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We examined whether co-injections of the cell-permeant D-cysteine analogues,
D-cysteine ethyl ester (D-CYSee) and D-cysteine ethyl amide (D-CYSea), prevent
acquisition of physical dependence induced by twice-daily injections of fentanyl,
and reverse acquired dependence to these injections in freely-moving male
Sprague Dawley rats. Injection of the opioid receptor antagonist, naloxone HCl
(NLX, 1.5 mg/kg, IV), elicited a series of withdrawal phenomena that included
cardiorespiratory and behavioral responses, and falls in body weight and body
temperature, in rats that received 5 or 10 injections of fentanyl (125 μg/kg, IV), and
the same number of vehicle co-injections. Regarding the development of
physical dependence, the NLX-precipitated withdrawal phenomena were
markedly reduced in fentanyl-injected rats that had received co-injections of
D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but not D-cysteine
(250 μmol/kg, IV). Regarding reversal of established dependence to fentanyl, the
NLX-precipitated withdrawal phenomena in rats that had received 10 injections
of fentanyl (125 μg/kg, IV) was markedly reduced in rats that received co-
injections of D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but
not D-cysteine (250 μmol/kg, IV), starting with injection 6 of fentanyl. This
study provides evidence that co-injections of D-CYSee and D-CYSea prevent
the acquisition of physical dependence, and reverse acquired dependence to
fentanyl in male rats. The lack of effect of D-cysteine suggests that the enhanced
cell-penetrability of D-CYSee and D-CYSea into cells, particularly within the
brain, is key to their ability to interact with intracellular signaling events involved in
acquisition to physical dependence to fentanyl.
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Introduction

The continued use of opioids is associated with development of
physical dependence, as evidenced by behavioral and
cardiorespiratory phenomena, which occur upon caesing opioid
use (i.e., spontaneous withdrawal) or administration of an opioid
receptor antagonist (i.e., precipitated withdrawal) (Garcia et al.,
2014; Volkow et al., 2018; Mercadante et al., 2019). At present,
there are no therapeutics that prevent acquisition of physical
dependence to opioids. Although none have proven to be
clinically effective, some agents have shown some ability to
reverse physical dependence to opioids, including the β2-AR
antagonist, butoxamine (Liang et al., 2007), adrenomedullin
receptor antagonists (Wang et al., 2011), and allosteric
modulators of the AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) glutamate receptors (Hu et al., 2018).
Other agents include L-histidine and histamine receptor agonists
(Wong and Roberts, 1976), the dopamine D2 receptor antagonist,
haloperidol (Yang et al., 2011), ATP-dependent K+-channel
modulators (Singh et al., 2015), inhibitors of Ca2+-calmodulin-
dependent protein kinase II (Wang et al., 2003; Tang et al.,
2006), the serotonin-reuptake inhibitor, fluoxetine (Singh et al.,
2003), nitric oxide synthase inhibitors (Naidu et al., 2003; Singh
et al., 2003), and the antioxidants melatonin (Raghavendra and
Kulkarni, 1999; 2000) and quercetin (Singh et al., 2002; Naidu et al.,
2003). The diversity of these therapeutics speaks to our lack of
understanding as to the mechanisms by which physical dependence
to opioids occurs.

Trivedi et al. (2014) provided evidence that morphine-induced
redox-dependent changes in DNA methylation and retrotransposon
transcription status via inhibition of excitatory amino acid transporter
type 3 (EAAT3)-mediated uptake of cysteine into brain neurons, may
be causal to the development of physical dependence to morphine.
Possible mechanisms suggested from the studies of Trivedi et al.
(2014) and others (Lin et al., 2001; Ikemoto et al., 2002; Mao et al.,
2002; Xu et al., 2003; Xu et al., 2006; Christie, 2008; Yang et al., 2008;
Wang et al., 2009; Daijo et al., 2011; Gutowicz et al., 2011; Liu et al.,
2011; Maze and Nestler, 2011; Lim et al., 2012; Sun et al., 2012;
Browne et al., 2020) involve (a) morphine-induced attenuation of
L-cysteine uptake into neurons by G-protein-mediated decrease in
EAAT3 function, (b) decreases in intracellular L-cysteine and
L-glutathione, (c) decreases in methylation index (S-adenosyl-
methionine/S-adenosyl-homocysteine), (d) reduced methylation of
global CpG (regions of DNA in which a cytosine nucleotide is
followed by a guanine nucleotide in linear base sequence along the
5′ → 3′ direction), (e) decreased CpG methylation of long
interspersed nuclear element–1 (LINE-1) retrotransposon
regulatory regions, and (f) activation of transcription of previously
silenced LINE-1 gene (see Figures 1 and 7 of Trivedi et al., 2014).

On the basis of these findings we examined whether co-
administration of the cell-penetrant L-thiol ester, L-cysteine ethyl
ester (L-CYSee), would reduce physical dependence to morphine in
male Sprague Dawley rats and overcome established dependence to
the opioid (Bates et al., 2023). With respect to preventing the
acquisition of dependence, we found that the injection of the
opioid-receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IP),
elicited pronounced withdrawal phenomena in rats which received
a subcutaneous depot of morphine (150 mg/kg) for 36 h and a

continuous infusion of saline (20 μL/h, IV) via osmotic minipumps
for this 36 h period. Withdrawal phenomena observed were wet-dog
shakes (WDS), jumping, rearing, fore-paw licking (FPL), 360o circling,
writhing, apneas, cardiovascular (e.g., pressor, tachycardic) responses,
hypothermia, and body weight loss. Remarkably, NLX elicited fewer
phenomena in rats that received an infusion of L-CYSee
(20.8 μmol/kg/h, IV) for 36 h. With respect to reversing acquired
dependence, we first established that NLX precipitated marked
withdrawal syndrome in rats that had received subcutaneous
depots of morphine (150 mg/kg) for 48 h and a co-infusion of
vehicle. Again, the NLX-precipitated withdrawal phenomena were
reduced in morphine-treated (150 mg/kg for 48 h) rats that began
receiving an infusion of L-CYSee (20.8 μmol/kg/h, IV) at 36 h. Of
equal importance was that infusion of L-cysteine or L-serine ethyl
ester, both at 20.8 μmol/kg/h, IV, did not mimic the effects of
L-CYSee. As such, L-CYSee may attenuate the development of
physical dependence to morphine in rats, and reverse dependence
acquired before administration of L-CYSee, most likely by
intracellular actions in the brain. The lack of effect of L-serine
ethyl ester, which contains an oxygen atom instead of a sulfur
atom, implicates thiol biochemistry in the efficacy of L-CYSee.
These characteristics of L-CYSee provides supporting evidence to
the ability of this (Lewis et al., 2022), and other L-thiolesters (Jenkins
et al., 2021; Getsy et al., 2022a), to prevent and/or reverse the actions of
morphine and fentanyl on ventilatory parameters, and arterial blood-
gas chemistry in rats without compromising opioid-induced analgesia
or sedation. In pursuingmechanisms of action of the L-thiol esters, we
found that D-thiol esters, such as D-cysteine ethyl ester (D-CYSee),
D-cystine diethyl ester (D-CYSdiee), and D-cysteine dimethyl ester
(D-CYSdime), also reversed the adverse effects of morphine on
breathing without compromising analgesia (Gaston et al., 2021;
Getsy et al., 2022b; Getsy et al., 2022c).

