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Introduction: In clinical practice, inadequate pain inhibition leads to increased
morbidity and mortality. Increased intracellular calcium, oxidants, and
proinflammatory cytokines are known to play a role in the pathogenesis of
postoperative pain. Therefore, we investigated the analgesic effects of
benidipine, paracetamol, and benidipine-paracetamol combination (BPC) on
postoperative and normal pain thresholds in rats.

Material and methods: Sixty-four male albino Wistar rats weighing 285–295 g
were used. The without-incision rats were divided into 4 subgroups: healthy
control, benidipine alone, paracetamol alone, and BPC. The scalpel-incision rats
were divided into 4 subgroups: scalpel incision, scalpel incision + benidipine,
scalpel incision + paracetamol, and scalpel incision + BPC. Paw pain thresholds of
rats were measured using a Basile algesimeter. Biochemical analyses were
performed on the paw tissues of 6 rats randomly taken from the experimental
groups, each containing 8 rats. Rats were sacrificed immediately after the
measurements. After the pain threshold tests were finished, the paw tissues
were removed and malondialdehyde (MDA), total glutathione (tGSH),
cyclooxygenase (COX), and interleukin-6 (IL-6) levels were measured.

Results: There was no significant difference between the groups in paw pain
threshold and measured biochemical parameters in rats without incision. The
decrease in the pain threshold of the incised paw was also best prevented by BPC,
followed by benidipine and then paracetamol. Furthermore, increases in scalpel-
incised paw tissue MDA, COX-2, and IL-6 levels and the decrease in tGSH were
significantly suppressed by benidipine and BPC, while paracetamol could only
significantly inhibit the increase in IL-6 production.
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Conclusion: The combination of the L-type Ca2+ channel blocker benidipine and
paracetamol (BPC) may provide potent analgesia. Our experimental results support
that BPC may be useful in the treatment of severe pain that cannot be adequately
inhibited by paracetamol.
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1 Introduction

The definition of pain in Merskey’s study in 1964 was the first to
receive wide acceptance and was subsequently revised by the
International Association for the Study of Pain in 1974 (Merskey,
1964). According to this definition, pain is a sensory and emotional
experience associated with tissue damage or described in the context
of that damage (Williams and Craig, 2016). Postoperative pain
emerges as a normal response to a surgical intervention (Khan
et al., 2011). Approximately 75% of patients complain of moderate
to severe postoperative pain. Currently, opioid drugs are frequently
used in the treatment of postoperative pain (Angster and Hainsch-
Muller, 2005). However, opioid-related side effects such as nausea,
vomiting, constipation, excessive sedation, somnolence and
respiratory depression lead to dose limitation and inadequate
analgesia (Rawal, 2016). Numerous nonopioid drugs, including
paracetamol, NSAIDs, local anaesthetics, gabapentinoids,
ketamine and glucocorticoids, are also used in postoperative pain
management (Rawal, 2016). The simultaneous use of multiple
analgesic drugs to target different analgesia mechanisms is aimed
at reducing opioid-induced side effects and enhancing the analgesic
effect through synergistic effects (Rawal, 2016). Up to 20 per cent of
patients also require interventional pain management after surgery
(Angster and Hainsch-Muller, 2005). Despite available treatments,
evidence suggests that more than half of patients undergoing
surgical procedures suffer from poorly controlled postoperative
pain (Gorsky et al., 2021). In addition, many issues such as
gastrointestinal side effects related to NSAIDs, cardiovascular
problems related to COX-2 inhibitors, and concerns about abuse
of gabapentinoids limit the use of current therapies (Angster and
Hainsch-Muller, 2005; Rawal, 2016). In addition, non-postoperative
pain in daily life occur in the form of head-neck, musculoskeletal,
neuropathic, and cancer-related chronic pain (Treede et al., 2019).
In clinical terms, insufficiently inhibited pains can lead to
pulmonary, cardiac, and renal function disorders (Soto and Fu,
2003; Ochroch and Gottschalk, 2005). This in turn results in
decreased patient satisfaction and increased morbidity and
mortality (Lovich-Sapolo et al., 2015). Increased production of
malondialdehyde (MDA) and a decrease in reduced glutathione
with oxidative stress are implicated in postoperative pain (Onk et al.,
2018). In addition, postoperative pain has also been linked to such
proinflammatory cytokines as interleukin 1 beta (IL-1β) and tumour
necrosis factor alpha (TNF-α), which directly stimulate primary
sensory neurons (Ji et al., 2014; Song et al., 2016). Cetin et al. also
showed the role of cyclooxygenase-2 (COX-2) in the pathogenesis of
postoperative pain (Cetin et al., 2016). COX-2 is an enzyme
responsible for inflammation (Suleyman et al., 2007). The
increase in COX-2 activity is directly proportional to the increase
in intracellular calcium (Suleyman and Ozcicek, 2019). Calcium

