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PARP1 is one of six enzymes required for the highly error-prone DNA repair
pathwaymicrohomology-mediated end joining (MMEJ) and needs to be inhibited
when over-expressed. In order to study the PARP1 inhibitory effect of fused
tetracyclic or pentacyclic dihydrodiazepinoindolone derivatives (FTPDDs) by
quantitative structure-activity relationship technique, six models were
established by four kinds of methods, heuristic method, gene expression
programming, random forester, and support vector regression with single,
double, and triple kernel function respectively. The single, double, and triple
kernel functions were RBF kernel function, the integration of RBF and polynomial
kernel functions, and the integration of RBF, polynomial, and linear kernel
functions respectively. The problem of multi-parameter optimization
introduced in the support vector regression model was solved by the particle
swarm optimization algorithm. Among the models, the model established by
support vector regression with triple kernel function, in which the optimal R2 and
RMSE of training set and test set were 0.9353, 0.9348 and 0.0157, 0.0288, and
R2

cv of training set and test set were 0.9090 and 0.8971, shows the strongest
prediction ability and robustness. The method of support vector regression with
triple kernel function is a great promotion in the field of quantitative structure-
activity relationship, which will contribute a lot to designing and screening new
drug molecules. The information contained in the model can provide important
factors that guide drug design. Based on these factors, six new FTPDDs have been
designed. Using molecular docking experiments to determine the properties of
new derivatives, the new drug was ultimately successfully designed.
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1 Introduction

Breast cancer is a common malignant disease in breast tissue. In 2020, more than
2.26 million people were diagnosed with the disease and about 685 thousand people were
killed by it (Sung et al., 2021). Because of the high incidence rate and seriousness of breast
cancer, developing new drugs with good therapeutic effects has become a hot research spot.
The size of the breast cancer drug development market has totaled 20.2 billion dollars in
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2019 and is forecast to grow to 47.7 billion in 2029 (Wilcock and
Webster, 2021), which makes breast cancer drug development
become one of the biggest disease research fields.

Although new breast cancer drugs have been developed
continuously, the efficiency of most drugs has been limited due
to side effects and the lack of specificity. Since Bryant et al. proposed
the concept of synthetic lethality effect in 2005, the anti-tumor effect
of Poly (ADP-ribose) polymerase (PARP) inhibitors has been
gradually revealed.

The PARP family, known as diphtheria-toxin-like ADP-
ribosyltransferases (ARTDs), is a family of 17 enzymes that
share a common catalytic ADP-ribosyl transferase (ART)
motif (Zong et al., 2022). PARP can be activated by
recognizing DNA fragments of structural damage and then
perform base excision repair (Zong et al., 2022). It plays an
important role in DNA single-strand break (SSB) repair,
programmed cell death regulation, and DNA stability
maintenance (Ohmoto and Yachida, 2017). Among the
17 kinds of PARP, PARP1 and PARP2 are the two most
important subtypes of the PARP family (Huang and Yin,
2021). And at present, PARP inhibitors mainly inhibit these
two subtypes.

PARP1 is one of six enzymes required for the highly error-
prone DNA repair pathway microhomology-mediated end joining
(MMEJ) (Sharma et al., 2015). When PARP1 is upregulated, MMEJ
is increased, causing genome instability (Muvarak et al., 2015).
Ordinarily, deficient expression of a DNA repair enzyme results in
increased un-repaired DNA damage which leads to mutations and
cancer through replication errors. However, the accuracy of MMEJ
repair mediated by PARP1 is significantly low. Therefore, it seems
that cancer is more likely to occur due to over-expression rather
than under-expression (Sharma et al., 2015).

In breast cancer cells, the breast cancer susceptibility gene
BRCA1 and BRCA2 genes are significant tumor suppressors for
DNA double-strand breaks (DSBs) by homologous recombination
(HR) and their mutation easily causes genetic instability and leads to
the emergence of tumor cells (Luo et al., 2021).

PARP inhibitors can selectively kill tumor cells with HR
function defects caused by RBCA1 and BRCA2 genes mutation
by inhibiting PARP activity and leading to DNA repair failure, but
have no effect on normal cells, which is synergistic lethal effect (Lord
and Ashworth, 2017). PARP inhibitors show good curative effects in
breast cancer therapies, which makes the research of PARP
inhibitors become a significant field in breast cancer drug research.

In the experiments shown in literature (Wang H. et al., 2020),
fused tetracyclic or pentacyclic dihydrodiazepinoindolone
derivatives (FTPDDs) were studied as PARP inhibitors, and
Pamiparib was found with great effects in inhibiting the activity
of PARP1. Therefore, some FTPDDs that have a similar structure to
Pamiparib should be deeply studied to find PARP1 inhibitors with
better therapeutic effects and fewer side effects. The inhibitory
activity on PARP can be evaluated by PARP IC50. Therefore,
obtaining PARP1 IC50 values of FTPDDs is of great importance
for screening out PARP1 inhibitors with high biological activity and
low toxicity, which will contribute to screening out FTPDDs with
good therapeutic effects subsequently. Since the traditional methods
of measuring IC50 consume a lot of manpower and material
resources, quantitative structure-activity relationship (QSAR)

technique is used to predict the IC50 values of compounds
quickly and accurately.

QSAR is a method that uses mathematical models to describe
the relationship between molecular structure and certain biological
activity (An et al., 2006; Chen and Si, 2021). The basic assumption of
QSAR is that the molecular structure of the compound decides its
physical, chemical, and biological properties which subsequently
decide its biological activity (Roy and Das, 2014). And the biological
and chemical properties of compounds are portrayed by molecular
descriptors in QSAR model (Jin et al., 2022; LI et al., 2023).
Therefore, QSAR can be used to predict the biological activity of
new compounds by mathematical models based on precisely
selected molecular descriptors (Vilar et al., 2008; Si et al., 2022).
QSAR shows a strong ability in new drug research, which optimizes
pharmacodynamic characteristics and reduces expensive
experiments in the meanwhile. Therefore, QSAR can be used to
predict the IC50 of PARP1 inhibitors to screen out new potential
drug molecules quickly and accurately.

In this study, six QSARmodels based on three kinds of methods,
heuristic method (HM), gene expression programming (GEP),
random forest and support vector regression (SVR) with single,
double, and triple kernel function, were established and compared
after calculating molecular descriptors to predict the PARP1 IC50 of
FTPDDs. The single, double, and triple kernel functions were RBF
kernel function, the integration of RBF and polynomial kernel
functions, and the integration of RBF, polynomial, and linear
kernel functions respectively. Among the results of the models,
the predictions of the model constructed by SVR with triple kernel
function were consistent with the measured values best. The method
of SVR with triple kernel function is a big breakthrough and will
contribute a lot to designing and screening new drug molecules.
Activity prediction andmolecular docking experiments were applied
to newly designed multiple compounds. The experimental results
indicated that the newly designed compounds showed better
performance.

2 Computational details and theories

2.1 Data set

The data set of 57 FTPDDs was collected from literature (Wang
H. et al., 2020) and listed in Tables 1–4 according to the main
structure of compounds. It included two parts, the structures of
57 FTPDDs and their PARP1 IC50 values which were measured by
the same experimental method under the same experimental
conditions. Using simple random sampling, the original data is
randomly divided into training set and test set according to the ratio
of 4:1. The data set was randomly separated into a training set of
45 compounds and a test set of 12 compounds. The training set was
used to establish the models and the test set was used to evaluate the
prediction ability of the constructed models. For multi model
regression evaluation, small datasets are susceptible to noise and
randomness, and each model may only have a small number of
samples for training, resulting in unstable model results. In addition,
overfitting is easy to occur if each model has more degrees of
freedom to adjust. Therefore, cross validation is a good method
to ensure the stability of machine learning models.
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In order to test the robustness of the models, K-fold cross-
validation was adopted. The procedure involves splitting the original
data evenly into K parts, and sequentially using one of these parts as
the validation set while using the remaining K-1 parts as training
sets. This process is repeated K times, and the average of the K
validation results is used to evaluate the model’s performance.

