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Malignant tumors have long been a prominent subject of research in order to
foster innovation and advancement in diagnostic and therapeutic modalities.
However, the current clinical treatment of malignant tumors faces significant
limitations. In light of recent advancements, theWorld Health Organization (WHO)
officially designated malignant tumors as a chronic disease in 2006. Accordingly,
maintaining the tumor in a stable state and minimizing its detrimental impact on
the body emerges as a potentially advantageous approach to oncological
treatment. One emerging strategy that has garnered substantial attention from
the academic community is the construction of a biomineralized layer
surrounding solid tumors for tumor blockade therapy. This innovative
approach is regarded as safe, effective, and long-lasting. This review aims to
provide a comprehensive summary of the advancementsmade in the utilization of
biomineralization for the diagnosis and treatment of malignant tumors.
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1 Introduction

Technological and medical advancements have extended human lifespan, coinciding
with increased prevalence of malignant tumors, now a major global mortality cause (Siegel
et al., 2023). The exploration and enhancement of diagnostic and treatment approaches for
malignant tumors have consistently remained a focal point of research. Among the various
manifestations of advanced malignant tumors, bone metastasis stands out as a frequent
occurrence, which often induces severe pain, pathological fractures, and nerve damage
(Coleman, 2006; Coleman et al., 2020).

Surgical intervention is the principal approach for primary tumors, aiming for complete
resection. However, its effectiveness is often limited by tumor spread to adjacent tissues or
distant micro-metastases, potentially hindering minimal residual disease progression (Zhao
et al., 2016), which may inadvertently impede the natural progression of minimal residual
disease (MRD) (Baum, 1996; Baum et al., 1999; Demicheli, 2001; Demicheli et al., 2001).
Radiation and chemotherapy are common, yet they carry significant side effects and cancer
recurrence risks (Yahyapour et al., 2018).

Current clinical strategies target the primary tumor and aim to strengthen bones to
reduce related complications. Pharmacotherapy, especially bisphosphonates, is central in
managing bone metastasis. In refractory cases, ablative surgeries with cement filling are used
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to prevent fractures, improve life quality, and prolong survival.
However, both conservative and surgical approaches have
limitations, including risks associated with bisphosphonates like
inhibited osteogenesis (Cohen et al., 2022) and jaw osteonecrosis
(Drake et al., 2008).

On the one hand, the existing treatment modalities face
significant challenges in effectively addressing both the
primary tumor and multiple metastatic lesions and adds to the
complexity of treatment planning. On the other hand, a notable
dearth of clinically efficacious treatment approaches persists for
managing multiple bone metastases.

Biomedicine research, particularly in biomineralization, has
advanced, offering new avenues for malignant tumor treatment.
Biomineralization, the process of forming inorganic minerals in
organisms, mainly involves nucleation, interface recognition,
crystal growth, phase transition, orientation, and nanoparticle
assembly. Recently, biomimetic mineralization has become an
emerging research field for the design and engineering of
organisms with the in-depth study of the biomineralization
mechanism and its application scope (Nie et al., 2022).

Recent studies focus on biomimetic mineralization for tumor
diagnosis and treatment. Encapsulating tumors in a
biomineralization layer has emerged as a novel method for
tumor blockade, suppressing growth and metastasis by
obstructing tumor vasculature and material exchange (Liu
et al., 2022). This method’s sustainability and biocompatibility
derive from using organism-derived or imported ions.
Theoretically, tumor mineralization therapy has the potential
to achieve local in situ mineralization of tumors, making it a
promising approach for the treatment of primary tumors as well
as multiple metastases.

This article reviews biomimetic mineralization advancements in
malignant tumor treatment, highlighting unresolved challenges and
the need for translating research into clinical applications.

2 Biomimetic mineralization for tumor
therapy

Over the past few decades, various mechanisms have been
postulated to explain the natural processes underlying tumor
calcification. Notably, certain studies have indicated that
hydroxyapatite nanocrystals are initially synthesized within
intracellular vesicles before their subsequent propagation into the
extracellular matrix (Arsenau et al., 1991). Others suggest that the
calcification process is a direct nucleation bymatrix macromolecules on
the cell surface (Raggio et al., 1986; Landis et al., 1996; Golub, 2009).
Once hydroxyapatite crystals are nucleated, they grow and extend
further in the extracellular matrix (Cox and Morgan, 2013). To
enable successful tumor mineralization, certain conditions must be
satisfied: 1) the presence of ions within the biological tissue or lesion site,
2) the combination of these ions with their corresponding counter-ions,
3) the attainment of a supersaturated concentration of both ions, and 4)
the eventual deposition of these ions as a solid phase (Zhou et al., 2019).