channels constitute another mechanism underlying postoperative
pain. Research has confirmed that low-voltage-activated calcium
channels increase the excitability of sensory neurons following
surgical incisions in rats (Joksimovic et al., 2018). The literature
shows that calcium channel activation, an increase in oxidants and
proinflammatory cytokines, and a decrease in antioxidants are
associated with both postoperative and non-postoperative pain
(Kuyrukluyildiz et al., 2016; Joksimovic et al., 2019).

Benidipine, the effect of which against postoperative and normal
tissue pain thresholds is investigated in this study, is a second-
generation dihydropyridine derivative and antihypertensive drug
that blocks L-, N-, and T-type calcium channels (Kosaka et al., 2010;
Yang et al., 2019; Kocak et al., 2021). In addition, benidipine is
known to reduce myocardial infarction and post-ischaemia/
reperfusion (I/R) oxidative stress in mice (Ohtani et al., 2012).
Cakır et al. showed that benidipine protects brain tissue against
I/R damage by inhibiting the overproduction of COX-2 (Cakir et al.,
2021). Benidipine has also been reported to produce an anti-
inflammatory effect by stabilizing the production of
proinflammatory cytokines such as IL-1β and TNF-α (Unlubilgin
et al., 2017).

Paracetamol (acetaminophen, N-acetyl-p-aminophenol) is
another drug whose effect on postoperative and normal tissue
pain thresholds is investigated in this study. Paracetamol is an
analgesic and antipyretic agent widely used around the world
(Shama and Mehta, 2014). It is used alone or in combination
with other analgesics to treat pain associated with acute and
chronic conditions and generally to reduce opioid requirements
(Authors Anonymous, 2018). The effect mechanism of paracetamol
has not been satisfactorily explained; however, paracetamol has been
shown to exhibit an inhibitory effect on COX-1 and COX-2 activity
in peripheral tissues, although not to the same extent (Jozwiak-
Bebenista and Nowak, 2014).

Information from the literature suggests that benidipine and
paracetamol can be effective in the treatment of postoperative pain.
However, our scan of the literature revealed no studies investigating
the effects of benidipine, paracetamol, and a combination thereof
(BPC) on postoperative and normal tissue pain thresholds. The
purpose of this study was therefore to investigate the effects of
benidipine, paracetamol, and BPC on experimentally induced
postoperative and normal pain thresholds in rats.

2 Materials and methods

2.1 Animals

Sixty-four male albino Wistar rats weighing 285–295 g were
used in this study. All rats were obtained from the Erzincan Binali
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Yıldırım University Experimental Animals Application and
Research Center, Türkiye. Prior to the experiment, the rats were
housed under appropriate laboratory conditions (22°C) in a 12/12 h
light/dark cycle. The protocols and procedures were approved by
Erzincan Binali Yildirim University Animal Experimentation Ethics
Committee (Meeting Date: 29.11.2022; Meeting Number: 2022/11;
Decision Number: 58).

2.2 Chemicals

Benidipine was obtained from Deva Drug Co. (Türkiye),
paracetamol from Sanofi Aventis (Türkiye), and sodium
thiopental from, I.E., Ulagay (Türkiye).

2.3 Experimental groups

2.3.1 Without-incision tissue pain test groups
The animals in this group were assigned into 4 subgroups as

healthy control (HC), benidipine application alone (BN),
paracetamol application alone (PC), and BPC (BPCG).