2.2 Descriptor calculation

The steps of calculating molecular descriptors of compounds are
as follow.

The first three steps include drawing molecular structures of all
compounds in ChemDraw software and performing preliminary
optimization of the structures of the compounds by MM +
molecular mechanics force field and more precise optimization
by semi-empirical PM3 (Klein et al., 2006) method successively
in HyperChem software (HyperChem, 1994). After the three steps,
the lowest energy structures are obtained.

The remaining two steps consist of putting files obtained from
HyperChem into MOPAC software (Stewart, 1989) to generate
MNO files and then using MNO files as the input of the
CODESSA software to calculate five classes of molecular
descriptors: constitutional, topological, geometrical, electrostatic,
quantumchemical (Wright et al., 1997).

2.3 Statistical parameters

The coefficient of determination (denoted R2 or r2) and root
mean square error (RMSE) were used to evaluate the models. R2 is a
measure of the goodness of fit of a model. In regression, the R2 is a
statistical measure of how well the regression predictions
approximate the real data points. The closer R2 is to 1, the more
it indicates that the regression prediction fits the data (Glantz and
Slinker, 1990). Furthermore, to verify the robustness of the models,
the coefficient of determination of K-fold cross-validation (R2

cv) is
used in the evaluation of the results, which is the average of all R2

values in K cross validation experiments (Allen, 1974).
RMSE is a frequently used measure of the differences between

values predicted by a model or an estimator and the values observed.
The RMSE represents the square root of the second sample moment
of the differences between predicted values and observed values or
the quadratic mean of these differences (Hyndman and
Koehler, 2006).

Mean Absolute Error (MAE) is a measurement used to measure
the average absolute difference between predicted and true values in
regression problems. MAE can measure the average error between
predicted and true values. The smaller the value of MAE, the smaller
the average difference between predicted and true values, indicating
a higher accuracy of prediction (Tropsha et al., 2003).

The Concordance Correlation Coefficient (CCC) was developed
as ameasure for the correlation between two sets of data, for instance
a gold standard and a second reading (Sheikhpour et al., 2017).

The external predictivity of QSAR models is commonly
described by employing validation metrics (Roy and Roy, 2008),
such as R2 based metrics, namely, Q2

F1 and Q2
F2 (Zhou and Sun,

1999; Golbraikh and Tropsha, 2002).

2.4 Linear model by HM

After generating molecular descriptors, HM in CODESSA
software was used to accomplish the pre-selection of the
descriptors and build the linear model (Si et al., 2021).

HM in CODESSA software has the advantages of high
efficiency and no limitation to the size of the data set. After
calculating all molecular descriptors, preprocessing
program eliminates 3 types of descriptors that cannot be used:
1) descriptors that not all compounds have; 2) descriptors that
have a small variation in magnitude for all structures; 3) two
collinear descriptors with the correlation coefficient greater than
0.8 (Wang Y. et al., 2020). The number of remaining available
molecular descriptors is marked N. The steps of HM can refer to
literature (Katritzky et al., 1995).

The HM performs descriptors pre-selection by the following
criteria (Katritzky et al., 2023): 1) Fisher F-criteria must be
greater than 1.0; 2) R2 value should be higher than a specified
threshold; 3) Student’s t criterion must exceed a defined value; 4)
duplicate descriptors should have a squared intercorrelation
coefficient below a predetermined level, and the descriptor
with a higher R2 value relative to the property is retained. The
remaining descriptors are then arranged in descending order
based on their correlation coefficients. Any significant
2 parameter correlation identified by the F-criteria is further
expanded recursively into an n parameter correlation until the
normalized F-criteria is no longer higher than the initial value.
The top N correlations which are determined by both R2 and the
F-criterion are then saved.

HM attempts to build a series of linear regression models with
1 to N molecular descriptors and find the optimal one. Molecular
descriptors determined by HM model serve as independent
variables of the non-linear models for the next step (Gao
et al., 2022).

2.5 Non-linear model by GEP

Considering that the relationship among the factors affecting
IC50 of PARP1 inhibitors is complex and usually non-linear, one
non-linear model was established by GEP to predict IC50 values of
the compounds respectively.

As a new algorithm based on genetic algorithm (GA) and genetic
planning (GP), GEP was proposed by Ferreira in 2001 (Ferreira,
2001). More details about GEP algorithm can refer to literature
(Zhou and Sun, 1999). And the steps of GEP can refer to literature
(Ferreira, 2001; Liu et al., 2004).

The following schematic Figure 1 depicts the essential process of
gene expression programming. Initially, a certain number of individuals
(known as the initial population) have their chromosomes generated
randomly. Subsequently, these chromosomes are expressed into
syntactically correct programs, and each individual’s fitness is
evaluated against a set of fitness cases, also referred to as the
selection environment (Ferreira, 2001). Based on their fitness,
individuals are selected and modified for reproducing offspring with
new traits. These newly individuals undergo the same developmental
process, including genome expression, evaluation within the selection
environment, selection, and modified reproduction (Ferreira, 2006).
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The process is repeated for a specific number of generations or until a
satisfactory solution is obtained.

GEP is widely used in science and Ferreira developed Automatic
Problem Solver (APS) (Gepsoft, 2023), a commercial software

integrated with GEP algorithm. The software can encode the
appropriate molecular descriptors which are selected by HM and
most related to inhibitor activity, and establish a non-linear model to
predict IC50 values of FTPDDs.

FIGURE 1
The process of gene expression programming.
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2.6 Non-linear model by RF

Random forest regression is an ensemble learning algorithm that
performs regression tasks by constructing multiple decision trees and
integrating their prediction results. In random forest, each decision tree
is trained on randomly selected subsets of the data, reducing the risk of
overfitting. The final regression result is obtained by averaging or
weighted averaging the predictions of the individual trees.

The algorithm works by randomly selecting samples from the
training set to form subsets, increasing the diversity of the models.
At each node of each decision tree, only a portion of randomly
selected features are considered, improving the robustness of the
models. Decision trees are built using recursive partitioning based
on the least impurity. In random forest, the optimal splitting points
of each tree are determined by calculating their Gini coefficients
which are the measurements of the purity of a classification model.

The value range for the Gini coefficient is from 0 to 1. A larger
value indicates a higher purity of the model. The classifier for
random forest is the CART tree. The Gini coefficient of the
CART tree can be represented by Eq. 1.

Gini p( ) � 2p 1 − p( ) (1)

When traversing each segmentation point of each feature, it is
assumed that using the feature A= a. The set D is divided into two parts,
namely, D1 (sample set that satisfies A= a) andD2 (sample set that does
not satisfy A = a). The Gini coefficient of D under this feature is Eq. 2.

Gini D,A( ) � D1| |
D| | Gini D1( ) + D2| |

D| | Gini D2( ) (2)

Random forest regression has several advantages such as
handling high-dimensional and large-scale datasets, having good
generalization performance to avoid overfitting, and handling
missing and abnormal values. Additionally, it has strong fitting
ability for data with nonlinear relationships. The non-linear model
established through random forest can effectively predict the IC50

value of FTPDDs.

2.7 Non-linear models by SVR

In order to build the model with stronger prediction ability,
three non-linear models were established based on SVR with single,
double, and triple kernel function respectively.