We recently reported that the co-administration of D-CYSee with
fentanyl prevents the development of fentanyl-induced conditioned
place preference in male and female rats (Knauss et al., 2023), thus
suggesting D-CYSee likely reduces the rewarding properties of fentanyl
and therefore reduces its addictive potential. The question that arose
from these studies was whether D-CYSee can prevent acquisition of
physical dependence to fentanyl and/or reverse established dependence
to this powerful synthetic opioid. Another important question was
whether D-cysteine ethyl amide (D-CYSea) has greater efficacy than
D-CYSee based on its expected enhanced resistance to plasma
carboxylesterases that potentially convert D-CYSee to D-cysteine
(Butterworth et al., 1993; Nishida et al., 1996). The present study
demonstrates that co-injections of D-CYSee and D-CYSea prevent
and reverse the acquisition of fentanyl physical dependence inmale rats,
and that D-CYSea appears to be more efficacious compared to
D-CYSee. As such, these D-cysteine analogues may represent a
novel class of therapeutics that ameliorate the development of
physical dependence to opioids in humans.

Materials and methods

Permissions, rats, and surgical procedures

All studies were done according to the NIH Guide for Care
and Use of Laboratory Animals (NIH Publication No. 80–23)
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revised in 1996, and in compliance with ARRIVE (Animal
Research: Reporting of In Vivo Experiments) guidelines
(http://www.nc3rs.org.uk/ page. asp? id = 1357). All protocols
involving the use of rats were approved by the Animal Care and
Use Committees of the University of Virginia and Galleon
Pharmaceuticals. A total of 578 adult male Sprague Dawley
rats (n = 9 rats in each study group) purchased from Harlan
Industries (Madison, WI, United States) were used in these
studies (see Supplementary Table S1 for information including
body weights at the time of starting each protocol). The rats were
given 5 days to recover from transportation in our Animal
Resource Center (12 h light/12 h dark cycle, lights off at
6 p.m./lights on at 6 a.m.; room humidity of 49% ± 3%; room
temperature of 21.5°C ± 0.3°C; standard corn cob bedding from
Gateway Labsupply, St. Louis, MO, United States) before
undergoing surgery. Rats were also given 5 days to recover
from surgery in our Animal Resource Center before use in
experiments (conditions as above except for the bedding,
which was ALPHAdri bedding from Lab Supply, Durham,
NC). The rats had free access to water at all times. The rats
had free access to food at all times, except for the 90 min period
immediately following completion of the surgery. Fentanyl
citrate powder was obtained from Sigma-Aldrich (St. Louis,
MO, United States). D-CYSee and D-CYSea were obtained
from ChemImpex (Wood Dale, Illinois, United States)
respectively, and Olon RIcerca (Concord, Ohio, United States)
respectively, and divided into 100 mg amounts under N2 gas and
stored at 4°C. Solutions of D-CYSee and D-CYSea (dissolved in
saline and brought to pH 6.8 with 0.1 M NaOH at room
temperature) were prepared immediately before use. Naloxone
HCl (Sigma-Aldrich, St. Louis, MO, United States) was dissolved
in normal saline. All arterial and venous catheters were flushed
with 0.3 mL of phosphate-buffered saline (0.1 M, pH 7.4) 3–4 h
before starting the study. All studies were done in a room with
relative humidity of 49% ± 2% and temperature of 21.4°C ± 0.2°C.
Note that each rat was used in only one of the study protocols
described below and was not used in any other study. Finally, all
independent observers and experimenters were blinded to the
specific treatments that the rats had undergone in every study
protocol described below.

D-CYSee or D-CYSea prevention of the
development of physical dependence
to fentanyl

Behavioral studies
Three groups of rats were implanted with a catheter

composed of PE-10 tubing connected to PE-50 tubing
(Intramedic; Becton & Dickinson, Franklin Drive, NJ,
United States) into the jugular vein under 2%–3% isoflurane
anesthesia delivered in 60% O2, to allow injections of test
agents (May et al., 2013a; May et al., 2013b; Henderson et al.,
2013; Henderson et al., 2014). The jugular vein IV lines in this
and all protocols described hereafter were kept patent during the
recovery period by injecting a bolus volume of saline (300 μL)
once daily. Study 1–5 co-injections: Rats received co-injections
of vehicle (100 μL/100 g body weight, IV) + fentanyl (125 μg/kg,

IV), D-cysteine (250 μmol/kg, IV) + fentanyl (125 μg/kg, IV),
D-CYSee (250 μmol/kg, IV) + fentanyl (125 μg/kg, IV), or
D-CYSea (100 μmol/kg, IV) + fentanyl (125 μg/kg, IV) given
90 s apart (fentanyl given second in all instances) at 8 a.m.
and 8 p.m. on days 1 and 2, and at 8 a.m. on day 3. Study
1–10 co-injections: Rats received co-injections of vehicle
(100 μL/100 g body weight, IV) + fentanyl (125 μg/kg, IV),
D-cysteine (250 μmol/kg, IV) + fentanyl (125 μg/kg, IV),
D-CYSee (250 μmol/kg) + fentanyl (125 μg/kg, IV) or
D-CYSea (100 μmol/kg, IV) + fentanyl (125 μg/kg, IV) given
90 s apart at 8 a.m. and 8 p.m. on days 1–4. The rats were
given injection 9 at 8 a.m. on day 5 and injection 10 at 2 p.m. to
allow for NLX challenges to be given. Ninety min after the 5th or
10th set of co-injections, rats were placed in individual opaque
plastic boxes and after 30 min, they were injected with NLX
(1.5 mg/kg, IV) and behavioral phenomena were scored for
45 min by 3 scorers. Scored behavioral phenomena were:
Jumping behavior—all 4 paws off the ground—jumps; Wet
dog shakes—whole body shakes as if to shed water from fur;
Rearing behavior—rearing on hind legs—rears; Episodes of fore-
paw licking—FPL; Circling behavior—Complete 360o rotation;
Writhes—full body contortion; Episodes of sneezing—abrupt
expulsion of air that often disturbed the fine bedding material-
sneezes. Other groups of rats (n = 9 rats per group, see
Supplementary Table S1) underwent the same protocols as
above, except that the rats received an injection of vehicle
instead of fentanyl (i.e., vehicle + vehicle injections, vehicle +
D-CYSee injections, or vehicle + D-CYSea injections). These rats
also received an injection of NLX (1.5 mg/kg, IV) given 90 min
after the last set of injections.

Plethysmography ventilatory studies
One hour before co-injections 5 or 10 were to be given (as

described above), rats were placed into individual whole body
plethysmography chambers to record ventilatory parameters
(Jenkins et al., 2021; Lewis et al., 2022; Getsy et al., 2022a;
Getsy et al., 2022b; Getsy et al., 2022c). The free end of the
venous catheter was attached to a swivel assembly in the lid of
the chamber and after 60 min of acclimatization, the rats received
co-injections 5 or 10, and after 90 min they received an injection of
NLX (1.5 mg/kg, IV). The number of apneas of greater than 1.5 s in
duration were determined by internal FinePointe software (DSI,
Harvard Bioscience, Inc., St. Paul, MN) (Getsy et al., 2022a; Getsy
et al., 2022b; Getsy et al., 2022c; Getsy et al., 2022d; Getsy et al.,
2022e; Lewis et al., 2022).

Cardiovascular studies
Rats were implanted with a jugular vein catheter to inject

drugs, and a femoral artery catheter to record mean arterial blood
pressure (MAP) and heart rate (Hashmi-Hill et al., 2007; Kanbar
et al., 2010; Davisson et al., 2014; Brognara et al., 2016). The rats
were given 4 days to recover. The jugular vein IV lines were kept
patent during the recovery period by injecting a bolus volume of
saline (300 μL) once daily. The patency of arterial lines was
maintained by connecting the line to an infusion pump
(Standard Infuse-Withdraw Pump 11 Pico Plus Elite
Programmable Syringe Pump; Harvard Apparatus, MA,
United States) delivering saline at 20 μL/h (Getsy et al., 2022d;
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Getsy et al., 2022e). Sixty min before co-injections 5 or 10 were to
be administered, the rats were put into individual opaque plastic
boxes in order to administer drugs, and to actively record
pulsatile arterial blood pressure (MAP) and heart rate. After
60 min acclimatization, the rats received co-injections 5 or
10, and then, after 90 min, they received NLX (1.5 mg/kg, IV)
and cardiovascular parameters recorded for a further 90 min.