2.3.2 Postoperative pain test groups
The animals in the postoperative pain test were divided into

4 groups–a control group subjected to a scalpel incision to the paw
only (SIC) (Williams and Craig, 2016), a scalpel incision +
benidipine (SIB) group, a scalpel incision + paracetamol (SIP)
group, and a scalpel incision + BPC (SIBPC) group.

2.4 Experimental procedure

2.4.1 Effects of benidipine, paracetamol, and BPC
on postoperative pain threshold test

The postoperative pain model in rats was applied using a known
and widely employed method (Kara et al., 2010). Briefly, a scalpel
was used to make a transverse subcutaneous incision to the left hind
paw in all rats. The margins of the incisions were then sutured with
5–0 silk. Paracetamol and benidipine tablets were first pulverized
with a mortar and pestle and then suspended in distilled water as
solvent. Twenty-4 hours after the operation, the SIB group (n = 8)
received 4 mg/kg benidipine by oral gavage, the SIP group (n = 8)
500 mg/kg paracetamol, and the animals in the BPCG group (n = 8)
4 mg/kg benidipine plus 500 mg/kg paracetamol. Distilled water was
administered as a solvent to the SIC group (n = 8) the same way. At
the third hour after drug administration, the paw pain thresholds of
all rats in all groups were measured using a Basile algesimeter (Ugo
Basile, Italy) (Cadirci et al., 2010). For the determination of paw pain
thresholds, rats were placed on the device and waited for 10–15 min
to calm down. Then, the stimulus probe was placed on the plantar
surface of the left hind paw and the device was switched on.
Increasing force was applied to the plantar surface. The device
recorded the value at the moment the animal pulled its hind
paw. The arithmetic mean of three consecutive measurements
was taken to determine this value. After the measurements of all
groups were completed, the rats were sacrificed with high-dose
sodium thiopental (50 mg/kg), and the left hind paw tissues were

removed. Oxidant, antioxidant, proinflammatory cytokine, and
COX levels in the removed paws were measured. All results from
the experiment were evaluated by comparing them with the
SIC group.

2.4.2 Effects of benidipine, paracetamol, and BPC
on the without-incision tissue pain threshold test

For this method, the BN group (n = 8) received benidipine
(4 mg/kg) alone by oral gavage, the PC group (n = 8) received
paracetamol (500 mg/kg) alone, and the BPCG group (n = 8)
4 mg/kg benidipine plus 500 mg/kg paracetamol. Distilled water
was administered as a solvent as in the HC group (n = 8). At the third
hour after drug administration, the paw pain thresholds of all rats in
all groups were measured using a Basile algesimeter (Cadirci et al.,
2010).After the measurements of all groups were completed, the rats
were sacrificed with high-dose sodium thiopental (50 mg/kg), and
the paw tissues were removed. Oxidant, antioxidant,
proinflammatory cytokine, and COX levels were measured in the
paws. All results from the experiment were evaluated by comparing
them with the SIC group.

2.5 Biochemical analysis

Biochemical analyses were performed on the paw tissues of
6 rats randomly taken from each experimental group of 8 rats.

2.5.1 Determination of tissue MDA and tGSH
MDA and total glutathione (tGSH) levels in the tissue specimens

were collected using commercial enzyme-linked immunosorbent
assay (ELISA) kits manufactured for experimental animals. A
10009055 analysis kit was used for MDA and a 703002 analysis
kit for tGSH (Cayman Chemical Company, Ann Arbor, MI,
United States).