SVR is an important application branch of support vector
machine (SVM). SVM, proposed by Vladimir N. Vapnik and
Alexey Ya. Chervonenkis in 1964, is a generalized linear classifier
(GLC) that classifies the data into binary categories under supervised
learning. When SVM is applied in the field of regression analysis, it
is often called SVR (Wang Y. et al., 2020). Unlike SVM which
maximizes the distance from the hyperplane to the points closest to
it, SVR minimizes the total deviation from all sample points to the
hyperplane (Du and Wu, 2003).

A significant advantage of SVR is its simplicity in mathematical
calculations, as it transforms nonlinear problems in the input space into
linear problems in a high-dimensional feature space. Another advantage
is that SVR can utilize probability rules to train multiple classifiers on
different types of data, thus enhancing prediction accuracy bymeasuring

the classification confidence. Compared to other regression techniques,
SVR demonstrates lower computational complexity.

Some parameters of support vector machines play an important role
in model training. The penalty constant (C) is a regularization parameter
that controls the degree of punishment formisclassified samples. A larger
C value can lead to stricter classification, which may lead to the model
overfitting the training data. A smaller C value allows for more
classification errors, which may lead to better generalization ability.

Slack variable, which introduces tolerance that allows some
samples to be at the boundary of classification errors or intervals.
These parameters are usually used in conjunction with C to adjust
the degree of cosmetic error.

For certain kernel functions, such as polynomial kernels and
RBF kernels, there can also be additional parameters, such as the
order of the polynomial, the bandwidth of the Gaussian kernel, etc.
These parameters need to be adjusted according to the
characteristics of the data. For imbalanced datasets, the
importance of different categories can be balanced by adjusting
their weights. This is very useful when dealing with imbalanced data.

The basic idea of SVR is to use a predetermined non-linear
constructor to map the input vector to the high-dimensional feature
space and regress in the mapped space. To avoid complex mapping
operations in high-dimensional feature space, kernel function is
used to realize inner product operation in the original space (Fang
and Zhao, 2013).

Referring to literature (Deng and Tian, 2004), the primal
problem of standard ε-SVR is as follows.

min
ω∈R;ξi ,ξ

*
i ,b∈R

1
2
ω‖ ‖2 + C

l
∑l
i�1

ξi + ξ*i( ),
s · t · ω · xi( ) + b( ) − yi ≤ ε + ξ i,

yi − ω · xi( ) + b( )≤ ε + ξ*i ,

ξ*i , ξ i ≥ 0, i � 1, 2, . . . , l.

(3)

In Eq. 3, ξi(*) means (ξ1, ξ1*, . . . , ξk, ξk*)T, which is the slack
variable. b is the offset. ε is the maximum error allowed in regression.
C is the penalty constant. The problem in Eq. 3 can be transformed
into its dual problem:

min
α *( )∈R2l

1
2
∑l
i,j�1

α*i − αi( )( α*j − αj( )K xi,xj( ))+

ε∑l
i�1

α*i + αi( ) −∑l
i�1
yi α*i + αi( ),

s · t ·∑l
i�1

αi − α*i( ) � 0,

0≤ αi, α*i ≤
C

l
, i � 1, 2 . . . , l.

(4)

In this Eq. 4, α(*) means (α1, α1*, . . . , αl, αl*)T which is
Lagrange multiplier and K(xi, yi) is kernel function. By solving
this dual problem, the answer to the primal problem and the final
regression decision function are obtained.

According to the quadratic programming method in the
optimization theory, the parameters α1 and α1* can be obtained in
solving the dual problem. The parameter b can be gotten by using the
Karush-Kuhn-Tucker (KTT) condition. In this way, the expression of
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the fitting function on the sample set f(x) can be constructed. Its form
is given in Eq. 5. The coefficient (αi − α*i ) ≠ 0 is the support vector.

f x( ) � ∑l
i�1

αi,−α*i( )*K xi, xj( ) + b (5)

2.8 Kernel function of SVR

Kernel function has a great influence on the fitting effect of the
SVR model. As mentioned in the part of establishing non-linear
models by SVR, the job of the kernel function that realizes the inner
product operation in the original space is to simplify calculation in
high-dimensional space. Kernel function maps each sample point to
an infinite-dimensional feature space to make the linearly
inseparable data linearly separable (Wang and Chen, 2014). The
popularly used kernel functions include linear kernel function, RBF
kernel function, polynomial kernel function, and sigmoid kernel
function (Mo et al., 2020). The first three kernel functions have been
widely applied when establishing models by SVR and their
introduction is as follows (Sheikhpour et al., 2018).

Linear kernel function is the simplest kernel function, which
only calculates the inner product of two feature vectors. The
accuracy of linear kernel function is not high (Mo et al., 2020)
but it can be used to find which feature vectors are important with
little computation. The form of linear kernel function is as follows.

KL x, xi( ) � xTxi( ) (6)

RBF kernel function, a certain kind of scalar function that’s
radially symmetric, is the most widely used kernel function. RBF
kernel function has a strong local learning ability, which means it
can well characterize the local property of the sample, but its
generalization ability is not good enough (Fang and Zhao, 2013;
Ding et al., 2021). The form of RBF kernel function is given in Eq. 7,
where the constant σ is the kernel radius of RBF kernel function.

KRBF x, xi( ) � exp − x − xi‖ ‖2
2σ2

{ } (7)

The polynomial kernel function is a commonly used kernel
function. The generalization ability of polynomial kernel function is
strong, but its local learning ability is not good. The form of
polynomial kernel function is given in Eq. 8, where the constant
q is the order of polynomial kernel function.

KPoly x, xi( ) � xTxi( )[ ]q (8)

The process of establishing three models of SVR with different
number of kernel functions is as follows.

First, SVR with single kernel function was used to establish the
regression model. RBF kernel function is usually selected as the
single kernel function due to its good local learning ability. The form
of single kernel function is as follows.

Ksin gle � KRBF (9)

In order to obtain the kernel function that enhances the
learning and generalization ability of the model by SVR, Smits
et al. proposed the multiple kernel function (Fang and Zhao,
2013). There are many combinations of kernel function, but the

obtained multiple kernel function must satisfy Mercer’s
Theorem (Smits and Jordaan, 2002).

According to the closure characteristic of kernel functions, the
derivation principle of mixed kernel functions can be strictly proven.
Take X1, X2, · · ·, Xm{ } ⊆ X ⊆ Rn, the Gram matrices
corresponding to X1, X2, · · ·, Xm{ }K1 and K2 are both positive
definite matrices. If c ⊆ Rn is chosen, then c′(αK1 + βK2)c = c′αK1c +
c′βK2c ≥ 0 indicating that the Gram matrices corresponding to
αK1 + βK2 are all positive definite. From this, it can be concluded
that αK1 + βK2, α, β≥ 0 is kernel function. In addition, by limiting
α + β � 1, a stationary mixed kernel function can be constructed.
Because the regression ability and generalization ability of SVR
model are a pair of mutually balanced factors, the SVR model
obtained by mixed kernel functions with different properties in a
certain proportion can balance the performance of both aspects.

Considering that the generalization ability of polynomial kernel
function is strong, RBF kernel function and polynomial kernel
function were integrated as double kernel function to establish
the SVR model with enhanced generalization ability (Yang et al.,
2023). The form of double kernel function is given in Eq. 10, where
the value of the variable a ranges from 0 to 1.

Kdual � a*KRBF + 1 − a( )*Kpoly (10)

Considering linear kernel function can capture key vectors at the
cost of little computation and therefore help to enhance the
regression effects of the model, linear kernel function was added
to the previous double kernel function, which formed triple kernel
function to establish the regression model with better learning and
generalization ability again. The form of triple kernel function is
given in Eq. 11, where variables a and b are positive coefficients and
the sum of a and b is less than or equal to 1.