In 2016, Zhao et al. introduced the concept and methodology of
Cancer Cell Targeting Calcification (CCTC) (Blumenthal et al., 2015),
drawing inspiration from the spontaneous biomineralization observed
in tumor tissues. This approach combines organic components like

folate and inorganic elements such as calcium, creating a hybrid system
that disrupts cancer cell functions and induces cell death (Bai et al.,
2022). Ectopic calcification leads to the dysfunction and death of tumor
cells, resulting in effective tumor suppression, metastasis control, and
improved survival outcomes compared to conventional chemotherapy
approaches. This method necessitates the supplementary
administration of folate and Ca2+ at the tumor site. It is important
to note that the introduced high concentration of calcium ions,
approximately 10 mM, significantly exceeds the physiological range
(2.25–2.75 mM). Consequently, safety concerns arise, including the
potential for inflammation and hypercalcemia, which may result in
severe adverse effects such as cardiac arrest, organ failure, and even
fatality (Delektorskaya et al., 2009; Zhao et al., 2016). Therefore, in order
to advance the clinical applicability of the clinical application potential
of tumor-targeted calcification, Zhao and other researchers recognizing
the need for safer and more effective approaches, have undertaken
further investigations. Their research focuses on two primary areas: 1)
achieving in situ enrichment of calcium ions for tumormineralization at
physiological concentrations, and 2) developing calcium ion-targeted
release nanoparticles. These endeavors aim to expand the potential of
tumor-targeted calcification in clinical settings.

2.1 Tumor mineralization at physiological
concentrations

In general, the strategy to achieve tumor tissue mineralization at
physiological calcium concentrations can be conceptualized as the
construction of a functional hybrid system that synergistically
integrates organic and inorganic components. The organic
constituents of this system primarily comprise structural domains
that possess the capability to selectively target tumor cells, thereby
enabling enhanced therapeutic selectivity. These domains
encompass a diverse range of receptors that are specifically
expressed in tumor cells (such as folate receptor (FR), human
epidermal growth factor receptor-2 (HER-2), and epidermal
growth factor receptor (EGFR) (Delektorskaya et al., 2009)), as
well as integrins. Furthermore, the organic components also
consider the tumor-specific microenvironment and the vascular
niche as important determinants. Additionally, the organic
constituents within this hybrid system should encompass
structural domains capable of selectively enriching chelated
calcium ions from the surrounding tumor microenvironment,
thereby facilitating the localized formation of calcium deposits
within the tumor tissue. To achieve this, the calcium-inducing
units within these structural domains should possess a substantial
abundance of strongly negatively charged residues, such as
carboxylates, sulfates, and phosphates. By incorporating such
elements, the organic components effectively promote the
precipitation of calcium ions and contribute to the formation of
mineralized structures within the tumor microenvironment (Figure 1).

For instance, in a study conducted by Tang et al., in 2020, a
calcification-inducing drug utilizing polysaccharide macromolecules,
engineered with folate molecule modifications on polymeric acid, was
introduced (Tang et al., 2021). This drug demonstrated the ability to
induce tumor calcification under normal physiological concentrations of
calcium and phosphate present in the bloodstream. In 2020, Wu et al.,
2021 synthesized a highly selective calcification-inducing peptide (CiP)
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targeting lung cancer cells. The N-terminus of CiP can specifically bind
to the membrane of lung cancer cells, and the target paired with CiP is
the erythropoietin hepatocellular carcinoma receptor A2 (EPHA2) on
the surface of lung cancer cells. The C-terminus contains a calcification-
inducing motif that can chelate calcium ions. When administered
intravenously, CiP forms a specific precipitation on the surface of
lung cancer cell membranes without the need for additional
exogenous calcium ion supplementation. In 2022, Liu et al., 2022 s
synthesized a functional polymer, DSPE-PEG-ALN (DPA), which
consists of three distinct components serving different functions: the
cell membrane insertion segment, the hydrophilic segment, and the ion
adsorption segment. However, DPA lacks specific tumor cell binding,
leading to the development of acid-responsive polypeptide-based
biomineralization-inducing nanoparticles (BINP) (Jiang et al., 2022).
Upon intravenous administration, the long alkyl chains within BINP
undergo assembly within the nanoparticle under neutral conditions,
while the tumormicroenvironment exhibits weak acidity. In this specific
milieu, the histidine structural unit’s imidazole ring in BINP undergoes
protonation, transitioning from hydrophobic to hydrophilic, exposing
the dodecyl group on the expanded surface of BINP and facilitating its
insertion into the tumor cell membrane. Moreover, the bisphosphonate
groups present in BINP undergo continuous ion deposition reactions,
ultimately leading to the formation of a biomineralized layer on the
tumor cell surface.