2.5.2 Measurement of tissue COX activity
COX activity in the rat paw in this series of experiments was

determined using a COX activity assay kit (catalogue number:
760151, Cayman Chemical Company). Paw tissue was removed
and washed thoroughly with ice-cold Tris buffer, pH 7.4, containing
0.16 mg/mL heparin, to remove any red blood cells and clots and
then stored at −80 °C until assayed. A sample of paw tissue from each
rat was homogenized in 5 mL of cold buffer (0.1 M Tris-HCl, pH 7.8,
containing 1 mM EDTA) per gram of tissue and centrifuged at
10,000 × g for 15 min at 4°C. The resulting supernatant was removed
for assay and stored on ice. We then measured the protein
concentration in the supernatant by using the Bradford method
(Karimi et al., 2022). The COX activity assay kit measures the
peroxidase activity of COX. This is assayed colorimetrically by
monitoring the appearance of oxidized N, N, N′, N′-tetra
methyl-p-phenylenediamine at 590 nm. COX-2 activity was
measured using COX-1-specific inhibitor. Results for COX-1 and
COX-2 activity are expressed as units per milligram of protein.

2.5.3 Tissue IL-6 analysis
The samples were weighed and trimmed before being rapidly

frozen with liquid nitrogen and homogenized by pestle and mortar.
They were then maintained at 2°C–8°C after thawing. Phosphate
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Buffered Saline (pH 7.4) 1/10 (w/v) was added, after which the
samples were centrifuged for 20 min at 10,000 × g, at the end of
which the supernatants were carefully collected. IL-6 levels (pg/mL)
were measured using a commercial ELISA kit (no. SEA079Ra)
supplied by Wuhan USCN Business Co. Ltd (Wuhan,
Hubei, China).

2.6 Statistical analysis

All statistical analyses were performed on IBM SPSS Statistics
forWindows version 22.0 software (IBMCorp (2013), Armonk, NY,
United States). The results are expressed as mean value ±standard
error of the mean (mean ± SEM). The Shapiro-Wilk test was used to
determine whether data were normally distributed. One-way
analysis of variance was applied to normally distributed data,
followed by Tukey’s HSD (Honestly significant difference) test if
the homogeneity of variances assumption was met as a post hoc test
according to the results of Levene’s test, and if not, the Games-
Howell test was applied. The Kruskal–Wallis test was applied to
non-normally distributed data, and the Mann-Whitney U test was
applied as a post hoc test. p-value of <0.05 were regarded as
statistically significant.

3 Results

3.1 Effects of benidipine, paracetamol, and
BPCon postoperative and normal tissue pain
thresholds

As shown in Figure 1, benidipine, paracetamol, and BPC
produced no significant change in the paw pain threshold of the
without-incision animals. Scalpel incision applied to the paw tissue
decreased the paw pain thresholds compared to rats in the healthy
group (p < 0.001). However, while benidipine prevented a decrease
in the pain threshold in scalpel-incised paw tissue (p = 0.001) better

than paracetamol (p = 0.020), the best prevention was observed with
BPC (p < 0.001). As shown in Table 1, the analgesic effects of
benidipine, paracetamol, and BPC in the without-incision animals
were calculated at 8.3% (p = 0.770), 12.8% (p = 0.414), and 13.5%
(p = 0.358), respectively. The analgesic effects of benidipine,
paracetamol, and BPC on incised paw tissue were 58.6% (p =
0.001), 26.6% (p = 0.020), and 91.6% (p < 0.001) (Table 2).

3.2 Biochemical results

3.2.1 Paw tissue of without-incision groups: MDA
and tGSH assay results

As shown in Figure 2, benidipine, paracetamol, and BPC caused
no significant change in MDA (p > 0.999 for all) or tGSH (p =
0.999 for all) levels in the paw tissue of the without-incision animals
(Tables 3 and 4).

3.2.2 MDA and tGSH assay results in paw tissue
subjected to scalpel incision

As shown in Figure 3, compared to the HC group, it was
observed that tissue MDA levels increased and tGSH levels
decreased after claw tissue was cut (p < 0.001). Benidipine (p <
0.001 and p = 0.033, respectively) and BPC (p < 0.001 and p = 0.042,
respectively) significantly prevented an increase in MDA and a
decrease in tGSH in paw tissue exposed to scalpel incision,
although the effect of paracetamol was non-significant (p =
0.999 and p = 1.000, respectively) (Tables 5 and 6).