Ktriple � a*KRBF + b*Kpoly + 1 − a − b( )*KL (11)

Therefore, three models based on SVR with different numbers of
kernel functions were constructed to predict the IC50 values
of compounds.

2.9 SVR model optimized by particle swarm
optimization

The values of parameters when establishing SVRmodel have a great
influence on the learning and generalization ability of the model. In the
process of constructing themodel by SVRwith triple kernel function, six
parameters need to be optimized: the insensitive parameter ε, the penalty
factor C, the kernel radius of RBF kernel function σ, the coefficient of
RBF kernel function a, the order of polynomial kernel function q, and
the coefficient of polynomial kernel function b. And in the process of
establishing the models by SVR with single and double kernel function,
the first three and five parameters need to be optimized respectively.
Their searching ranges are as follows. ε ∈ [0, 0.8], C ∈ [0.001, 200],
σ ∈ [0.001, 5], a ∈ [0, 1], q ∈ 1, 2, 3{ }, b ∈ [0, 1 − a].

However, the optimization of parameters when building
model by SVR with single kernel function has already become
a research difficulty. As for the model by SVR with multiple
kernel function, with the number of parameters increasing, it is
more difficult to optimize the parameters. Considering that

Frontiers in Pharmacology frontiersin.org06

Xue et al. 10.3389/fphar.2024.1257253

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1257253


traditional parameter-searching methods including the grid
search method and the random search method are inefficient,
particle swarm optimization (PSO) algorithm was used to
optimize parameters in the process of establishing three
models by SVR.

As a kind of bionic optimization algorithm, PSO was proposed
by social psychologist Kennedy and electrical engineer Eberhart in
1995. The idea of PSO is based on birds swarm finding the optimal
destination by sharing collective information. PSO algorithm takes
random values in high-dimensional space to initialize the position
and velocity information of particles and update the information by
self and group learning of particles. In PSO algorithm, particles only
transmit the optimal information in the process of iterative process,
so the PSO has the advantages of fast search speed and convergence
rate (Wang, 2022).

PSO adopts the velocity-position model, in which the forms of
position and velocity of particle i in D-dimensional solution space
are as follows.

Xi � xi1, xi2, xi3, . . . , xiD( ) (12)
Vi � vi1, vi2, vi3, . . . , viD( ) (13)

To characterize which particle is in the best position among all
particles, RMSE is used to evaluate the fitness of each particle. The
smaller RMSEmeans better position and fitness. The best position of
particle i is recorded as pibest and the global best position is recorded
as gbest. In each iteration, the particle tracks pibest, gbest and its
previous state to adjust the position and velocity at the current time.
The iterative equations are as follows.

vi k + 1( ) � w*vi k( ) + c1*rand( )* pibest − xi k( )( )
+ c2*rand( )* gbest − xi k( )( ) (14)

Xi k + 1( ) � Xi k( ) + Vi k + 1( ) (15)
In the Eq. 15, Vi(k), Vi(k + 1), Xi(k), Xi(k + 1) are the velocity

and position of the particle i at the current time and the next time
respectively; rand( ) is a random number in range [0, 1]. c1 and c2 are
learning factors which are usually set to 2. ω is the weight factor and the
value of ω automatically decreases with the iteration of the algorithm to
accelerate the convergence rate. It is generally defined as:

ω � ωmin + itermax − iter( )* ωmax − ωmin( )/itermax (16)
ωmax, ωmin are the maximal and minimal weight factors respectively,
iter is the current number of iterations, and itermax is the maximum
number of iterations.

Referring to literature (Xiong and Xu, 2006), The steps of
parameter optimization by PSO are as follows.

Step 1: Initialize parameters of PSO including population size and
the maximal and minimal weight factors ωmax and ωmin. Set the
maximum number of iterators itermax.

Step 2: Each particle is randomly assigned a set of position
information X(i,0) and velocity information V(i,0). Set the
individual best position pibest of each particle to its current
position X(i,0).

Step 3: RMSE values of each particle are calculated to evaluate
fitness. The initial global best position gbest is set to the position of
the particle with the best fitness.

Step 4:Update the position and velocity of each particle by iterative
calculation according to Eqs 14–16 and calculate the RMSE of each
particle to evaluate fitness.

Step 5: Compare the fitness of each particle with the fitness of its pibest.
If the fitness is better than that of pibest, pibest is updated to the current
position, otherwise the original value of pibest remains unchanged.

Step 6: Compare the updated pibest of each particle with gbest. If
pibest is better than gbest, gbest is updated to pibest, otherwise the
original value of gbest remains unchanged.

Step 7: Judge whether the termination conditions are met. If the
maximum number of iterations is reached or gbest is not changed,
terminate the iteration, otherwise return to step 4.

2.10 Property prediction and
molecular docking

It is essential for newly designed molecules not only to exhibit
efficacy against the target but also to possess favorable physical and
chemical properties. Property explorer is a complimentary tool that
predicts physical, chemical, and toxicological properties of
molecules to aid in designing active drug compounds (Song
et al., 2017). This tool enables researchers to construct new
molecular structures and analyze their attribute values
automatically. It provides valuable information on properties
such as molecular weight, Partition coefficient (LogP), water
solubility, topological polar surface area (TPSA), drug similarity,
toxicity assessment, overall drug score, etc.

Macromolecular docking has become a key step in the drug
development process (Chen et al., 2022a), facilitating the
identification of potential therapeutic molecules and predicting
ligand-target interactions at the molecular level (Chen et al.,
2022b). To explore these interactions between the new PARP
inhibitor and PARP1 at the binding site, the Sybyl-X
2.1 software package was employed (Li et al., 2012) This
software allowed users to generate potential interactions
between the molecules and proteins, as well as exploring the
expected binding sites for molecular fitting.

The macromolecular docking technique was utilized to
investigate the potential interaction between the new PARP
inhibitor and the binding site of PARP1. Firstly, the chemical
structure was imported into Sybyl-X software for calculation and
optimization with parameters “max interactions” and “max
display” as 1000 and 0.01, respectively. The molecules were
then assigned Gasteiger-Hückel charges and minimized using
the Tripos force field until convergence reached 0.05 kcal/mol/Å
(Song et al., 2023).

Subsequently, the protein was imported into Sybyl-X software
for hydrogenation, charging, and optimization. Unnecessary ligands
and water molecules were removed to enable proper binding with
the protein targets.

Finally, the docking results were imported into PyMol software
for image optimization, and the amino acid residues and hydrogen
bonds were labeled by same software.
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TABLE 1 Measured and predicted lg (IC50) of FTPDDs 1–16. *The compounds of the test set.

Compound R1 R2 R3 A ring Measured
lg (IC50)

Predicted lg (IC50)

HM GEP RF SVR with
single kernel
function

SVR with
double
kernel
function

SVR with
triple kernel
function

1* H H H 1.0086 1.0480 1.4606 1.0899 1.2200 1.0728 1.2200

2 H F H 0.7782 1.0871 0.9972 0.8096 0.9442 0.9517 0.9373

3 H H F 1.3802 1.2053 1.0629 1.0685 1.3561 1.3675 1.3563

4 H F H 0.6902 0.7277 0.6955 0.6945 0.6659 0.6774 0.6659

5* H H H 0.7993 0.7922 0.9886 0.8630 0.8140 0.7881 0.8140

6 H F H 0.7160 0.9350 0.8954 0.6831 0.8124 0.8201 0.7962

7 F H H 0.9590 1.0478 1.0962 0.9185 0.9346 0.9459 0.9349

8 H F H 1.4594 1.1364 1.0550 0.9721 1.0666 1.0749 1.0782

9* H F H 0.5185 0.7771 0.7436 0.6377 0.6878 0.7119 0.6878

10 H F H 0.7634 0.6953 1.1288 0.8384 0.7878 0.7760 0.7875

11 H F H 1.4082 1.1383 1.0468 0.9584 1.1978 1.2552 1.2064

12* H H H 0.8261 0.8217 1.0543 0.8586 0.9331 0.9033 0.9331

13* H F H 0.8129 0.6934 0.7544 0.8265 0.6387 0.6627 0.6387

14 H F H 1.1173 1.0121 0.9203 1.0431 1.1414 1.1301 1.0937

(Continued on following page)
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TABLE 1 (Continued) Measured and predicted lg (IC50) of FTPDDs 1–16. *The compounds of the test set.