Tumor-targeted mineralization therapy, at physiological
concentrations of calcium ions, induces cancer cell death primarily
by disrupting the glycolytic process, influencing cell membrane

fluidity, and reducing protein binding capacity (Tang et al., 2021).
Notably, cancer cell metabolism is characterized by the ability to
extract essential nutrients from a nutrient-limited environment,
which is closely associated with the reliance of cancer cells on
glycolysis for energy production (Maier and Levine, 2015). Through
tumor cell mineralization, the glycolytic process is inhibited, resulting in
reduced mitochondrial oxygen consumption and suppression of cancer
cell energy metabolism. This disruption of metabolic homeostasis leads
to growth arrest and apoptosis in mineralized tumor cells (Arnold et al.,
2021). Moreover, mineralization also affects cell membrane fluidity and
protein binding capacity. The decreased fluidity of tumor cell
membranes leads to membrane rupture and subsequent cell death in
cancer cells, significantly restraining their activity and invasive potential
(Wu et al., 2021). Additionally, the metastatic capacity and
tumorigenicity of tumor cells are markedly diminished (Tang et al.,
2021).

2.2 Tumor mineralization based on targeted
release of calcium ions

Zhang et al. (2019) explored pH-sensitive nanoparticles for tumor
mineralization, inducing calcium overload and oxidative stress in
cancer cells. In a related study, Ren et al. (2020) developed a novel
approach involving the polysaccharide-intervened preparation of
hydroxyapatite (HA) hybrid nanoparticles (NPs) with low
crystallinity. These HA/ALG NPs are uniquely capable of being

FIGURE 1
Schematic diagram of tumor mineralization at physiological concentrations. (A) Calcium ions and folate molecules were connected to the folate
receptors broadly expressed on tumor cells. (B) A highly selective calcification-inducing peptide (CiP) was designed to target lung cancer cells. (C) The
DPA polymer forms amineral layer on the tumor cell surface with help of its insertion segment. (D) BINP responses to the acid tumormicro-environment
(TME) and leads to the formation of a biomineralized layer.
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specifically up-taken by HeLa cells, facilitating their targeted delivery
to the nuclei of tumor cells. Once inside, they release high
concentrations of calcium ions locally. This method disrupts
calcium signaling and contributes to tumor cell death, highlighting
an additional mechanism of tumor mineralization therapy, wherein
calcium overload plays a pivotal role in tumor cell death.

Oxidative stress triggers the denaturation and inactivation of
calcium channel-related proteins, disrupting calcium channel
function and causing the uncontrolled accumulation of Ca2+ within
cells, effectively inhibiting tumor growth and metastasis in vivo. In
normal cells, the expression of catalase (CAT) remains unaffected by
oxidative stress and serves as a protective mechanism. Conversely,
tumor cells exhibit downregulated CAT expression, rendering them
more vulnerable to the detrimental effects of excessive intracellular
hydrogen peroxide. The subsequent calcium overload irreversibly
disrupts calcium signaling, leading to cell death. It has been
demonstrated that intracellular calcium overload correlates with the
formation of calcium-containing vesicles within cells. Consequently,
soluble ions within the cellular environment undergo reduction and

precipitation into an amorphous phase, thereby contributing to the
calcification of calcium-overloaded tumor cells.

3 Biomimetic mineralization for tumor
diagnosis

The application of biomimetic mineralization technology in the
early diagnosis and prognosis analysis of tumors holds clinical
significance.

Firstly, the promotion of mineralized foci formation within tumors
facilitates early tumor tissue detection. Currently, the early detection
through computed tomography (CT) examinations remains challenging.
The CiP synthesized by Wu et al. induces mineralization exclusively on
the surface of lung cancer cells, which enhances visual sensitivity in
ultrasound and CT imaging, enabling early differentiation between lung
cancer and non-tumorous lung nodules. Furthermore, Zhang et al.
designed a Prussian blue/calcium peroxide nanocomposite that
promotes iron mineralization within tumor cells (Zhang et al., 2021),

FIGURE 2
Schematic diagram of overall information related to cancer cell targeting calcification (CCTC). Process of biomimetic calcification therapy, CCTC-
based strategies for tumor therapy and diagnosis as well as future perspectives are discussed.
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precipitating Fe(OH)3 to facilitate early medical imaging of lung cancer
and benign nodules. This approach allows for the detection and
prevention of tumor metastasis in the early stages, without the use of
toxic drugs, offering a potential solution for the precise management of
lung cancer with favorable outcomes. However, it is important to note
that the current research in this area predominantly focuses on lung
cancer, with limited investigations conducted on other tumor types.