3.2.3 Paw tissue of groups without incision: COX-1,
COX-2, and IL-6 assay results

Benidipine, paracetamol, and BPC caused no significant changes
in the without-incision animals’ paw tissue COX-1 (respectively p >
0.999; p = 0.978; p > 0.999), COX-2 (p > 0.999 for all), or IL-6
(respectively p = 0.975; p > 0.999; p = 0.903) levels (Figure 4).
The differences between these groups were also nonsignificant
(Tables 3 and 4).

FIGURE 1
Paw pain threshold at third hours of thewithout incision and post-operative experimental groups. Footnotes: Bars aremean± SEM (standard error). a

p < 0.05 when all postoperative treatment groups were compared with the SIC control group. b p < 0.05 when the other postoperative drug treatment
groups were compared with the SIB alone treatment group. c p < 0.001 when the combined drug treatment group was compared with the SIP alone
treatment group (n = 6). Abbreviations: HC: healthy control group; BN: benidipine alone group; PC: paracetamole alone group; BPCG: benidipine
and paracetamole combination group; SIC: scalpel incision control group; SIB: scalpel incision + benidipine group; SIP: scalpel incision + paracetamole
group; SIBPC: scalpel incision + benidipine and paracetamole combination group.
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3.2.4 COX-1, COX-2, and IL-6 assay results in paw
tissue exposed to scalpel incision

As indicated in Figure 5, an increase in tissue COX-2
activity and IL-6 levels and a decrease in COX-1 activity
were observed after claw tissue was cut compared to the HC
group (p < 0.001). Benidipine (p < 0.001 for both) and BPC (p <
0.001 for both) significantly prevented a fall in COX-1 and a
rise in COX-2 in paw tissue exposed to scalpel incision.

However, while paracetamol exhibited a significant
inhibitory effect on COX-1 (p < 0.001), its inhibitory effect
on COX-2 was nonsignificant (p = 0.832). In addition,
benidipine (p = 0.001) and paracetamol (p = 0.001)
exhibited almost equal prevention of IL-6 elevation in paw
tissue with scalpel incision. However, the best suppression of
IL-6 elevation in paw tissue with scalpel incision was exhibited
by BPC (p < 0.001) (Tables 5 and 6).

TABLE 1 Paw pain threshold and analgesic activity values of the rat groups without incision, post hoc p-values for group comparisons in the rat groups without
incision.

Groups HC BN PC BPCG

Paw pain threshold (g) 3rd h 51.13 ± 1.23 55.75 ± 4.05 58.63 ± 3.74 59.13 ± 3.74

(X±SEM)

Analgesic effect (%) - 8.3 12.8 13.5

Groups HC vs BN HC vs PC HC vs BPCG BN vs PC BN vs BPCG PC vs BPCG

p values* 0.770 0.414 0.358 0.931 0.894 1.000

Abbreviations: HC: healthy control group; BN: benidipine alone group; PC: paracetamole alone group; BPCG: benidipine and paracetamole combination group.

Footnotes: *Tukey HSD, test was performed as the post hoc test after one-way ANOVA.

TABLE 2 Paw pain threshold and analgesic activity values of the post-operative rat groups, post hoc p-values for group comparisons in the post-operative rat
groups.

Groups SIC SIB SIP SIBPC

Paw pain threshold (g) 3rd h 4.50 ± 0.33 10.88 ± 0.93 6.13 ± 0.35 53.38 ± 1.55

(X±SEM)

Analgesic effect (%) - 58.6 26.6 91.6

Groups SIC vs SIB SIC vs SIP SIC vs SIBPC SIB vs SIP SIB vs SIBPC SIP vs SIBPC

p values* 0.001 0.020 <0.001 0.005 <0.001 <0.001

Abbreviations: SIC: scalpel incision control group; SIB: scalpel incision + benidipine group; SIP: scalpel incision + paracetamole group; SIBPC: scalpel incision + benidipine and paracetamole

combination group.

Footnotes: *Games-Howell test was performed as the post hoc test after one-way ANOVA.