Compound R1 R2 R3 A ring Measured
lg (IC50)

Predicted lg (IC50)

HM GEP RF SVR with
single kernel
function

SVR with
double
kernel
function

SVR with
triple kernel
function

15 H F H 1.0569 1.1801 1.1249 0.9004 1.0812 1.0693 1.0805

16 H F H 1.0253 0.7540 0.8502 1.0659 1.0016 1.0128 1.0013

TABLE 2 Measured and predicted lg (IC50) of FTPDDs 17–34. *The compounds of the test set.

Compound R1 R2 R3 Measured
lg (IC50)

Predicted lg (IC50)

HM GEP RF SVR with
single
kernel

function

SVR with
double
kernel

function

SVR with
triple kernel
function

17 H H CH3 1.1987 1.0851 0.9446 1.2289 1.2230 1.2039 1.2223

18 H CH3 CH3 1.1818 0.9383 0.8455 0.9208 1.1011 1.1694 1.1581

19 H H CH2CH2N(CH3)2 1.1761 1.1981 1.2457 0.9703 1.2482 1.2250 1.2478

20 H H CH2CH2N(CH2CH3)2 1.1931 0.7624 0.7404 1.0806 0.7965 0.8780 0.8462

21* H H CH2CH2NBn2 2.9031 2.7748 2.2265 1.8054 2.3226 2.5306 2.3226

22 H H 1.0212 0.9255 0.7426 0.9875 0.8878 1.0086 0.9971

23 H H 1.0128 1.0061 1.1865 1.0120 0.9883 1.0005 0.9891

24 H H 2.5441 2.3479 2.4532 2.4998 2.5196 2.3828 2.4649

(Continued on following page)
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3 Results and discussion

3.1 Lg (IC50) of FTPDDs

3.2 Results of HM

540 molecular descriptors were calculated in CODESSA
software. To select the molecular descriptors most related to
PARP1 inhibitors, a series of linear models with the increasing
number of molecular descriptors were established. Figure 2 shows
the influences of the number of descriptors on R2, R2

cv, and the
standard deviation (S) of all compounds.

As shown in Figure 2, the values of R2 and R2
cv of all compounds

were rising with the increasing number of molecular descriptors.

However, when the number of descriptors reached eight, adding
another descriptor did not significantly improve the statistics of the
model, so the eight-parameter model can be regarded as the optimal
one. The eight selected molecular descriptors and their physical-
chemical meanings are shown in Table 5, and their R2 matrix is
shown in Table 6. The 8-parameter model is discussed in details
as follows.

R2 of training set and test set in HMmodel were 0.7550, 0.9014 and
their RMSE were 0.2327, 0.2378. The optimal prediction results by HM
model are shown in Figure 3. In addition, R2

cv of training set and test set
in HM model are 0.7773 and 0.6798.

3.3 Results of GEP

The same eight descriptors were imported into APS software to
search the ideal model by GEP. Then the optimal model was

TABLE 2 (Continued) Measured and predicted lg (IC50) of FTPDDs 17–34. *The compounds of the test set.

Compound R1 R2 R3 Measured
lg (IC50)

Predicted lg (IC50)

HM GEP RF SVR with
single
kernel

function

SVR with
double
kernel

function

SVR with
triple kernel
function

25 H CH3 CH2CH2N(CH3)2 0.7404 0.8768 0.8938 0.8139 0.8862 0.9145 0.8930

26 F CH3 CH2CH3N(CH3)2 0.8129 1.0090 0.7815 0.7898 0.8372 0.8260 0.8372

27 H CH3 CH2CH2N(CH2CH3)2 0.5185 0.6547 0.8305 0.8301 0.7285 0.6997 0.6425

28 H CH3 CH2CH2NBn2 2.7076 2.8163 2.6808 2.3985 2.6835 2.6951 2.6842

29 H CH3 0.8195 0.9021 0.8349 0.8195 0.7954 0.8086 0.7961

30 H CH3 0.4624 0.7450 0.8832 0.7651 0.6989 0.7135 0.6598

31 H CH3 2.2788 2.0614 2.1938 2.2788 2.2725 2.2663 2.2547

32 H CH3 1.3617 0.9713 1.0690 1.2968 1.3373 1.3487 1.3377

33 H CH3 1.4314 1.8920 1.0923 1.4314 1.5439 1.4441 1.4552

34* H CH3 CH2CH2 NHCH3 0.8451 1.0300 0.9006 0.8653 0.9870 1.0752 0.9870
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TABLE 3 Measured and predicted lg (IC50) of FTPDDs 35–54. *The compounds of the test set.

Compound R1 R2 Measured lg
(IC50)

Predicted lg (IC50)

HM GEP RF SVR with
single kernel
function

SVR with
double kernel

function

SVR with triple
kernel

function

35 H H 1.1959 1.0914 1.1661 1.0889 1.1718 1.1834 1.1725

36 F H 0.9294 0.7868 0.7288 1.0242 0.8037 0.9158 0.9056

37 F CH3 0.7559 1.0302 0.8291 0.6576 0.7136 0.7432 0.7318

38 F CH2CH3 0.6628 0.7414 0.7206 0.6732 0.6867 0.7006 0.6943

39 F CH2CH2CH3 0.6532 0.9517 0.8863 0.6829 0.7932 0.7153 0.6835

40* H CH(CH3)2 0.8513 0.9240 0.8963 0.8273 0.7244 0.7829 0.7244

41 F CH(CH3)2 0.7076 1.0675 0.8806 0.7076 0.8558 0.8060 0.7999

42* F CH2

CH2CH2CH3

0.5798 0.7356 0.8124 0.6091 0.7469 0.7113 0.7469

43 H 0.5185 0.7679 0.7753 0.5479 0.5685 0.5860 0.5474

44 F 0.3617 0.7052 0.6998 0.3878 0.6200 0.5915 0.5470

45* F 0.9912 0.8559 0.9505 0.6812 0.9069 0.8375 0.9069

46 F 1.4487 1.4786 1.5203 1.3075 1.4730 1.4614 1.4723

47 F 0.6721 1.1065 0.9807 0.6588 0.6962 0.8079 0.6962

48 F 1.2529 0.9978 1.0747 1.0754 1.2285 1.2399 1.2286

49 F 0.8633 0.6836 0.7265 0.8156 0.8391 0.8508 0.8392

50 F 0.9031 0.6838 0.7577 0.7876 0.9277 0.9159 0.9267

51* F 0.9956 0.5959 0.7650 0.9328 0.9403 0.9290 0.9403

(Continued on following page)
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obtained in the 199th generation. R2 of training set and test set in
GEP model were 0.7395, 0.7818 and their RMSE were 0.2520 and
0.2768. R2

cv of training set and test set in GEP model were
0.7302 and 0.6998. The optimal prediction results by GEP model
are shown in Figure 4. The mathematical equation of the non-linear
model built by GEP is as follows.

lg IC50( ) � floor d5( ) + sec d3( ) + d5*d2

+ tan log stic d0*d1( )* −d1( )( )( )* arccot d2( )
+ floor sin d3 − arctan d4( )( ) − floor d7( ) + d1( )( )( )

(17)
In Eq. 17, d0, d1, d2, d3, d4, d5, d6, and d7 represent

MENANNB, MEEROA, MRECCB, MBCM, ANRINA, KA (O3),
HDH/T (QCP), and MRECHB.