Body temperature and body weight studies
Rats were put into individual opaque plastic boxes 1 h before

co-injections 5 or 10 of the fentanyl + drug combinations were to
be given. A thermistor probe attached to a telethermometer
(Yellow Springs Instruments) to record body temperature was
inserted 5–6 cm into the rectum and taped to the tail (Lewis
et al., 1986). Body weights and body temperatures were
recorded every 15 min during the acclimatization period to
establish baseline values, and at 15 min intervals during the
injection protocols. After 60 min of acclimatization, rats
received co-injections 5 or 10, and after 90 min an injection of
NLX (1.5 mg/kg, IV), and then body weights and body
temperatures were recorded for another 90 min.

Protocols to determine the abilities of
D-CYSee or D-CYSea to reverse fentanyl
dependence

Behavioral studies
Rats received 5 injections of fentanyl (125 μg/kg, IV) at 8 a.m.

and 8 p.m. as described above. The rats then received co-injections
6–10 of fentanyl (125 μg/kg, IV) + vehicle, D-cysteine (250 μmol/kg,
IV) + fentanyl (125 μg/kg, IV), D-CYSee (250 μmol/kg, IV) +
fentanyl (125 μg/kg, IV) or D-CYSea (100 μmol/kg, IV) +
fentanyl (125 μg/kg, IV) given 90 s apart. Co-injections 6 were
given at 8 p.m., co-injections 7 at 8 a.m., co-injections 8 at
8 p.m., co-injections 9 at 8 a.m., and co-injection 10 was given at
2 p.m. to allow for the experiments to be performed. Immediately
after co-injections 10 were given, the rats were placed in individual
opaque plastic boxes, and after a 90 min acclimatization period, the
rats received an injection of NLX (1.5 mg/kg, IV), and behavioral
phenomena (as detailed above) were scored for 45 min by at least
3 independent scorers.

Plethysmography ventilatory studies
One hour before co-injections 10 were to be given, rats were put

into individual whole body plethysmography chambers to record
ventilatory parameters. The free end of the externalized venous
catheter was connected to the swivel assembly and, after 60 min
acclimatization, the rats received the 10th set of co-injections and
after 90 min they received NLX (1.5 mg/kg, IV). Ventilatory
parameters and non-eupneic breathing indices were recorded (to
be reported elsewhere) with the number of apneas recorded as >1.5 s
in duration reported here.

Cardiovascular studies
One hour before the 10th set of co-injections were given,

groups of rats (n = 9 rats per group) were put in individual
opaque plastic boxes, and the free end of the exteriorized jugular

vein catheter was connected to an injection line to give drugs. The
free end of the arterial catheter was then connected to tubing
attached to a computer-coupled pressure transducer (Cabe Lab,
Inc.) to continuously record pulsatile arterial blood pressure to
derive MAP and heart rate. After 60 min acclimatization, rats
received co-injections 5 or 10, and then after 90 min, an injection
of NLX (1.5 mg/kg, IV), and cardiovascular parameters were
recorded continuously for a further 90 min.

Body temperature and body weight studies
Rats were put into individual opaque plastic boxes 1 h before the

10th set of co-injections were to be given. A thermistor probe for
body temperature recordings was placed as above. Rat body weights
and temperatures were recorded every 15 min during
acclimatization to establish baseline values, and at 15 min
intervals throughout the injection protocols. After 60 min, the
rats received co-injections 10, and after 90 min, they were
injected with NLX (1.5 mg/kg, IV), and body weights and body
temperatures were recorded for another 90 min.

Data analyses

All data are presented as mean ± SEM. All between-group data
were analyzed by one-way ANOVA as detailed previously (Getsy
et al., 2023a; Getsy et al., 2023b). The statistical analyses were
performed with the aid of GraphPad Prism software (Version
9.5.1–2023; GraphPad Software, Inc., La Jolla, CA). The F- and
P-statistics related to Figures 1–3 are provided in the relevant
figure legends.

Results

NLX does not elicit withdrawal behaviors in
rats that did not receive co-injections
of fentanyl

The administration of NLX (1.5 mg/kg, IV) to rats that had
received the same injection protocols of D-CYSee (250 μmol/kg, IV)
or D-CYSea (100 μmol/kg, IV), but with co-injections of vehicle,
rather than fentanyl, are presented in Supplementary Tables S2–S4.
As seen in Supplementary Table S2, the injection of NLX elicited
virtually no behavioral responses in rats that had received 5 or 10 co-
injections of vehicle + vehicle, vehicle + D-CYSee, or vehicle +
D-CYSea, or in rats that received 10 injections of vehicle plus co-
injections of vehicle, D-CYSee, or D-CYSea beginning with injection
6 of vehicle. As seen in Supplementary Table S3, the body weights of
the rats grew as expected during the course of the protocols, in the
rats that received co-injections of vehicle + vehicle. The increases in
body weights were similar in the rats that received co-injections of
D-CYSee or D-CYSea. As also seen in Supplementary Table S3, there
were no between-treatment group differences in body temperature
at any stage of the Inj1-5 or Inj1-10 protocols. Importantly, the
injection of NLX did not precipitate any changes in body weight or
body temperature in any treatment group. As seen in Supplementary
Table S4, the body weights of the rats grew as expected during the
course of the co-Inj6-10 protocols, with no-between-group
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differences being found. The increases in body weights were similar
in rats that received co-injections of D-CYSee or D-CYSea. Again,
body temperatures remained equivalent throughout the study
protocols. The administration of NLX did not elicit changes in
body weight or body temperature in any of these treatment groups.

D-CYSee and D-CYSea prevent physical
dependence to fentanyl

The behaviors elicited by the injection of NLX in rats that had
received 5 co-injections of fentanyl + vehicle, D-cysteine, D-CYSee,

FIGURE 1
Responses elicited by the injection of naloxone HCl (1.5 mg/kg, IV) in rats that had received 5 injections of fentanyl (125 μg/kg, IV) plus 5 co-
injections of vehicle, D-cysteine (250 μmol/kg, IV), D-cysteine ethyl ester (D-CYSee, 250 μmol/kg, IV), or D-cysteine ethyl amide (D-CYSea,
100 μmol/kg, IV). (A) Behavioral responses—jumps, wet-dog shakes (WDS), rears, fore-paw licking (FPL), circles, writhes, and sneezes. (B)
Cardiorespiratory responses, mean arterial blood pressure (MAP), heart rate, and apneas. (C) Body temperature. (D) Body weight. Data are shown as
mean ± SEM. Therewere 9 rats in each group. ANOVA statistics: (A) Jumps (F3,32 = 28.0, p < 0.0001);WDS (F3,32 = 22.2, p < 0.0001); Rears (F3,32 = 47.3, p <
0.0001); FPL (F3,32 = 24.3, p < 0.0001); Circles (F3,32 = 20.5, p=0.0009); Writhes (F3,32 = 20.0, p < 0.0001); Sneezes (F3,32 = 4.34, p=0.011). (B)MAP (F3,32 =
31.7, p < 0.0001); Heart rate (F3,32 = 38.2, p < 0.0001); Apneas (F3,32 = 32.7, p < 0.0001). (C) Body temperature (F3,32 = 23.5, p < 0.0001). (D) Body weight
(F3,32 = 18.1, p < 0.0001).*p < 0.05, significant response from Pre-values. †p < 0.05, D-CYSea or D-CYSee versus vehicle. ‡p < 0.05, D-CYSea
versus D-CYSee.
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or D-CYSea are summarized in Figure 1A. The injection of NLX in
fentanyl + vehicle-injected rats produced jumps, wet-dog shakes
(WDS), rearing, fore-paw licking (FPL), circling, full-body writhing,
and episodes of sneezing. These NLX-precipitated responses were
similar in rats that had received co-injections of fentanyl +
D-cysteine. Except for sneezing, these NLX-precipitated behaviors

were reduced in rats that received fentanyl + D-CYSee, and much
more so in rats that had received fentanyl + D-CYSea. As
summarized in Figure 1B, the injection of NLX produced
sustained increases in MAP and heart rate, and elicited a large
increase in apneas (>1.5 s between breaths). The NLX-induced
responses were reduced in rats that received co-injections of

