AUTHOR=Xue Haohan , Zhang Ruixuan , Yan Xudong , Wang Ruihan , Zhang Peijian TITLE=Study of PARP inhibitors for breast cancer based on enhanced multiple kernel function SVR with PSO JOURNAL=Frontiers in Pharmacology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1257253 DOI=10.3389/fphar.2024.1257253 ISSN=1663-9812 ABSTRACT=
PARP1 is one of six enzymes required for the highly error-prone DNA repair pathway microhomology-mediated end joining (MMEJ) and needs to be inhibited when over-expressed. In order to study the PARP1 inhibitory effect of fused tetracyclic or pentacyclic dihydrodiazepinoindolone derivatives (FTPDDs) by quantitative structure-activity relationship technique, six models were established by four kinds of methods, heuristic method, gene expression programming, random forester, and support vector regression with single, double, and triple kernel function respectively. The single, double, and triple kernel functions were RBF kernel function, the integration of RBF and polynomial kernel functions, and the integration of RBF, polynomial, and linear kernel functions respectively. The problem of multi-parameter optimization introduced in the support vector regression model was solved by the particle swarm optimization algorithm. Among the models, the model established by support vector regression with triple kernel function, in which the optimal