3.4 Results of RF

In order to verify the effectiveness of selecting descriptors
through the HM method, RF was applied in the experiment for
feature selection. Firstly, 540 unprocessed molecular descriptors
belonging to 57 FTPDDs were exported from Codessa. Secondly,
all descriptors containing default values were removed. Thirdly,
according to the preprocessing steps of the heuristic algorithm, all
descriptors with high collinearity and irrationality were also
removed. Finally, RF was used to extract features from the
remaining descriptors to select the most important 8 descriptors.
Figure 5 shows the 8 descriptors selected by RF. The comparison
between the descriptors selected by RF and HM was carried out to
verify the effectiveness of the descriptors.

The 8 descriptors filtered out are Max resonance energy for a H-N
bond (MREAH), HASA-2/TMSA [Zefirov’s PC] (HTZP),Wiener index

(WI), Min e-e repulsion for a O atom (MEERAO), Max atomic state
energy for a C atom (MASEAC), Final heat of formation (FHF),Min e-n
attraction for a N-N bond (MENAAN), Min e-e repulsion for a C-H
bond (MEERAC). Min e-e repetition for a O atom and Min e-n
attraction for a N-N bond are the two most important descriptors
selected throughHM. Both descriptors were successfully screened by RF,
demonstrating the effectiveness of the HM algorithm.

Furthermore,5-fold cross-validation was used to obtain an R2
cv

of 0.87 for the training set and 0.86 for the test set. The MAE values
for the training and testing sets are 0.1518 and 0.0821, respectively.
In addition, the RMSE of four ring compounds and five ring
compounds are 0.3078 and 0.3420, respectively, and their R2

values are 0.7203 and 0.9002, respectively.

3.5 Results of SVR

The learning and generalization ability of SVR model
depends on kernel function and the values of parameters. In
the process of establishing models by SVR, there are always two
parameters to be optimized: the insensitive parameter ε and the
penalty factor. The analysis of the influences of the parameters to
the SVR model (Fang and Zhao, 2013) is as follows. ε reflects the
sensitivity of the model to the noise contained in the input
vectors. The larger the ε is, the lower the fitting accuracy of
the model is. C represents the tolerance of the model to the error.
The greater the C is, the higher the fitting accuracy is, which
causes more computation. In addition, if the model is established
by SVR with multiple kernel function, the coefficients of kernel
functions also need to be optimized. Considering the low
efficiency of traditional parameter searching algorithms
including the grid search method and the random research
method when the number of parameters is increasing, PSO

TABLE 3 (Continued) Measured and predicted lg (IC50) of FTPDDs 35–54. *The compounds of the test set.

Compound R1 R2 Measured lg
(IC50)

Predicted lg (IC50)

HM GEP RF SVR with
single kernel
function

SVR with
double kernel

function

SVR with triple
kernel

function

52 H 0.8573 0.7521 0.7321 0.8573 0.8336 0.8448 0.8334

53 F 1.0792 0.7365 0.7139 0.8423 1.0121 0.9618 0.9450

54* F 0.8195 1.0923 0.8548 0.5479 1.0716 1.0080 1.0716
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was employed to find the best combination of parameters. In PSO
algorithm, only the optimal information is transmitted between
particles, which avoids searching all combinations of parameters
and accelerates convergence rate.

SVR with single kernel function is commonly used, in which
RBF kernel function is usually selected. In Eq. 7, the kernel radius σ
represents the mean square deviation of RBF function, that is, the
width of RBF kernel function in the direction of independent
variable. The smaller the σ is, the better the fitting performance
of RBF kernel function is, which leads to poor generalization ability
(Fang and Zhao, 2013). The optimal combination of parameters by
PSO is as follows.

ε, C, σ( ) � 0.024, 4.132, 0.758( )
The optimal prediction results of the model established by SVR

with single kernel function are given in Figure 6. R2 of training set
and test set in the model were 0.9114 and 0.8599 and their RMSE
were 0.0215 and 0.0491 respectively. In addition, R2

cv of training set
and test set in the model were 0.8223 and 0.7815.

Results showed that R2 of training set was about 0.06 more than
that of test set in the model established by SVR with single kernel
function, whichmeant the model had an unsatisfactory generalization
ability. Therefore, polynomial kernel function was integrated with
RBF kernel function to establish the model by SVRwith double kernel
function. Therefore, the coefficient of RBF kernel function a and the
order of polynomial kernel function q also need to be optimized. The
optimal combination of parameters by PSO is as follows.

ε, C, σ, a, q( ) � 0.013, 0.658, 0.328, 0.51, 2( )

The ratio of RBF kernel function to polynomial kernel function was
0.51:0.49, which meant RBF kernel function and polynomial kernel

function play almost equal roles. The optimal prediction results of the
model established by SVR with double kernel function are given in
Figure 7. R2 of training set and test set in the model were 0.9259 and
0.9175 and their RMSEwere 0.0180 and 0.0289 respectively. In addition,
R2

cv of training set and test set in the model were 0.8989 and 0.8712.
However, results showed that both R2

cv of training set and test
set were less than 0.9 in the model established by SVR with double
kernel function, which meant the learning and generalization ability
of the model still needed to be improved. As mentioned before,
linear kernel function can improve the regression ability of the
model, so linear kernel function, polynomial kernel function, and
RBF kernel function composed triple kernel function, which formed
a novel SVR model with better learning and generalization ability.
The optimal combination of parameters by PSO is as follows.

ε, C, σ, a, q, b( ) � 0.024, 1.123, 0.332, 0.31, 2, 0.58( )

The ratio of RBF kernel function, polynomial kernel function,
and linear kernel function was 0.31:0.58:0.11, which indicated that
polynomial kernel function played the most important role in
realizing inner product operation of kernel function. The optimal
prediction results of SVR with triple kernel function are given in
Figure 8. R2 of training set and test set in the model were 0.9353 and
0.9348 and their RMSE were 0.0157 and 0.0228 respectively. In
addition, R2

cv of training set and test set in the model were
0.9090 and 0.8971.

3.6 Design of new FTPDDs

Through the analysis of the molecular descriptors adopted in
models, the structural factors that influence the IC50 values of the

TABLE 4 Measured and predicted lg (IC50) of FTPDDs 55–57. *The compounds of the test set.

Compound R1 A ring Measured lg
(IC50)

Predicted lg (IC50)

HM GEP RF SVR with single
kernel function

SVR with double
kernel function

SVR with triple
kernel function

55 H 0.9138 0.9582 1.0044 0.9069 0.8895 0.9262 0.9379

56 F 0.7076 0.9856 0.8237 0.7244 0.7324 0.7202 0.7316

57 F 1.8633 1.3363 1.1642 0.8030 1.3451 1.3750 1.4129
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FTPDDs were identified. The non-standardized coefficients in table
2 represent the slope of the regression equation for each independent
variable and indicate the magnitude of change in the dependent
variable (IC50) with respect to each independent variable. These
coefficients are not dependent on the unit of the independent
variables and can reveal the influence of various factors on
IC50 activity.

The descriptors included in the HM model provide valuable
insights into the factors related to IC50 activity:

(1) “MENANNB” refers to the interaction force between the electrons
and nucleus in the bond between two nitrogen atoms. Reducing
this value leads to a significant reduction in IC50. (Clementi, 1980).

