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The sodium leak channel (NALCN) is widely expressed in the central nervous
system and plays a pivotal role in regulating the restingmembrane potential (RMP)
by mediating the Na+ leak current. NALCN was first reported in 1999, and since
then, increasing evidence has provided insights into the structure and functions
of NALCN. As an essential component of neuronal background currents, NALCN
has been shown to be involved in many important physiological functions,
particularly in the respiratory rhythm, as NALCN mutant mice have a severely
disrupted respiratory rhythm and die within 24 h of birth. Many patients with
NALCN mutations also develop serious clinical syndromes, such as severe
hypotonia, speech impairment, and cognitive delay. Recently, emerging
studies have clarified the human NALCN structure and revealed additional
properties and functions of NALCN. For instance, accumulating evidence
highlights that the NALCN is involved in normal sensation and pain. Here, we
review the current literature and summarize the role of the NALCN in
sensation and pain.
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Introduction

Despite the predominant role of potassium leak conductance in maintaining the resting
membrane potential (RMP) of neurons, the RMP of most mammalian neurons is
considerably depolarized to the potassium equilibrium potential, suggesting that other
conductance coexists (Ren, 2011; Lu and Feng, 2012). The sodium leak channel (NALCN) is
widely expressed in neurons of the central nervous system (CNS) and has been confirmed to
contribute to the RMP in neurons and control its excitability (Lu et al., 2007; Lutas et al.,
2016; Shi et al., 2016; Cobb-Lewis et al., 2023). Growing evidence indicates that NALCN is
essential for maintaining many biological functions, such as rhythmic behaviors and
locomotor behaviors, in both mammals and invertebrates (Lu et al., 2007; Xie et al.,
2013; Gao et al., 2015; Yeh et al., 2017; Zhou et al., 2022). Moreover, an increasing number
of patients with NALCN mutations have been reported to have severe manifestations
similar to those in animals (Lozic et al., 2016; Angius et al., 2018; Bourque et al., 2018;
Campbell et al., 2018; Karimi et al., 2020). Therefore, NALCN is essential for maintaining
vital functions in organisms.

NALCN was first detected in the rat brain in 1999 (Lee et al., 1999). Since then, NALCN
has been found widely expressed in almost all neurons of the CNS in both mammals and
invertebrates (Lu et al., 2007; Yeh et al., 2008; Ren, 2011; Lu and Feng, 2012). In the mouse
brain, NALCN is also present in oligodendrocytes and at a very low level in astrocytes
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(Cahoy et al., 2008). The expression pattern suggested that NALCN
plays fundamental roles. Recent studies have shown that NALCN is
also abundant in the spinal cord and dorsal root ganglion (DRG) of
rodents (Zhang et al., 2021; Li et al., 2021), indicating that NALCN
might be implicated in important animal behaviors, such as pain and
sensation. Increasing in vitro and/or in vivo evidence has shown that
NALCN is associated with physiological sensation or pain (Figure 1)
(Ford et al., 2018; Eigenbrod et al., 2019; Saro et al., 2020; Zhang
et al., 2021; Li et al., 2021; Tian et al., 2023; Wu et al., 2023). Here, we
will review the current literature to summarize the contribution of
the NALCN to sensation and pain.

In vitro evidence

Ford et al. first showed that NALCN controls the intrinsic
excitability of spinal-parabrachial nucleus (PBN) projection
neurons in developing mice (Ford et al., 2018). Pharmacological
inhibition or knockout of NALCN suppresses the intrinsic
excitability of spinal-PBN neurons. Furthermore, the authors
demonstrated that substance P (SP) can activate NALCN and

enhance excitability in spinal-PBN neurons via Src kinase
signaling, which is consistent with findings in the brain from
previous studies (Lu et al., 2009; Ren, 2011). Their findings suggest
that NALCN conductance in spinal-PBN projection neurons may
govern ascending nociceptive transmission to the brain and thereby
modulate pain perception. However, this study did not validate the
role of NALCN in pain sensation or transduction using in vivo
experiments. In addition, whether NALCN regulates the intrinsic
excitability of spinal neurons in adults is unclear.