FIGURE 2
MDA and tGSH levels in foot paw tissues of the without incision experimental groups. Footnotes: Bars are mean ± SEM (standard error). n = 6.
Abbreviations: MDA: malondialdehyde; tGSH: total glutathione; HC: healthy control group; BN: benidipine alone group; PC: paracetamole alone group;
BPCG: benidipine and paracetamole combination group.
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TABLE 3 Mean and standard error values of the experimental pain test rat groups without incision in terms of foot paw tissue’s biochemical test results.

Groups MDA tGSH COX-1 COX-2 IL-6

HC 2.37 ± 0.05 5.54 ± 0.05 7.78 ± 0.03 0.75 ± 0.04 2.20 ± 0.04

BN 2.33 ± 0.24 5.58 ± 0.26 7.79 ± 0.52 0.74 ± 0.08 2.11 ± 0.11

PC 2.41 ± 0.38 5.51 ± 0.26 7.57 ± 0.49 0.74 ± 0.05 2.18 ± 0.26

BPCG 2.35 ± 0.30 5.59 ± 0.25 7.79 ± 0.26 0.74 ± 0.07 2.05 ± 0.12

Abbreviations: HC: healthy control group; BN: benidipine alone group; PC: paracetamole alone group; BPCG: benidipine and paracetamole combination group; MDA: malondialdehyde;

tGSH: total glutathione; COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; IL-6: interleukin-6.

TABLE 4 The p-values comparison of the experimental pain test rat groups without incision in terms of foot paw tissue’s biochemical test results.

Variable HC vs BN HC vs PC HC vs BPCG BN vs PC BN vs BPCG PC vs BPCG

MDA 1.000 1.000 1.000 0.997 1.000 0.999

tGSH 0.999 0.999 0.999 0.995 1.000 0.994

COX-1 1.000 0.978 1.000 0.976 1.000 0.975

COX-2 1.000 1.000 1.000 1.000 1.000 1.000

IL-6 0.975 1.000 0.903 0.989 0.993 0.936

Abbreviations: HC: healthy control group; BN: benidipine alone group; PC: paracetamole alone group; BPCG: benidipine and paracetamole combination group; MDA: malondialdehyde;

tGSH: total glutathione; COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; IL-6: interleukin-6.

Footnotes: Statistical evaluation was done with one-way ANOVA., afterward, the Tukey HSD, was used as a post hoc test.

FIGURE 3
MDA and tGSH levels in foot paw tissues of the postoperative experimental groups. Footnotes: Bars aremean± SEM (standard error). a p < 0.05when
all treatment groups were compared with the SIC control group. b p < 0.05 when the other drug treatment groups were compared with the SIB alone
treatment group. c p < 0.05 when the combination drug treatment group was compared with the SIP alone treatment group. n = 6. Abbreviations: MDA:
malondialdehyde; tGSH: total glutathione; SIC: scalpel incision control group; SIB: scalpel incision + benidipine group; SIP: scalpel incision +
paracetamole group; SIBPC: scalpel incision + benidipine and paracetamole combination group.

TABLE 5 Mean and standard error values of experimental pain test postoperative rat groups in terms of foot paw tissue’s biochemical test results.

Groups MDA tGSH COX-1 COX-2 IL-6

SIC 5.50 ± 0.12 2.37 ± 0.11 4.55 ± 0.06 8.57 ± 0.07 5.50 ± 0.04

SIB 3.69 ± 0.07 4.58 ± 0.07 6.78 ± 0.04 5.49 ± 0.09 3.13 ± 0.27

SIP 5.48 ± 0.15 2.23 ± 0.07 4.12 ± 0.03 8.29 ± 0.33 3.19 ± 0.25

SIBPC 3.69 ± 0.07 4.53 ± 0.10 6.62 ± 0.04 5.19 ± 0.04 1.82 ± 0.18

Abbreviations: SIC: scalpel incision control group; SIB: scalpel incision + benidipine group; SIP: scalpel incision + paracetamole group; SIBPC: scalpel incision + benidipine and paracetamole

combination group; MDA: malondialdehyde; tGSH: total glutathione; COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; IL-6: interleukin-6.
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4 Discussion

This study investigated the effects of benidipine, paracetamol,
and BPC on normal tissue pain thresholds experimentally induced
in rats. The experimental results showed that the paw pain threshold
in the group exposed to scalpel incision decreased significantly

compared to the without-incision (normal tissue) group. In
support of our results, Cetin et al. also reported that scalpel
incision significantly lowered the pain threshold (Cetin et al.,
2016). Information in the literature suggests that reactive oxygen
species (ROS) that increase during the postoperative process cause
oxidative stress and lead to pain by impairing antioxidant balance

TABLE 6 The p-values comparison of the experimental pain test postoperative rat groups in terms of foot paw tissue’s biochemical test results.