(2) “MEEROA” represents the minimum recurrence between
electrons in an oxygen atom. As its coefficient in the
HM model is negative, increasing the MEEROA value
results in gradually decrease in the IC50 value.
(Clementi, 1980).

(3) “MRECCB” reflects the maximum response energy of a C-C
bond. In the HM model, it has a positive regression
coefficient, meaning that smaller MRECCB value indicates
stronger inhibitory ability of PARP. (Clementi, 1980).

(4) “MBCM” quantifies the contribution of each atomic orbital in
a molecular orbital to the formation of a chemical bond. In the
HM model, a positive regression coefficient suggests that
smaller MBCM value leads to a lower IC50 value and
higher activity. (Clementi, 1980).

(5) “ANRINA” describes the relative reactivity of nitrogen atoms
as nuclear agents in chemical reactions. The negative
coefficient in the HM model implies that increasing the
ANRINA value leads to gradual decrease in the IC50 value.
(Franke, 1984).

(6) “KA (O3)” reflects the connectivity and arrangement of atoms
in a molecule. The negative regression coefficient indicates

FIGURE 2
Influences of the number of descriptors on R2, R2cv, and S2 of
all compounds.

TABLE 5 The selected descriptors and their physical-chemical meanings and coefficient.

Symbol Physical-chemical meaning Coefficient

MENANNB Min e-n attraction for a N-N bond 0.54386

MEEROA Min e-e repulsion for a O atom −0.19081

MRECCB Max resonance energy for a C-C bond 0.45861

MBCM Max bonding contribution of a MO 7.2924

ANRINA Avg nucleoph. react. index for a N atom −112.51

KA (O3) Kier shape index (order 3) −0.58196

HDH/T (QCP) HA dependent HDCA-2/TMSA [Quantum-Chemical PC] −192.22

MRECHB Max resonance energy for a C-H bond −7.1692

TABLE 6 R2 matrix of the eight descriptors.

Descriptor MENANNB MEEROA MRECCB MBCM ANRINA KA (O3) HDH/T(QCP) MRECHB

MENANNB 1.0000

MEEROA 0.0724 1.0000

MRECCB 0.0479 −0.0651 1.0000

MBCM 0.5892 0.1741 −0.0281 1.0000

ANRINA −0.1022 −0.1146 −0.3241 0.1031 1.0000

KA (O3) 0.5518 −0.1184 0.2525 0.1826 −0.5942 1.0000

HDH/T (QCP) −0.6837 −0.0693 0.0308 −0.5378 −0.0850 −0.5761 1.0000

MRECHB 0.3572 0.0891 0.1132 0.4526 0.0481 −0.0158 −0.1233 1.0000
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TABLE 7 Predicted IC50 by HM and Docking total score of new FTPDDs.

No. FTPDDs Predicted IC50 Total score

44 0.7052 6.3154

44a 0.5546 7.7065

44b 0.5516 6.7748

44c 0.5036 6.8673

44d 0.4402 6.4417

44e 0.3561 6.3002

44f 0.3951 6.8984
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that larger KA (O3) value corresponds to a smaller IC50 value
and higher activity. (Kier, 1985).

(7) “HDH/T (QCP)” describes hydrogen bond interactions on
the molecular surface. A negative regression coefficient
suggests that higher HDH/T (QCP) value leads to a
smaller IC50 value and higher activity. (Clementi, 1980).

(8) “MRECGB” refers to the context of a molecular orbital (MO)
particle in bonding in a chemical molecule or specifications.
In the HMmodel, the negative regression coefficient indicates
that larger MRECGB value results in a smaller IC50 value and
higher activity. (Clementi, 1980).

In summary, the interpretation of the HMmodel and molecular
descriptors has revealed several factors affecting inhibitory activity.
To design new compounds, it is beneficial to reduce polar
interactions between molecular atoms and alter the characteristics
of different charge distributions of N atoms.

To obtain an ideal inhibitor structure, the structural
composition of compound 44 which is the most effective
compound in the literature can be modified based on these
factors. Molecular structure adjustments can focus on the R

region shown in Figure 9. Specifically, changes in the benzene
ring with its 6 C atoms may be favorable for achieving the
desired distribution of different charges.

Some chemical functional groups were incorporated into
positions R1 to R4, utilizing a random combination approach to
minimize polar interactions between atoms. These functional
groups include halogen, hydroxyl, carboxyl, aldehyde,
hydrocarbon, as well as various forms of carbon and
nitrogen atoms.

Through continuous and purposeful adjustments and
combinations, a set of 126 molecules was designed based on analysis
of descriptors in the HM model. Subsequently, the physical and
chemical parameters of the newly designed molecules were
calculated using CODESSA software. By inputting these parameters
into theHMmodel, the IC50 value of eachmoleculewas predicted. If the
predicted IC50 value was lower than that of compound 44, the
corresponding molecule would be selected for further analysis and
macromolecular docking study in the Property explorer applet. Table 7
shows the predicted IC50 by HM and Docking total score of
new FTPDDs.

As a result of the analysis, the predicted IC50 values of six new
compounds indicate that these compounds have preferable

FIGURE 3
Plot of measured and predicted lg (IC50) by HM.

TABLE 8 Predicted IC50 by HM and properties by PEA of newly designed compounds.

No. Pre.IC50 Toxicity Logp Solubility Mol weight TPSA Drug likeness Drug score

44 0.7052 Medium 1.75 −4.13 326.0 77.56 6.72 0.63

44a 0.5546 Medium −0.33 −4.17 342.0 129.6 6.23 0.63

44b 0.5516 Medium −0.35 −4.09 327.0 103.5 6.32 0.64

44c 0.5036 Medium −0.06 −3.18 325.0 101.4 5.99 0.70

44d 0.4402 Medium −0.17 −2.49 338.0 126.2 5.05 0.72

44e 0.3561 Medium −0.61 −3.25 340.0 127.4 5.94 0.69

44f 0.3951 Medium −0.84 −2.56 353.0 151.2 4.99 0.71

FIGURE 4
Plot of measured and predicted lg (IC50) by GEP.

Frontiers in Pharmacology frontiersin.org16

Xue et al. 10.3389/fphar.2024.1257253

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1257253


TABLE 9 RMSD values between the selected docking pose of 7 cmw and the experimental X-ray structure.

No. FTPDDs RMSD (A˚)

44 2.802

44a 2.783

44b 2.841

44c 2.841

44d 2.841

44e 2.841

(Continued on following page)
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properties are worth further research. The predicted IC50 values of
all these compounds were lower than the predicted values obtained
in HM training for compound 44.

3.7 Property prediction of new FTPDDs

In order to predict properties of the new compound, the
Property explorer applet (PEA) was applied in the experiment.
This applet provides real-time predictions of physico-chemical
properties and identification of potential toxicity risks for any
chemical structure drawn. It can evaluate many properties of
compounds, including partition coefficient, water solubility,
topological polar surface area (TPSA), molecular weight, etc.
Table 8 shows the predicted IC50 by HM and properties by PEA
of newly designed compounds.

The partition coefficient, abbreviated P, is defined as a
particular ratio of the concentrations of a solute between the
two solvents and the logP is the logarithm of the ratio. The LogP
value represents the logarithm of the partition coefficient
between n-octanol and water, which is a standard measure of
a compound’s hydrophilicity. It has been established that the
LogP value of compounds with good potential absorption should
not exceed 5.0 (Kwon, 2001).

Water solubility significantly influences the intestinal
absorption and cellular distribution characteristics of
compounds. Higher solubility means better absorption. The
goal of drug design is to obtain compounds with higher water
solubility.