Depolarizing spontaneous fluctuations of membrane potential
(DSFs) are suggested to control the spontaneous discharge of
nociceptors, which is associated with prior pain. Tian et al. showed
that NALCN partially contributed to regulating the amplitude and
frequency of DSFs in nociceptors using nonspecific inhibitors of
NALCN, namely, Gd3+ and L-703606 (Tian et al., 2023). Highly
selective inhibitors or specific knockdown or knockout of NALCN are
needed to determine the role of NALCN in DSFs. In addition to
NALCN, their findings also highlight an important contribution from
diverse ion channels permeable to Na+ and/or Ca2+, such as Nav1.7,
Nav1.8, Nav1.9, TRPV1, TRPA1, TRPM4, and N-type Ca2+ channels,
some of which have been confirmed to be associated with pain

FIGURE 1
Schematic plot of the association between the NALCN and sensation. NALCN: sodium leak channel; DRG: dorsal root ganglion; DSFs: depolarizing
spontaneous fluctuations of membrane potential; PBN: parabrachial nucleus; AITC: allyl isothiocyanate. means increased NALCN expression;

means study regions.
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conditions. Characterization of the relative contributions of these ion
channels to the generation of DSFs under pathological conditionsmay
guide the development of more effective molecular targets for the
control of pain.

In vivo evidence

Eigenbrod et al. first provided direct evidence that NALCN is
associated with pain sensation in vivo (Eigenbrod et al., 2019). These
authors aimed to identify the evolutive mechanism of pain
insensitivity in multiple African rodents. They found that NALCN
was significantly upregulated in the dorsal root ganglia and spinal cord
of highveld mole-rats, which was suggested to cause insensitivity to
allyl isothiocyanate (AITC)-pain. In in vitro experiments,
overexpression of NALCN channels in cultured cells increased
background sodium currents, which led to a decrease in cellular
input resistance and depolarized RMP, thereby preventing action
potential firing by inactivating voltage-gated sodium channels. Thus,
extremely increased expression of NALCN at nociceptor terminals
could dampen excitation after TRPA1 activation in highveld mole-
rats. Notably, verapamil, a potent blocker of NALCN, could reveal
behavioral sensitivity to AITC in highveld mole-rats. However, as
verapamil is also a calcium channel antagonist, the exact contribution
of NALCN should be determined using completely specific NALCN
blockers or by knocking down or knocking out NALCN in the DRG
and spinal cord of highveld mole-rats.

Zhang et al. reported that NALCN is also associated with the
development of pathological pain in rodents (Zhang et al., 2021).
Like in the brain, NALCN was abundantly expressed in the
peripheral DRG and spinal cord neurons of rats and mice. In a
chronic constriction injury (CCI) model, NALCN expression and
function in the DRG and dorsal spinal cord were elevated, which
contributed to neuronal sensitization and neuropathic pain, as well
as complete Freund’s adjuvant (CFA)-induced inflammatory pain
(Li et al., 2021). Interestingly, these findings appear to be contrary to
those from the study of Eigenbrod et al. (2019), which may be
explained by the differentially elevated levels of NALCN expression.
The expression level of NALCN determines the extent of RMP
depolarization, thereby leading to pain insensitivity or sensitivity.
Significant depolarization of the RMP by extreme overexpression of
NALCN can inactivate voltage-gated sodium channels and dampen
neuronal excitability in highveld mole-rats (Eigenbrod et al., 2019),
while the RMP is depolarized by less than 10 mV, which leads to
neuronal sensitization in CCI-induced hyperalgesia (Zhang et al.,
2021). Nevertheless, all this evidence points to NALCN as an
underlying molecular target for pain sensation.

In addition to the DRG and spinal cord, the NALCN in the brain
was also found to be related to the regulation of pain. Wu et al.
showed that knocking down NALCN in lateral parabrachial nucleus
(PBL) glutamatergic neurons alleviated CFA-induced pain in mice
(Wu et al., 2023). Their findings further suggested that the NALCN
in PBL glutamatergic neurons regulates inflammatory pain via PBL-
central nucleus amygdala (CeA) projections. However, the authors
did not use patch recordings or calcium imaging to detect the
excitability of PBL glutamatergic neurons when NALCN
expression was knocked down, except for simply examining the
change in c-fos expression. Moreover, researchers have not

confirmed whether NALCN knockdown in PBL induces other
abnormal phenotypes.

Saro et al. used in vivo experiments to show that NALCN was
involved in sensory and thermal signal processing in C. elegans (Saro
et al., 2020). In their study, two mutated genes, nca-1 and nca-2,
were used to examine the role of NALCN in primary nociceptors in
C. elegans. They showed that both mutations reduced the magnitude
of heat-evoked calcium changes and affected thermal sensitivity,
while nca-2 mutations also influenced sensory gain and signal
kinetics during termination of thermal stimuli. Given the high
conservation of NALCN expression and functions across animals,
this study may provide new insights into the molecular machinery of
ascending nociceptive pathways in sensory perception and
important behaviors.