Variable SIC vs SIB SIC vs SIP SIC vs SIBPC SIB vs SIP SIB vs SIBPC SIP vs SIBPC

MDA* <0.001 0.999 <0.001 <0.001 1.000 <0.001

tGSH** 0.033 1.000 0.042 0.009 1.000 0.012

COX-1*** <0.001 <0.001 <0.001 <0.001 0.092 <0.001

COX-2* <0.001 0.832 <0.001 0.001 0.068 0.001

IL-6* 0.001 0.001 <0.001 0.998 0.013 0.007

Abbreviations: SIC: scalpel incision control group; SIB: scalpel incision + benidipine group; SIP: scalpel incision + paracetamole group; SIBPC: scalpel incision + benidipine and paracetamole

combination group; MDA: malondialdehyde; tGSH: total glutathione; COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; IL-6: interleukin-6.

Footnotes: *Games-Howell test was performed as the post hoc test after one-way ANOVA, *Mann-Whitney U test was performed as the post hoc test after Kruskal–Wallis test, ***Tukey HSD,

test was performed as the post hoc test after one-way ANOVA.

FIGURE 4
COX-1, COX-2, and IL-6 levels in foot paw tissues of the without incision experimental groups Footnotes: Bars are mean ± SEM (standard error). n =
6. Abbreviations: COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; IL-6: interleukin-6; HC: healthy control group; BN: benidipine alone group; PC:
paracetamole alone group; BPCG: benidipine and paracetamole combination group.

FIGURE 5
COX-1, COX-2, and IL-6 levels in foot paw tissues of the postoperative experimental groups. Footnotes: Bars are mean ± SEM (standard error). a p <
0.001 when all treatment groups were compared with the SIC control group. b p < 0.05 when the other drug treatment groups were compared with the
SIB alone treatment group. c p < 0.05 when the combination drug treatment group was compared with the SIP alone treatment group. n = 6.
Abbreviations: COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; IL-6: interleukin-6; SIC: scalpel incision control group; SIB: scalpel incision +
benidipine group; SIP: scalpel incision + paracetamole group; SIBPC: scalpel incision + benidipine and paracetamole combination group.
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(Karkkainen et al., 2018). In the present study, MDAwas measured
in the evaluation of pain because it is a toxic product of lipid
peroxidation and an important marker of oxidative stress
(Abbaszadeh et al., 2018). Previous studies have also reported
that an increase in MDA levels leads to hypersensitivity to pain (da
Silva et al., 2021). Ince et al. reported a significant increase in MDA
levels in the paws of rats exposed to scalpel incision (Ince et al.,
2015). The higher MDA levels in the scalpel-incision group
compared to those in the HC group in the present study
indicates that our experimental results are consistent with the
previous literature.

Measurement of changes in antioxidant levels is one frequently
employed method for elucidating the pathology of pain developing in
association with ROS in the postoperative period (Ince et al., 2015; Onk
et al., 2018). Levels of tGSH, a principle endogenous antioxidant, were
therefore measured in the present study. GSH, a low molecular weight
tripeptide, protects cells against oxidative damage by reacting with ROS
and peroxides (Guo et al., 2018). As shown by our findings, tGSH levels
decreased in paw tissue after scalpel incision compared to the HC
group. Consistent with our experimental results, Cetin et al. showed that
scalpel incision caused a decrease in tGSH in rat paw tissue (Cetin
et al., 2016).