FIGURE 2
Responses elicited by the injection of naloxone HCl (1.5 mg/kg, IV) in rats that had received 10 injections of fentanyl (125 μg/kg, IV) plus 10 co-
injections of vehicle, D-cysteine (250 μmol/kg, IV), D-cysteine ethyl ester (D-CYSee, 250 μmol/kg, IV), or D-cysteine ethyl amide (D-CYSea,
100 μmol/kg, IV). (A) Behavioral responses—jumps, wet-dog shakes (WDS), rears, fore-paw licking (FPL), circles, writhes, and sneezes. (B)
Cardiorespiratory responses, mean arterial blood pressure (MAP), heart rate, and apneas. (C) Body temperature. (D) Body weight. Data are shown as
mean ± SEM. There were 9 rats in each group. ANOVA statistics: (A) Jumps (F3,32 = 48.5, p < 0.0001); WDS (F3,32 = 38.7, p < 0.0001); Rears (F3,32 = 34.7, p <
0.0001); FPL (F3,32 = 42.8, p < 0.0001); Circles (F3,32 = 19.3, p=0.0009); Writhes (F3,32 = 30.2, p < 0.0001); Sneezes (F3,32 = 6.65, p=0.001). (B)MAP (F3,32 =
37.6, p < 0.0001); Heart rate (F3,32 = 88.4, p < 0.0001); Apneas (F3,32 = 25.8, p < 0.0001). (C) Body temperature (F3,32 = 48.4, p < 0.0001). (D) Body weights
(F3,32 = 18.5, p < 0.0001).*p < 0.05, significant response from Pre-values. †p < 0.05, D-CYSea or D-CYSee versus vehicle. ‡p < 0.05, D-CYSea
versus D-CYSee.
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fentanyl + D-CYSee and much more so in rats that received co-
injections of fentanyl + D-CYSea. As summarized in Figures 1C, D,
the NLX-induced decreases in body weight and body temperature
were smaller in rats that received fentanyl + D-CYSee, and markedly
less in rats that received fentanyl + D-CYSea, but not in those that
received D-cysteine. Behaviors elicited by NLX in rats that received

10 co-injections of fentanyl + vehicle, D-cysteine, D-CYSee, or
D-CYSea are summarized in Figure 2A. Administration of NLX
to rats that received fentanyl + vehicle produced qualitatively similar
responses as described above in Figure 1A, except that they were
more intense. NLX-precipitated withdrawal phenomena were not
diminished in rats that received co-injections of D-cysteine,

FIGURE 3
Responses elicited by the injection of naloxone HCl (1.5 mg/kg, IV) in rats that had received 10 injections of fentanyl (125 μg/kg, IV) plus 5 co-
injections of vehicle, D-cysteine (250 μmol/kg, IV), D-cysteine ethyl ester (D-CYSee, 250 μmol/kg, IV), or D-cysteine ethyl amide (D-CYSea,
100 μmol/kg, IV) beginning at fentanyl injection 6. (A) Behavioral responses—jumps, wet-dog shakes (WDS), rears, fore-paw licking (FPL), circles, writhes,
and sneezes. (B) Cardiorespiratory responses, mean arterial blood pressure (MAP), heart rate, and apneas. (C) Body temperature. (D) Body weight.
Data are shown as mean ± SEM. There were 9 rats in each group. ANOVA statistics: (A) Jumps (F2,24 = 36.2, p < 0.0001); WDS (F2,24 = 46.8, p < 0.0001);
Rears (F2,24 = 35.8, p < 0.0001); FPL (F2,24 = 29.8, p < 0.0001); Circles (F2,24 = 32.2, p=0.0009); Writhes (F2,24 = 33.1, p < 0.0001); Sneezes (F2,24 = 8.6, P = <
0.0003). (B)MAP (F2,24 = 31.9, p < 0.0001); Heart rate (F2,24 = 45.3, p < 0.0001); Apneas (F2,24 = 52.7, p < 0.0001). (C) Body temperature (F2,24 = 86.6, p <
0.0001). (D) Body weight (F2,24 = 22.4, p < 0.0001). *p < 0.05, significant response from Pre-values. †p < 0.05, D-CYSea or D-CYSee versus vehicle. ‡p <
0.05, D-CYSea versus D-CYSee.
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whereas, except for sneezing, the responses were reduced in rats that
had received fentanyl + D-CYSee. Additionally, all NLX-
precipitated responses (including sneezing) were markedly
reduced in rats that received co-injections of D-CYSea, and these
responses were less than in those that received D-CYSee. As
summarized in Figure 2B, the NLX-induced increases in MAP,
heart rate, and incidences of apneic events (>1.5 s between
breaths) were reduced in rats that received co-injections of
D-CYSee (but not D-cysteine), and more so in the rats that
received D-CYSea. As summarized in Figures 2C, D, the NLX-
precipitated falls in body weight and body temperature were reduced
in rats that had received fentanyl + D-CYSee, and markedly
diminished in rats that had received fentanyl + D-CYSea.

D-CYSee and D-CYSea reverse established
physical dependence to fentanyl

The behaviors elicited by injection of NLX in rats that had
received 10 injections of fentanyl plus 5 co-injections of vehicle,
D-cysteine, D-CYSee, or D-CYSea starting with fentanyl injection
6 are summarized in Figure 3A. The responses seen after injection of
NLX were similar in rats that received co-injections of vehicle or
D-cysteine. Moreover, except for sneezing, the NLX-precipitated
behaviors were reduced in rats that received co-injections of
D-CYSee. Additionally, all behaviors were markedly diminished
in rats that had received co-injections of D-CYSea. As summarized
in Figure 3B, the NLX-precipitated elevations in MAP, heart rate,
and incidences of apneas (>1.5 s between breaths), were diminished
in rats that received D-CYSee, and markedly diminished in rats that
received D-CYSea. As summarized in Figures 3C, D, the NLX-
induced falls in body weight and body temperature were less in rats
that received fentanyl + D-CYSee, and markedly diminished in rats
that received fentanyl + D-CYSea.

Changes in variables during the progression
of the protocols

Body weights and arithmetic changes in these weights at key
points of the three study protocols are shown in Table 1. The rats
that received the 5 or 10 co-injections of fentanyl + vehicle or
fentanyl + D-cysteine, lost body weight (arithmetic change from
Pre-drug values, i.e., Pre). In contrast, body weights rose in rats
receiving co-injections of D-CYSee and D-CYSea. In rats that
received fentanyl + vehicle, the loss in body weight after
10 injections was greater than after 5 injections. In contrast, the
increases in body weight in rats that received fentanyl + D-CYSee or
fentanyl + D-CYSea after the 10 co-injections were greater than after
the 5 co-injections. The decreases in body weight elicited by NLX
were similar in rats that received vehicle or D-cysteine, but markedly
less in rats that received co-injections of D-CYSee or D-CYSea. With
respect to the co-injection 6–10 study, the rats that received co-
injections of fentanyl + vehicle and fentanyl + D-cysteine lost body
weight, whereas those that received co-injections of fentanyl +
D-CYSee or D-CYSea gained weight. The NLX-induced decreases
in body weight seen in the rats that received co-injections of
D-cysteine were similar to those that received co-injections of

vehicle. The falls in body weight were again smaller in the rats
that received co-injections of D-CYSee, and even less in rats that
received D-CYSea. Actual and arithmetic changes in body
temperatures at key points of co-injections 1–5 and 1–10 studies
and co-injection 6–10 study are summarized in Table 2. The rats that
received 5 or 10 co-injections of fentanyl + vehicle developed a
hyperthermia that also occurred in rats that received fentanyl +
D-cysteine, but not in rats that received fentanyl + D-CYSee or
fentanyl + D-CYSea. The injection of NLX elicited a profound
hypothermia in rats that received co-injections of vehicle or
D-cysteine, but not in those that received D-CYSee or D-CYSea.
With respect to the co-injection 6–10 study, the rats that received co-
injections of fentanyl + vehicle or fentanyl + D-cysteine, showed a
pronounced hyperthermia, whereas those that received D-CYSee or
D-CYSea did not. A NLX-precipitated hypothermia was seen in the
rats that received co-injections of vehicle or D-cysteine. This
hypothermia was less in rats that received co-injections of
D-CYSee, and substantially less in rats that received D-CYSea.

