patients undergoing
clopidogrel preconditioning after PCI (Sukmawan et al., 2021).
All 14 CpGis of the CYP2C19 gene are located in the gene body,
which, according to the methylation paradox, suggests that reduced
DNA methylation levels in the CYP2C19 gene body are responsible
for its reduced transcriptional expression, according to the
methylation paradox (Jones, 1999). The reduction in
CYP2C19 levels blocks the biotransformation of clopidogrel,
reducing active metabolites, which leads to resistance. Genetic
polymorphisms of CYP2C19 have also been found to increase
the risk of resistance to clopidogrel by 4.2 to 5.3-fold (Sukmawan
et al., 2021). Recent advances in CYP2C19 DNA methylation and
clopidogrel resistance further point to epigenetic modifications
playing a key role in post-MI pharmacotherapy.

Effective mitigation strategies are urgently needed for H/R injury
caused by post-MI treatment (Hausenloy and Yellon, 2013).
Dexmedetomidine (DEX), a highly selective α2-adrenoceptor
agonist commonly used as a sedative and anesthetic agent in
clinical settings, has been extensively studied for its protective
effects against H/R-mediated organ injuries, including those
affecting the brain, liver, and kidney (Yuan et al., 2019; Yu et al.,
2020; Zhang B. et al., 2021; Wu et al., 2021). DEX has been shown to
inhibit cardiomyocyte apoptosis triggered by H/R injury by
upregulating SIRT1 via the SIRT1/CHOP pathway (Zhang Y.
et al., 2021). Overexpression of SIRT1 can hinder NF-κB
acetylation, thus improving cardiac function (Lin et al., 2020).
Moreover, a recent study has refined and expanded on these
findings by exploring the link between DNA methylation and
H/R injury. By increasing SIRT1 expression levels through
DNMTi-mediated demethylation of the SIRT1 promoter, DEX
can inhibit NF-κB activation and ameliorate H/R-triggered
myocardial injury (Wang et al., 2022). Given that Tet1-mediated
DNA demethylation is critical to DEX’s mechanism of action in
alleviating H/R injury, this approach represents a promising new
pharmacological strategy based on DNA methylation for mitigating
H/R injury after MI.

Although progress in epigenetic drug applications for MI-
related cardiovascular diseases in clinical trials has been slow,
preclinical studies in animal models have shown promising
results (Soler-Botija et al., 2020). For instance, in a rat MI
model, the DNA methylation inhibitor 5-AZ was found to
shift macrophages towards an M2 anti-inflammatory
phenotype and prevent cardiac contractile decompensation by
inhibiting the promoter activity of inducible nitric oxide synthase
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(iNOS). Furthermore, 5-AZ was found to activate ubiquitin-
conjugating enzyme 9 to mediate the sumoylation of
interferon regulatory factor 1 in macrophages, which
circumvented rapid degradation by ubiquitination in the
proteasome and enabled its accumulation in cells (Nakagawa
and Yokosawa, 2000). By altering its effect and incapacitating
iNOS, 5-AZ promotes macrophages to switch to an M2 anti-
inflammatory phenotype (Jeong et al., 2015). Given the clinical
availability of 5-AZ as an epigenetic drug, it may offer a
promising new direction for post-MI inflammation therapy. In
an MI rat model with reperfusion injury, treatment with another
DNMTi, epigallocatechin-3-gallate (EGCG), reduced plasma
interleukin-6 levels, and post-ischemic neutrophil infiltration.
EGCG suppressed IκB kinase (IKK) activity after reperfusion and
markedly weakened the degradation of inhibitor κB-α, thereby
significantly reducing NF-κB’s bound state to DNA. Moreover,
EGCG attenuated c-Jun phosphorylation at all time points post-
MI reperfusion, affecting the activation process of AP-1 (Aneja
et al., 2004). These findings suggest that EGCG may inhibit the
IKK/NF-κB signal transduction pathway directly or indirectly by
altering the redox status at the site of inflammation. By leveraging
its properties as an epigenetic drug and understanding its
underlying molecular mechanism, EGCG may offer a
promising clinical therapeutic strategy for modulating the
associated inflammation during blood flow
reconstruction after MI.

We summarize the DNA methylation drugs mentioned above
and the DNAmethylation targets involved in the pathophysiological
processes after myocardial infarction in Table 1; Supplementary
Table S1, respectively.

3 Conclusion

Considerable in vivo and in vitro evidence now supports the
potential use of epigenetic drugs as therapeutic tools to improve

functional recovery after MI, however, there is currently no
corresponding clinical evidence. Conducting clinical trials with
a limited number of patients can lay the groundwork for
identifying safe and efficacious epigenetic drugs, paving the
way for their broader application in a larger patient
population. Currently, epigenetic drugs in clinical trials are
broadly divided into two classes: genomic drugs, such as the
DNMTi mentioned, for extensive reprogramming, and targeted
precision medicine for the treatment of specific diseases. DNMTi,
in particular, have shown great promise in post-MI treatment,
suggesting their potential for further development in clinical
applications. We believe that drugs targeting the prevention of
cardiomyocyte death and promotion of cardiomyocyte
regeneration during the process of myocardial infarction may
have promising clinical prospects. However, many drugs, such as
DNMTi, are administered systemically, and their side effects
require further evaluation. With the development of targeted
drug delivery technologies, these drugs may be widely applied in
the future.
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activation of NF-κB to improve H/R-mediated
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