Strengths and weaknesses of the
current evidence regarding the role of
NALCN in pain and sensation

Current evidence from both in vivo and in vitro experiments
indicates that NALCN plays a pivotal role in controlling pain
(Eigenbrod et al., 2019; Zhang et al., 2021; Li et al., 2021; Wu
et al., 2023). A previous study also indicated that the NALCN
determines the intrinsic excitability of spinal projection neurons
using in vitro experiments (Ford et al., 2018), which suggests that the
NALCN contributes to sensory conduction and pain perception.
However, behavioral tests using NALCN knockdown or knockout
techniques are still needed to confirm the role of NALCN in
controlling sensory conduction from peripheral sites to the
central nervous system. Moreover, the role of NALCN in specific
neuronal subtypes of the spinal cord needs to be clarified because of
the component heterogeneity in both human (Yadav et al., 2023;
Zhang et al., 2023) and mouse spinal neurons (Sathyamurthy et al.,
2018; Russ et al., 2021). Additionally, the upstream and downstream
molecular targets that mediate the effects of NALCN on pain and
sensation have not been identified. Notably, two important subunits
of NALCN, namely, UNC80 and UNC79, are essential for normal
NALCN function (Ren, 2011; Lu and Feng, 2012). Therefore, it will
be interesting to determine the role of UNC80 and UNC79 in pain
and sensation, whichmight also be novel targets for controlling pain.
More importantly, although NALCN is also widely expressed in the
human DRG and spinal cord (Zhang et al., 2021; Zhang et al., 2022),
evidence that NALCN regulates pain in humans has not yet been
found. Future studies are needed to explore whether NALCN is a key
target for controlling human pain, which will spur drug
development and facilitate successful clinical translation from
rodent findings.

According to the results of recent studies, the role of the NALCN
in pain and sensation in peripheral DRG and spinal cord neurons
(Ford et al., 2018; Eigenbrod et al., 2019; Zhang et al., 2021; Li et al.,
2021; Tian et al., 2023) appears to be more important than that in
brain neurons (Wu et al., 2023). However, NALCN may be
associated with central sensitization induced by chronic pain
because NALCN is widely expressed in the central nervous
system and controls neuronal excitability (Lu et al., 2007; Ren,
2011). Future studies may uncover the contribution of the NALCN
in central neurons, especially neuronal subtypes, as well as the

Frontiers in Pharmacology frontiersin.org03

Zhang and Wei 10.3389/fphar.2023.1349438

https://pubmed.ncbi.nlm.nih.gov/?sort=date&amp;term=Eigenbrod+O&amp;cauthor_id=31147513
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1349438


involved neural circuits in the regulation of pain perception. For
example, one study revealed that the NALCN controls the neuronal
excitability of spinal-PBN projection neurons (Ford et al., 2018).
Therefore, determining the role of NALCN in the spinal-PBN
pathway in pain and physiological sensory signaling will be
interesting. However, whether NALCN is an underlying
molecular target in pain-related brain nuclei, such as the ventral
tegmental area (VTA) (Markovic et al., 2021), the central nucleus of
the amygdala (CeA) (Zhou et al., 2019; Lin et al., 2022), and the basal
forebrain (Zhou et al., 2023), that regulate pain also remains elusive.

Perspectives

Although increasing evidence suggests that NALCN may be a
promising molecular target for treating pain conditions, one
important obstacle is that highly specific blockers for NALCN
are unavailable. N-Benzhydryl quinuclidine compounds have been
suggested to be promising inhibitors of NALCNwith a certain level
of selectivity in in vitro experiments (Hahn et al., 2020), but their
role in pain has not yet been explored. Recently, the structural
architecture of the human NALCN has been elucidated
(Kschonsak et al., 2020; Xie et al., 2020; Zhou et al., 2022;
Kschonsak et al., 2022), which will substantially facilitate the
discovery of highly selective drugs to potentially treat NALCN-
related disorders, such as pain, by blocking NALCN. Notably,
global inhibition of NALCN may cause abnormal functional
outcomes, such as respiratory depression; therefore, the
discovery of inhibitors targeting the peripheral nervous system,
such as the DRG, may be more effective and safer. Therefore, this
novel drug should have high selectivity for both NALCN and the
peripheral nervous system, which might also be progressed to a
clinical therapy. Considering the convenience of the drug delivery
route, oral or intravenous administration of NALCN inhibitors is
preferred over direct DRG or intrathecal injection, especially when
repeated or multiple injections are needed. Notably, whether
reduced NALCN activity in the DRG and/or spinal cord leads
to abnormal biological functions, such as motor behaviors, needs
to be validated in future studies. A recent study revealed that
NALCN is also expressed in the glial cells of the DRG and spinal

cord in both humans and rodents (Zhang et al., 2022). The role of
NALCN in glial cells should also be determined, as the activities of
glial cells are involved in pain sensation. However, no clinical
patients with NALCN mutations were reported to have sensory or
pain disorders; therefore, it will be interesting to test the sensory
functions of patients with NALCN mutations.
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