MAP, heart rate, and Heart Rate/MAP values before and after
injection of NLX, and arithmetic changes in these parameters, for
co-injections 1–5, co-injections 1–10, and co-injections 6–10 studies
are presented in Table 3. There were no between-group differences
in resting parameters prior to the administration of NLX (the
injections of fentanyl elicited transient decreases in MAP and
heart rate that had fully resolved by the time the pre-NLX values
were recorded). The NLX-precipitated increases in MAP and heart
rate in rats that received 10 co-injections of fentanyl + vehicle were
substantially greater than in rats given 5 co-injections of fentanyl +
vehicle. The NLX-precipitated increases in MAP and heart rate were
smaller in rats that received fentanyl + D-CYSee and fentanyl +
D-CYSea in co-injections 1–5, co-injections 1–10, and co-injections
6–10 studies. Arithmetic changes in Heart Rate/ MAP values (see
column Delta) were enhanced in rats that received co-injections
1–10 and co-injections 6–10 of fentanyl + vehicle. These ratios were
markedly diminished in rats that received co-injections of fentanyl +
D-CYSee or fentanyl + D-CYSea for all three studies.

Discussion

We show here that the injection of NLX elicited pronounced
withdrawal syndrome consisting of behavioral and cardiorespiratory
responses, and falls in body temperature and body weight, in male
rats that received twice-daily co-injections of fentanyl (125 μg/kg,
IV) + vehicle. These withdrawal phenomena seen in this study are
strongly suggestive of the rats having become physically-dependent
on fentanyl, and are consistent with reports on the patterns of NLX-
precipitated withdrawal signs seen in a variety of fentanyl-
administration protocols (Bartoletti et al., 1987; Adams and
Wooten, 1994; De Kock and Meert, 1995; Thornton and Smith,
1997; Fendt andMucha, 2001; Lohmann and Smith, 2001; Chen and
Pan, 2006; Bruijnzeel et al., 2007; Liu et al., 2008; Mitzelfelt et al.,
2011; Mitzelfelt et al., 2014; Gyawali et al., 2020; Uddin et al., 2021),
and in other protocols used to induce physical dependence to
opioids (Laska et al., 1976; Laska et al., 1977; Hutchinson et al.,
2007; Lopez-Gimenez and Milligan, 2010; Morgan and Christie,
2011; Nielsen and Kreek, 2012). Moreover, the lack of behavioral
responses elicited by the injection of NLX in rats that received co-
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injections of vehicle + vehicle, vehicle + D-CYSee or vehicle +
D-CYSea suggests that the behavioral phenomena that occurred
upon the injection of NLX in fentanyl-injected rats were indeed
withdrawal phenomena (due to the development of physical
dependence to the opioid), rather than other potential issues
(e.g., multiple injection protocols) that would lead NLX to cause
behavioral reactions. The NLX-induced hypertension and
tachycardia are consistent with previous studies showing that
NLX-precipitated withdrawal is associated with hypertension and
tachycardia due to activation of the sympathetic nervous system in
humans (Purssell et al., 1995; Walsh et al., 2003; Levin et al., 2019;
Balshaw et al., 2021; Baldo, 2022; Isoardi et al., 2022; Lee et al., 2022)

and experimental animals (Buccafusco, 1983; Buccafusco, 1990;
Buccafusco et al., 1984; Marshall and Buccafusco, 1985; Dixon
and Chang, 1988; Chang and Dixon WR, 1990; Delle et al., 1990;
Baraban et al., 1993). Our observation that the NLX produced a
marked increase in apneas (>1.5 s between breaths) is also in
agreement with results from opioid withdrawal paradigms in
humans (Schwarzer et al., 2015; Zamani et al., 2020; Wilson
et al., 2023) and rats (Delle et al., 1990; Baldo, 2022).

The first new conclusion of this study was that co-injections of
D-CYSee and D-CYSea reduced the development of physical
dependence to fentanyl. This conclusion was based on the
findings that the withdrawal phenomena elicited by NLX (e.g.,

TABLE 1 Body weights at key points of each of the study protocols.

Co-injection 1–5 Study Stage Actual body weight (grams) and arithmetic changes in weight

Vehicle D-cysteine D-CYSee D-CYSea

Behavioral Pre 337 ± 2 336 ± 1 337 ± 2 337 ± 1

MAP and Heart Rate Pre 338 ± 2 337 ± 2 338 ± 2 339 ± 2

Apnea Pre 337 ± 2 337 ± 2 337 ± 1 339 ± 2

Body weight and body temperature Pre 338 ± 2 338 ± 2 337 ± 1 338 ± 2

Post-inj 5 332 ± 1 331 ± 2 342 ± 1 345 ± 2

Post-NLX 325 ± 1 323 ± 2 340 ± 1 344 ± 2

Post-inj 5 vs. Pre −5.8 ± 0.5* −6.9 ± 0.9* +4.8 ± 0.6*,† +7.7 ± 1.1*,†,‡

Post-NLX vs. Post-inj 5 −6.9 ± 0.8* −8.1 ± 1.0* −2.2 ± 0.4*,† −1.1 ± 0.3*,†

Co-injection 1–10 Study Stage Vehicle D-cysteine D-CYSee D-CYSea

Behavioral Pre 337 ± 1 338 ± 2 337 ± 2 340 ± 2

MAP and Heart Rate Pre 337 ± 2 338 ± 2 339 ± 2 337 ± 2

Apnea Pre 337 ± 2 336 ± 2 338 ± 2 337 ± 2

Body weight and body temperature Pre 338 ± 2 336 ± 2 338 ± 2 337 ± 2

Post-inj 10 329 ± 1 324 ± 2 345 ± 2 348 ± 3

Post-NLX 315 ± 2 310 ± 3 341 ± 2 344 ± 2

Post-inj 10 vs. Pre −9.6 ± 1.4* −11.8 ± 1.9* +7.3 ± 1.3*,† +10.8 ± 1.6*,†

Post-NLX vs. Post-inj 10 −13.9 ± 1.5* −14.0 ± 1.8* −4.1 ± 0.8*,† −4.0 ± 1.0*,†

Co-injection 6–10 Study Stage Vehicle D-cysteine D-CYSee D-CYSea

Behavioral Pre- prior to injection 6 329 ± 1 330 ± 2 349 ± 2 352 ± 2

MAP and Heart Rate Pre 330 ± 2 329 ± 2 350 ± 2 354 ± 2

Apnea Pre 330 ± 2 328 ± 2 350 ± 2 351 ± 2

Body weight and body temperature Pre 330 ± 2 331 ± 1 349 ± 2 350 ± 2

Post-inj 10 319 ± 1 317 ± 2 359 ± 2 362 ± 1

Post-NLX 304 ± 2 301 ± 2 352 ± 2 359 ± 2

Post-inj 10 vs. Pre −10.9 ± 1.2* −13.4 ± 1.4* +10.8 ± 1.6*,† +11.2 ± 1.8*,†

Post-NLX vs. Post-inj 10 −15.0 ± 1.6* −16.6 ± 1.8* −7.6 ± 1.1*,† −3.1 ± 0.6*,†,‡

NLX, naloxone hydrochloride (1.5 mg/kg, IV). MAP, mean arterial blood pressure. D-CYSee, D-cysteine ethyl ester (250 μmol/kg, IV). D-CYSea, D-cysteine ethyl amide (100 μmol/kg, IV).