Secondly, spontaneous calcification observed in certain tumors after
chemotherapy or radiotherapy has been clinically recognized as a
benign prognostic factor in hepatocellular carcinoma (Kim et al.,
2020), colorectal cancer (Zhou et al., 2019), lung cancer (Wu et al.,
2021) and glioblastoma (Blumenthal et al., 2015). The underlying
mechanism is postulated to involve the dysregulation of intracellular
calcium signaling caused by oxidative free radicals generated during
chemotherapy and radiotherapy, resulting in calcium overload.
However, these mechanistic speculations have not yet been
experimentally validated.

4 Discussion

In summary, this mini review has highlighted recent advancements
in animal experiments demonstrating the feasibility of tumor tissue
calcification as a promising approach in cancer therapy, particularly in
avoiding systemic hypercalcemia (Zhao et al., 2016; Zhang et al., 2019;
Tang et al., 2021; Zhang et al., 2021; Liu et al., 2022; Nie et al., 2022).
Empirical evidence underscores the benefits of this method, such as
disrupting tumor cell growth and metabolism, reducing membrane
fluidity and protein binding capacity, inducing tumor necrosis, and
diminishing metastatic potential and tumorigenicity (Bai et al., 2022).
Additionally, combining tumor tissue calcification with cell-based
chemotherapy has shown to maintain high local drug
concentrations, enhancing targeted delivery and presenting
promising prospects for clinical applications.

Comparatively, tumor calcification therapy offers unique
advantages over traditional chemotherapy and radiotherapy, such as
targeted treatment and significantly reduced systemic toxicity. In
contrast to surgical resection, calcification therapy possesses the
distinct capability to manage multifocal or metastatic lesions.
Surgical approaches, while effective for excising primary tumors, are
typically limited in addressing widespread or disseminated tumor sites.
Calcification therapy, conversely, can be employed in these more
complex scenarios, providing a non-invasive alternative capable of
effectively managing extensive tumor manifestations. Additionally,
calcification therapy may potentially be integrated into a sequential
treatment paradigm with other therapeutic strategies. This integration
could be particularly advantageous in reducing the tumor burden prior
to subsequent interventions. By initiating necrosis and diminishing the
size of the tumor through calcification, the complexity and invasiveness
of later treatments, whether surgical, chemotherapeutic, or
radiotherapeutic, could be substantially reduced. This sequential
approach not only promises to enhance the overall efficacy of
the treatment but also to improve patient outcomes by lessening the
trauma and complexity associated with more aggressive therapies.

However, current research in this field has not extensively
addressed the comprehensive biocompatibility validation, thus
necessitating further studies targeting systemic multi-organ
interactions at the theoretical level. In addition, attention must be

given to the heterogeneity within different tumor types and even
within the same type of tumor. The universality of a single targeting
approach across various tumor types requires careful scrutiny.
Moreover, challenges such as translating animal model results
to human applications and potential side effects need addressing.
The transition from laboratory to clinical application involves
navigating through clinical trials, regulatory approvals, and ethical
considerations, including patient consent for novel treatments. The
economic aspects, particularly the cost-effectiveness of tumor
calcification therapy, are also vital for its broader adoption.

Several key areas in tumor calcification therapy require further
exploration (Figure 2). The precise mechanisms by which tumor
calcification influences tumor growth, metabolism, and metastasis
are not yet fully understood. Gaining insight into these mechanisms
is crucial for optimizing treatment strategies. For instance, the effects of
partial calcification on the cell cycle and the response of the human
immune system to calcified tumor tissue are significant areas for
investigation. Additionally, future research trends may involve
identifying additional tumor-specific target points and calcification-
inducing molecules, thereby expanding the application scope of
biomineralization in cancer treatment and diagnosis. Another
potential research angle involves tumor stem cells. Since
biomineralization therapy does not solely rely on cell surface-specific
receptors, it theoretically possesses a robust inhibitory effect on tumor
stem cells within the tumor microenvironment. However, this
hypothesis requires empirical validation. Interdisciplinary
collaborations, such as those between oncologists, bioengineers, and
molecular biologists, are essential to propel this field forward.

In conclusion, while tumor tissue calcification presents a novel
and promising approach in cancer therapy, its successful translation
to clinical practice requires a comprehensive understanding of its
mechanisms, careful consideration of its limitations, and a concerted
effort across various research disciplines.
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