TPSA is the sum of all topological polar regions on themolecular
surface and is closely related to various bioavailability-related
characteristics, such as permeability through the Blood–brain
barrier (Ertl et al., 2000).

Molecular weight plays a role in the biological activity of
compounds. Lower molecular weight compounds are more easily
absorbed and distributed.

Drug similarity is utilized in new drug design to evaluate the
“similarity” of the compound with factors such as bioavailability
(Smith, 2011).

3.8 Molecular docking of new FTPDDs

During the lunar docking experiments, the newly designed
compounds were employed as ligands to dock with PARP (pdb
code 7CMW). Remarkably, compound 44a exhibited the most
favorable performance in the macromolecular docking,
achieving remarkable total score of 7.7065 which
significantly surpassing that of compound 44. The detailed
binding mode of compound 44a is presented in Figure 10,

FIGURE 5
Eight descriptors selected by RF.

FIGURE 6
Plot of measured and predicted lg (IC50) by SVR with single
kernel function.

TABLE 9 (Continued) RMSD values between the selected docking pose of 7 cmw and the experimental X-ray structure.

No. FTPDDs RMSD (A˚)

44f 2.465
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illustrating the formation of two crucial hydrogen bonds with
specific residues.

Based on the docking conformation of compound 44a, the N
atom establishes a hydrogen bond with the residue GLY-863, which
aligns with the binding pattern observed in compound 44.
Additionally, the nitrogen atoms from the newly incorporated
structural component also form hydrogen bonds with SER-904.
The strong bond reaction observed between compound 44a and
PARP suggests that it could potentially serve as a promising
candidate inhibitor for this protease.

Molecular docking requires the preparation of ligands and
protein structures. Maestro is required for Protein Preparation.
Firstly, energy minimization is performed, and then the receptor
is isolated from the protein. Minimize the energy of the
generated compound in Chem3D using MM2, align the
processed compound as a ligand in PyMol, and finally
calculate the RMSD between the generated compound and the
existing ligand (Wang and Zhang, 2023). Table 9 shows RMSD
values between the selected docking pose of 7 cmw and the
experimental X-ray structure.

4 Comparison of different models

To verify the robustness of the models, k-fold cross-validation
was used for model evaluation and the value of k was set to 5. All
optimal predicted results of models based on HM, GEP, RF and SVR
with single, double, and triple kernel function and their R2

cv are
given in Table 10 respectively.

It is obvious that the non-linear model established by SVR
with triple kernel function shows the strongest prediction ability
and model robustness than that of other models. Compared with
the linear model built by HM, nonlinear models can better
describe complicated problems. Compared with GEP which is
easily trapped in the local optimal solution of the problem, SVR
is a convex quadratic optimization method, which makes its
local optimal solution the global optimal one. Compared to RF,
the kernel function of SVR can be selected and adjusted
according to the nature of the problem to adapt to different
data distributions and patterns. Compared with SVR with single
kernel function, the difference between R2 of training set and test
set in the model by SVR with double kernel function decrease
from 0.0515 to 0.0084, which demonstrated the addition of
polynomial kernel function did improve the generalization
ability of SVR model. Compared with SVR with double kernel
function, R2 of training set and test set in the model by SVR with
triple kernel function increased by 0.0094 and 0.0173, which
demonstrated the addition of linear kernel function was helpful
to improve the learning and generalization ability of SVR model.

FIGURE 9
The design strategy mainly focused on the R region of
compound 44.

FIGURE 7
Plot of measured and predicted lg (IC50) by SVR with double
kernel function.

FIGURE 8
Plot of measured and predicted lg (IC50) by SVR with triple
kernel function.
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Among the three models established by SVRwith different numbers
of kernel function, the model established by SVR with triple kernel
function shows the best learning and generalization ability because
kernel functions are complementary. In addition, the differences
between the optimal R2 and R2

cv of training set and test set in the
model by SVR with triple kernel function are 0.0192 and 0.0309 which
are much less than that of other models. It indicates that the model
established by SVR with triple kernel function has strong robustness.

Furthermore, to verify the effect of compounds with different
ring numbers on the predicted results, the original dataset was
divided into tetracyclic compounds and pentacyclic compounds,
and the R2 and RMSE of six models related to these two compounds
were calculated respectively. Table 10 shows that the prediction
results by six models related to pentacyclic compounds better fit the
measured values. R2 of three SVR models related to tetracyclic
compounds improve significantly. Furthermore, the improvement

FIGURE 10
Docking assay of compound 44a with PARP related target (PDB ID: 7CMW).

TABLE 10 Comparison of Statistical parameters of different methods.

Statistical parameters HM GEP RF SVR with single
kernel function

SVR with double
kernel function

SVR with triple
kernel function

R2 Training set 0.7550 0.7395 0.7503 0.9114 0.9259 0.9353

Test set 0.9014 0.7818 0.8002 0.8599 0.9175 0.9348

RMSE Training set 0.2327 0.2520 0.2378 0.0215 0.0180 0.0157

Test set 0.2378 0.2768 0.212 0.0491 0.0289 0.0228

MAE Training set 0.1991 0.2085 0.1518 0.1147 0.0973 0.0973

Test set 0.1828 0.2039 0.0821 0.0928 0.0705 0.0745

R2
cv Training set 0.7773 0.7302 0.8701 0.8223 0.8989 0.9090

Test set 0.6798 0.6998 0.8627 0.7815 0.8712 0.8971

Tetracyclic
compounds

R2 0.8417 0.8231 0.7202 0.9273 0.9493 0.9382

RMSE 0.2342 0.2476 0.3078 0.1587 0.1325 0.1464

Pentacyclic
compounds

R2 0.9546 0.9291 0.9002 0.9702 0.9746 0.9766

RMSE 0.2306 0.2884 0.342 0.1869 0.1727 0.1657

CCC Training set 0.8833 0.8494 0.834 0.9259 0.9387 0.9336

Test set 0.5017 0.42925 0.7839 0.757 0.8052 0.7992

Q2 Training
set

Q2
F1 0.9923 0.9919 0.9962 0.9976 0.998 0.9981

Q2
F2 0.829 0.7429 0.8849 0.9362 0.943 0.9494

Test set Q2
F1 0.9934 0.9928 0.9991 0.9988 0.9991 0.9993

Q2
F2 0.2634 0.0259 0.8094 0.8697 0.8965 0.9178
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of SVR kernel function can better improve the performance of
models related to tetracyclic compounds.

In addition, to demonstrate the external predictive ability of the
model, Table 10 presents the calculation results of the three statistics
Q2

F1, Q
2
F2, and CCC under six different models.

5 Conclusion

In this study, 6 eight-parameter QSARmodels were established by
HM, GEP, RF and SVR with single, double, and triple kernel function
to predict the biological activity of 57 FTPDDs as PARP1 inhibitors
respectively. Compared with other models, the model established by
SVR with triple kernel function shows the strongest prediction ability
and robustness, which indicates that the method of SVR with triple
kernel function has good potential for constructing models to predict
the biological activity of compounds and guiding drug design. In
addition, the PSO algorithm shows a strong parameter-optimized
ability in the process of establishing SVR model due to its
characteristic of high searching speed and fast convergence rate,
which means PSO has good potential for optimizing parameters
when building SVR model. Furthermore, the model established by
SVR with triple kernel function shows 8 important factors that have a
great influence on the biological activity of PARP1 inhibitors, which
will guide new drug design and screening for breast cancer. Six
FTPDDs were designed using these 8 important factors and
molecular docking experiments were conducted on them. The
properties of new derivatives were ultimately verified, and the
effectiveness of the SVR model was also demonstrated.
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