The dose of D-cysteine was 250 μmol/kg, IV. The data are shown as mean ± SEM. There were 9 rats in each group. *p < 0.05, significant response from Pre. †p < 0.05, D-CYSea or D-CYSee

versus vehicle. ‡p < 0.05, D-CYSea versus D-CYSee.
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behavioral changes, elevations in MAP and heart rate, and falls in
body weight and temperature) were substantially less than in rats
that were co-injected with fentanyl + vehicle. The finding that
D-cysteine was ineffective suggests that the cell-penetrability of
D-CYSee and D-CYSea is an important factor in their efficacy.
The enhanced potency of D-CYSea over D-CYSee may result from
greater resistance to plasma carboxylesterases that convert thiol
esters, such as D-CYSee, to parent thiols (Butterworth et al., 1993;
Nishida et al., 1996). As such more D-CYSea than D-CYSee may
enter brain neurons involved in acquisition of physical dependence
and addiction (Laschka et al., 1976a; Laschka et al., 1976b; Laschka
et al., 1977; Koob, 1987; Saiepour et al., 2001; Glass, 2010; Gardner,
2011). However, it should be noted that although a lower dose of
D-CYSea (100 μmol/kg, IV) was more effective than a higher dose of
D-CYSee (250 μmol/kg, IV) in preventing the development of
dependence (markedly reduced NLX-precipitated withdrawal
phenomena), we observed that D-CYSea markedly diminished
NLX-precipitated sneezing, whereas D-CYSee did not. It is well-
known that sneezing is an important phenomenon in opioid
withdrawal syndromes in humans (Ostrea et al., 1975; Specker
et al., 1998; Gaalema et al., 2012; Lofwall et al., 2013) and
animals (Hendrie, 1985; Liu et al., 2007). One possibility
therefore is that D-CYSea interacts with signaling pathways
driving sneezing (Batsel and Lines, 1975; Undem et al., 2000; Li
et al., 2021; Ramirez et al., 2022), whereas D-CYSee does not. The
activity of D-CYSea raises the possibility that this, and other ethyl

amides, such as the antioxidant N-acetyl-L-cysteine (L-NAC) ethyl
amide (Bahat-Stroomza et al., 2005; Grinberg et al., 2005; Ates et al.,
2008; Annia, 2011; Sunitha et al., 2013), may show efficacy in
human trials.

Currently, we have no direct evidence as to the cellular
mechanisms by which D-CYSee and D-CYSea blunt the
development of physical dependence to fentanyl. Previous
research suggests that the mechanisms may involve 1) their
reducing potential (e.g., reduction of Fe3+ to Fe2+, free L-cystine
to L-cysteine), and reduction of protein bound L-cystine to
L-cysteine in plasma membrane ion-channels, including K+-,
Ca2+- and non-selective cation channels (Baronas et al., 2017;
Ward, 2017; Weise-Cross et al., 2019), and major ligand-gated
ion channel receptors, such as N-methyl-D-aspartate (NMDA)
glutamatergic receptors (Sucher and Lipton, 1991) and γ-
aminobutyric acid (GABA) receptors (Calvo et al., 2016), 2) their
redox regulation of an array of functional proteins upon entering
cells (Bogeski et al., 2011; Bogeski and Niemeyer, 2014; O-Uchi et al.,
2014; Gamper and Ooi, 2015; Gao et al., 2017; García et al., 2018), 3)
conversion of D-CYSee and D-CYSea to D-cysteine which then
enters into enzymatic processes generating H2S sequentially by
D-aminoacid oxidase and 3-mercaptopyruvate sulfur-transferase
(Kimura, 2014; 2017; Bełtowski, 2019) in cells, such as the
carotid bodies (Prabhakar, 2012), and 4) conversion to S-nitroso-
D-CYSee and S-nitroso-D-CYSea, which exert effects similar to
endogenous S-nitrosothiols, such as S-nitroso-L-cysteine (Myers

TABLE 2 Body temperatures (oC) at key points of each of the study protocols.

Co-injection 1–5 Study Body temperature (oC) and arithmetic changes in temperature

Vehicle D-cysteine D-CYSee D-CYSea

Pre 37.5 ± 0.06 37.5 ± 0.07 37.5 ± 0.06 37.5 ± 0.06

Post-inj 5 38.1 ± 0.07 38.2 ± 0.11 37.5 ± 0.08 37.6 ± 0.08

Post-NLX 37.3 ± 0.11 37.3 ± 0.17 37.3 ± 0.08 37.5 ± 0.12

Post-inj 5 vs. Pre +0.56 ± 0.07* +0.70 ± 0.06* +0.04 ± 0.05† +0.12 ± 0.06†

Post-NLX vs. Post-inj 5 −0.76 ± 0.09* −0.89 ± 0.10* −0.17 ± 0.06*,† −0.14 ± 0.6†

Co-injection 1–10 Study Vehicle D-cysteine D-CYSee D-CYSea

Pre 37.6 ± 0.08 37.5 ± 0.06 37.4 ± 0.07 37.5 ± 0.07

Post-inj 10 38.3 ± 0.08 38.3 ± 0.07 37.5 ± 0.11 37.5 ± 0.04

Post-NLX 36.6 ± 0.19 36.6 ± 0.21 37.4 ± 0.11 37.4 ± 0.10

Post-inj 10 vs. Pre +0.72 ± 0.08* +0.80 ± 0.10* +0.12 ± 0.06† +0.02 ± 0.07†

Post-NLX vs. Post-inj 10 −1.66 ± 0.17* −1.77 ± 0.17* −0.10 ± 0.9† −0.08 ± 0.08†

Co-injection 6–10 Study Vehicle D-cysteine D-CYSee D-CYSea

Pre 37.5 ± 0.07 37.5 ± 0.09 37.5 ± 0.08 37.5 ± 0.08

Post-inj 10 38.4 ± 0.13 38.4 ± 0.13 37.7 ± 0.10 37.7 ± 0.07

Post-NLX 36.6 ± 0.2 36.5 ± 0.13 37.2 ± 0.11 37.5 ± 0.09

Post-inj 10 vs. Pre +0.92 ± 0.09* +0.89 ± 0.11* +0.22 ± 0.04*,† +0.17 ± 0.07*,†

Post-NLX vs. Post-inj 10 −1.84 ± 0.11* −1.94 ± 0.14* −0.48 ± 0.06*,† −0.18 ± 0.5*,†,‡

NLX, naloxone hydrochloride (1.5 mg/kg, IV). MAP, mean arterial blood pressure. D-CYSee, D-cysteine ethyl ester (250 μmol/kg, IV). D-CYSea, D-cysteine ethyl amide (100 μmol/kg, IV).

The dose of D-cysteine was 250 μmol/kg, IV. The data are shown as mean ± SEM. There were 9 rats in each group. *p < 0.05, significant response from Pre. †p < 0.05, D-CYSea, or D-CYSee,

versus vehicle. ‡p < 0.05, D-CYSea versus D-CYSee.
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et al., 1990; Bates et al., 1991; Seckler et al., 2017; 2020), which
controls various intracellular processes (Lipton et al., 1993; Foster
et al., 2009; Seth and Stamler, 2011; Stomberski et al., 2019; Gaston
et al., 2020), including those that control cardiorespiratory functions
(Davisson et al., 1996; 1997; Ohta et al., 1997; Lipton et al., 2001;
Gaston et al., 2006; Lewis et al., 2006), and those diminishing opioid-
induced respiratory depression (OIRD) (Getsy et al., 2022d; 2022e).
These actions of D-CYSee and D-CYSeamay affect the cell-signaling
processes thought to be important in acquisition of physical
dependence to opioids, including those involving NMDA
receptors (Buccafusco et al., 1995; Herman et al., 1995;
Rasmussen, 1995; Noda and Nabeshima, 2004; Glass, 2011;
Fluyau et al., 2020), muscarinic receptors (Marshall and
Buccafusco, 1985; Holland et al., 1993), voltage-gated Ca2+-
channels (Tokuyama et al., 1995; Dogrul et al., 2002; Esmaeili-
Mahani et al., 2008; Alboghobeish et al., 2019), oxidative stress
(Mori et al., 2007; Abdel-Zaher et al., 2013; Mansouri et al., 2020;
Ward et al., 2020; Houshmand et al., 2021), and the nitric oxide-
initiated cGMP-mediated signaling cascades (Adams et al., 1993;
Cappendijk et al., 1993 Majeed et al., 1994; Leza et al., 1995; 1996;
London et al., 1995; Vaupel et al., 1995a; Vaupel et al., 1995b;
Dambisya and Lee, 1996; Bhatt and Kumar, 2015; Tsakova et al.,
2015; Sackner et al., 2019; Gledhill and Babey, 2021). The redox
effects of D-CYSee and D-CYSea are also likely important since a
primary intracellular redox regulator, α-lipoic acid, diminishes the
development of morphine dependence in mice and the NLX-
induced biochemical alterations in morphine-dependent mice.
Moreover, the actions of α-lipoic acid were enhanced by
concurrent treatment with N-acetyl-L-cysteine (Abdel-Zaher
et al., 2013).

The second new conclusion from this study was that co-
injections of D-CYSee and D-CYSea beginning with the 6th and
continuing to the 10th injection of fentanyl, reverse established
physical dependence to the opioid (again on the basis of diminished
NLX-precipitated responses). The NLX-precipitated behaviors
(except for sneezes), increases in MAP, heart rate, and the
numbers of apneas, and falls in body temperature and body
weight, were fewer or smaller in magnitude in rats that received
the co-injections of D-CYSee. Notably, the NLX-precipitated
withdrawal phenomena, including sneezes, were markedly
attenuated in rats that received co-injections of D-CYSea. Again,
the mechanisms by which D-CYSee and D-CYSea reverse acquired
physical dependence to fentanyl are unknown, however, some of the
mechanisms discussed above, including their antioxidant properties,
may be involved. Although none of the following have proven to be
tenable therapeutics, the drugs and agents that have some ability to
reverse established physical dependence include, the antioxidants,
quercetin and melatonin; allosteric modulators of AMPA receptors;
the dopamine D2 receptor antagonist, haloperidol; adrenomedullin
receptor antagonists; the β2-AR antagonist, butoxamine; histamine
receptor agonists; a 5-hydroxytryptamine-reuptake inhibitor,
fluoxetine; inhibitors of Ca2+/calmodulin-dependent protein
kinase II; and the nitric oxide synthase inhibitor, L-NG-nitro-
arginine methyl ester. The clear lack of rationale for the use of
these drugs and agents speaks to our minimal understanding about
mechanisms underlying physical dependence to opioids. Our
findings that D-CYSee and D-CYSea reverse established physical
dependence to fentanyl, and our finding that D-CYSee prevents the
development of fentanyl-induced conditioned place preference
(addictive potential) in male and female rats (Knauss et al.,

TABLE 3 Cardiorespiratory responses elicited by the injection of naloxone HCl.

Study MAP (mmHg) Heart rate (beats/min) Heart rate/MAP (bpm/mmHg)

Co-inj 1–5 Pre Post-NLX Delta Pre Post-NLX Delta Pre Post-NLX Delta

Vehicle 113 ± 2 129 ± 2 +16.3 ± 1.7* 355 ± 5 410 ± 6 +54.1 ± 4.0* 3.16 ± 0.07 3.18 ± 0.07 3.64 ± 0.52*

D-cysteine 114 ± 1 136 ± 3 +21.3 ± 2.2* 355 ± 5 423 ± 7 +68.0 ± 9.1* 3.10 ± 0.06 3.12 ± 0.06 3.40 ± 0.51*

D-CYSee 115 ± 1 121 ± 2 +5.1 ± 0.7*,† 358 ± 8 365 ± 9 +6.9 ± 1.6*,† 3.10 ± 0.07 3.03 ± 0.07 1.35 ± 0.22*,†

D-CYSea 115 ± 2 120 ± 2 +4.6 ± 0.7*,† 357 ± 5 365 ± 5 +7.9 ± 1.8*,† 3.12 ± 0.05 3.05 ± 0.06 1.98 ± 0.41*,†

Co-inj 1–10 Pre Post-NLX Delta Pre Post-NLX Delta Pre Post-NLX Delta

Vehicle 114 ± 2 144 ± 4 +30.3 ± 3.3* 357 ± 6 478 ± 12 +121.2 ± 10.3* 3.14 ± 0.06 3.33 ± 0.07 4.32 ± 0.52*

D-cysteine 114 ± 2 151 ± 4 +36.4 ± 3.9* 356 ± 7 512 ± 9 +155.6 ± 12.6* 3.12 ± 0.06 3.41 ± 0.08 4.61 ± 0.50*

D-CYSee 112 ± 2 121 ± 2 +8.4 ± 1.4*,† 358 ± 6 366 ± 6 +8.7 ± 2.3*,† 3.19 ± 0.06 3.04 ± 0.06 1.12 ± 0.18*,†

D-CYSea 114 ± 1 118 ± 2 +3.6 ± 0.5*,† 357 ± 4 362 ± 4 +4.9 ± 0.5*,† 3.13 ± 0.05 3.08 ± 0.05 1.56 ± 0.22*,†

Co-inj 6–10 Pre Post-NLX Delta Pre Post-NLX Delta Pre Post-NLX Delta

Vehicle 115 ± 1 150 ± 5 +34.9 ± 4.1* 358 ± 5 496 ± 15 +138.7 ± 14.4* 3.11 ± 0.04 3.31 ± 0.06 4.25 ± 0.40*

D-cysteine 116 ± 1 153 ± 5 +37.1 ± 4.3* 354 ± 5 508 ± 13 +154.3 ± 15.7* 3.06 ± 0.05 3.32 ± 0.06 4.19 ± 0.24*

D-CYSee 112 ± 1 123 ± 2 +10.8 ± 1.3*,† 358 ± 5 386 ± 7 +28.1 ± 6.3*,† 3.20 ± 0.06 3.15 ± 0.06 2.51 ± 0.36*,†

D-CYSea 114 ± 1 118 ± 2 +3.4 ± 0.5*,†,‡ 360 ± 5 368 ± 6 +7.8 ± 1.7*,†,‡ 3.16 ± 0.08 3.13 ± 0.08 2.24 ± 0.38*,†

MAP,mean arterial blood pressure. bpm, beats per minute. NLX, naloxone hydrochloride (1.5 mg/kg, IV). D-CYSee, D-cysteine ethyl ester (250 μmol/kg, IV). D-CYSea, D-cysteine ethyl amide

(100 μmol/kg, IV). The dose of D-cysteine was 250 μmol/kg, IV. The data are shown as mean ± SEM. There were 9 rats in each group. *p < 0.05, significant response from Pre. †p < 0.05,

D-CYSea or D-CYSee versus vehicle. ‡p < 0.05, D-CYSea versus D-CYSee.
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2023), certainly supports the concept that alterations in thiol
chemistry within cells may be an important common feature of
fentanyl-induced addiction and physical dependence (Trivedi et al.,
2014). The ability of D-CYSee and D-CYSea to reverse established
physical dependence to fentanyl has potential clinical relevance
given that these, and other bioactive L,D-thiol esters/amides
(Gaston et al., 2021; Jenkins et al., 2021; Getsy et al., 2022a;
Getsy et al., 2022b; Getsy et al., 2022c; Getsy et al., 2022d; Lewis
et al., 2022) and related compounds, such as L-NAC (Getsy et al.,
2022f), Tempol (Baby et al., 2021a, Baby et al., 2021b), and
S-nitrosothiols (Getsy et al., 2022d; Getsy et al., 2022e), have
been shown to be able to reverse acquired physical dependence
to fentanyl and other opioids in humans. In particular, if D-CYSee
and D-CYSea, for example, can block opioid-induced dopamine
surges in brain structures (e.g., medial prefrontal cortex, ventral
tegmentum and nucleus accumbens) in which the rewarding
euphoria-producing dopamine surge happens for drugs of abuse/
addiction (Laschka et al., 1976a; Laschka et al., 1976b; Laschka et al.,
1977; Koob, 1987; Saiepour et al., 2001; Glass, 2010; Gardner, 2011),
then they could be useful in treatment of opioid use disorder (OUD)
as stand-alone therapies. Moreover, maternal opioid use is a fast-
growing public health issue, and babies born to mothers dependent
on opioids often display severe withdrawal symptoms that require
hospitalization (Kelly et al., 2020; Centers for Disease Control and
Prevention, 2023). Current treatment strategies of this neonatal
opioid withdrawal syndrome (NOWS) are inadequate, and the
infants develop numerous behavioral, and cognitive social
problems as they grow older (Winklbaur et al., 2008; Jones et al.,
2010; Reddy et al., 2017). As such, novel therapies and better
understanding of the mechanisms by which drugs and agents
benefit the immediate and long-term consequences of NOWS are
desperately needed. Recent compelling findings with L-NAC and
L-NAC methyl ester suggest that they may be of therapeutic benefit
in preventing the development of NOWS.

Limitations

While this study demonstrates the efficacies of D-CYSee and
D-CYSea in male rats, it is imperative to determine whether these
compounds prevent and reverse physical dependence to fentanyl in
female rats. It is well known that there are numerous sex-dependent
differences in opioid receptor signaling (Bryant et al., 2006; Hosseini
et al., 2011), and that opioids exert qualitatively/quantitatively
different pharmacological responses (e.g., cardiorespiratory and
antinociceptive) in females compared to males (Dahan et al., 1998;
Sarton et al., 1998; Bodnar and Kest, 2010). Moreover, there are
marked sex-dependent differences in expression of opioid-induced
hyperalgesia, tolerance and withdrawal (Bodnar and Kest, 2010), and
several sex differences in the expression of OUDs (Knauss et al., 2023)
and treatment strategies for these disorders (Huhn et al., 2019; Davis
et al., 2021; Knouse and Briand, 2021). Additionally, we must perform
studies with lower doses of L-CYSee and D-CYSea in both and male
rats to better understand their efficacy and potential side-effect
profiles. For example, we have yet to establish whether co-
injections of D-CYSee and D-CYSea alters fentanyl-induced
changes in antinociception status (e.g., analgesia and, hyperalgesia),
although we have found that injections of D- or L-cysteine (m) ethyl

esters (Getsy et al., 2022a; Getsy et al., 2022b; Getsy et al., 2022c; Getsy
et al., 2022d; Lewis et al., 2022), D-cysteine di (m) ethyl ester (Gaston
et al., 2021), L-glutathione ethyl ester (Jenkins et al., 2021), and
L-NAC (Getsy et al., 2022f) do not impair the analgesia induced
by opioids despite preventing/reversing the OIRD. Our lack of
knowledge as to cellular/molecular mechanisms of action of
D-CYSee and D-CYSea hinders our understanding of how they
can exert their effects. Our efforts to date are focused on possible
binding of D-CYSee andD-CYSea, and the parent thiol, D-cysteine, to
L,D-cysteine binding protein myristoylated alanine-rich C-kinase
substrate (Semenza et al., 2021). Additionally, we are focused on
establishing whether disruption of opioid receptor-β-arrestin cell
signaling events mediating the development of physical
dependence, while sparing the G-protein-mediated analgesic effects
of opioids (Schmid et al., 2017; Grim et al., 2020), may involve the
conversion of D-CYSee and D-CYSea to their S-nitrosothiol forms
which then drives their activity. This theory is based on 1) evidence
that the S-nitrosothiol, S-nitroso-L-cysteine, overcomes fentanyl- and
morphine-induced OIRD (Getsy et al., 2022d; Getsy et al., 2022e), 2)
the bioactivity of S-nitroso-L-cysteine ethyl ester (Clancy et al., 2001),
and 3) evidence that oral S-nitroso-L-NAC methyl ester has unique
pharmacological properties associated with the generation of
intracellular glutathione, H2S, and nitrosyl entities (Tsikas et al.,
2018). With respect to understanding whether D-CYSee and
D-CYSea penetrate into brain structures involved in acquisition of
opioid dependence, we are currently determining the plasma and
brain distribution of these compounds upon systemic injection with
and without co-injections of fentanyl via LC-MS (Altawallbeh et al.,
2019). With the rapidly expanding role of synthetic opioids in the
major OUD crisis (Arendt, 2021; Deo et al., 2021), our studies must
ultimately determine whether D-CYSee and/or D-CYSea overcome
physical dependence to fentanyl in humans. One final consideration
in addition to testing if the effects of D-CYSee and D-CYSea
generalize across sexes, is to determine if the results translate
within species. Decades of work in mice and rats have shown that
opioid withdrawal phenotypes are genetically heritable traits subject to
genetic variation (Kest et al., 2004; Philip et al., 2010). The lack of
genetic variation in preclinical models is one explanation for the
inability of many findings to translate across species (Garner, 2014;
Zuberi et al., 2016). Additionally, pre-clinical screening of therapeutics
has largely ignored multigenic effects by testing inbred rodent
strains—devoid of genetic variation—and manipulating individual
gene mutations that do not accurately recapitulate human disease
pathophysiology (Mosedale, 2018). Testing the efficacy of drugs using
a population of outbred mice containing approximately 45 million
segregating single nucleotide polymorphisms (SNPs), such as the
Diversity Outbred (Saul et al., 2019; Li and Auwerx, 2020), that
has diversity similar to what is found in the human population, will
increase the likelihood that the drug translates within species before
traversing across species.

Conclusion

Using the degree of NLX-induced withdrawal phenomena as a
measure, we show here that D-CYSee and D-CYSea prevent the
development of physical dependence to fentanyl, and reverse
acquired dependence to this synthetic opioid in adult male
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Sprague Dawley rats. The enhanced efficacy of D-CYSea is
potentially due to its greater resistance to carboxylesterases that
may convert D-CYSee to D-cysteine. Our study with D-CYSee and
D-CYSea was in large part due to the pioneering work of Trivedi and
Deth (2015) and Trivedi et al. (2014) which greatly contributed to
our knowledge about the cell processes by which opioids cause
addiction and dependence (Getsy et al., 2022a). In particular, the
possibility that opioids may cause psychological addiction and
physical dependence by opioid-receptor-mediated blockade of
EAAT3/EAAC1 transporter-mediated entry of L-cysteine into
neurons (Trivedi et al., 2014), prompted our pharmacological
studies with the membrane-permeable, L-cysteine ethyl ester, as
well as D-CYSee and D-CYSea, and other D,L-thiol esters. The
findings that D-CYSee and D-CYSea both markedly reduced the
larger majority of NLX-precipitated withdrawal phenomena,
suggests that the loss of L-cysteine entry into cells plays a key
role in establishing physical dependence to fentanyl. The enhanced
potency of D-CYSea compared to D-CYSee points to an important
strategy in the development of therapeutically effective thiol drugs
that not only brings enhanced cell-penetrability, but also potential
protection from plasma carboxylesterases. Determining the thiol-
dependent signaling pathways by which D-CYSee and D-CYSea
exert their therapeutic actions will add to our understanding how
these two classes of thiol analogues exert their effects.
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