ROS, the production of which increases in the postoperative period,
also increase the production of prostaglandins in the same tissue
(Rahmanian-Devin et al., 2021). Prostaglandins stimulate C-fibre
pain receptors and cause pain by lowering the stimulation
thresholds of polymodal receptors (Zeilhofer, 2007; Jang et al.,
2020). The levels of the enzymes COX-1 and COX-2 involved in
the synthesis of prostaglandins were therefore measured in the
present study in order to evaluate pain. COX-1 is a structural
enzyme responsible for a protective effect, while COX-2 is an
inducible enzyme responsible for inflammatory events (Suleyman
and Ozcicek, 2019). Decreased COX-1 has been linked to increased
inflammation and pain sensitivity (Zeilhofer, 2007), while increased
COX-2 has been linked to postoperative inflammation (Schug, 2006;
Gao et al., 2020). Additionally, an increase in COX-2 levels has been
reported to be associated with increased nociceptor sensitivity and
hyperalgesia (Jang et al., 2020Ince et al., 2015). In agreement with the
previous literature, COX-1 activity in rat paw tissues with scalpel
incision was lower than that in the control group in the present
study, while COX-2 activity was higher.

Overproduction of proinflammatory cytokines in tissue during the
postoperative process is known to play an important role in the
persistence of pain (Gao et al., 2020). The proinflammatory cytokine
IL-6 contributes to inflammatory response manifestations by
interacting with neurons along the pain pathway (Manjavachi et al.,
2010; Moy et al., 2017). IL-6 released following tissue injury in the
postoperative period has been reported to increase the sensitivity of
nociceptors and to potentialize pain perception (Chen et al., 2013;
Kummer et al., 2021). Additionally, increasing IL-6 has been shown to
enhance nociceptor sensitivity and initiate pro-algesic effects (Opree
and Kress, 2000). Our tissue analysis results exhibited a significant
increase in IL-6 levels in the scalp incision group compared to the
without-incision group.

BPC, whose analgesic effect was investigated in this study, raised the
pain threshold in paw tissue with scalpel incision more than benidipine
or paracetamol applied alone. However, the effects on the pain
threshold with benidipine, paracetamol, and BPC applied to the

without-incision rats were nonsignificant. Despite the presence of
information in the literature to the effect that paracetamol
significantly raises the pain threshold in rats with scalpel incisions
(Ince et al., 2015), we encountered no studies investigating the
relationship between benidipine and postoperative pain. However, a
case report stated that benidipine eliminated nivolumab-induced
angina pectoris pain (Kumamoto et al., 2022). Our findings indicate
that benidipine and paracetamol in combination more significantly
suppress hypersensitivity in nociceptors by exhibiting a additive effect.

The effects of benidipine, paracetamol, and BPC on MDA and
tGSH in the without-incision rats were nonsignificant. Benidipine
significantly prevented an increase in MDA and decrease in tGSH
in the postoperative period in rats with scalp incision, while paracetamol
did not prevent these. Information suggesting that pain is associated
with an increase in intracellular calcium andMDA (da Silva et al., 2021)
partly explains the analgesic effectmechanism of benidipine. Benidipine
is known to exhibit an antioxidant effect (Cakir et al., 2021). However,
paracetamol exhibited no significant effect on oxidant and antioxidant
parameters in rats with scalp incisions in paw tissues (Ince et al., 2015).
Our findings suggest that paracetamol may possess a different analgesic
effect mechanism than the inhibition of oxidative stress.

The drugs tested in this study had no significant effect on COX-1 or
COX-2 in the without-incision rats. Benidipine alone and BPC
significantly prevented a decrease in COX-1 and an increase in
COX-2 in tissue exposed to scalpel incision. COX-1 levels decreased
in paw tissue with scalpel incision in the paracetamol group, but no
significant effect was observed on COX-2 levels. Our scan of the
literature yielded no information concerning the effects of benidipine
on COX-1 and COX-2 levels in postoperative tissue. However, previous
studies have reported that an increase in COX-2 in the postoperative
period is associated with an increase in intracellular calcium (Moy et al.,
2017; Guo et al., 2018). In addition, benidipine was reported to
significantly inhibit the decrease in COX-1 activity and the increase
in COX-2 activity in the rat liver and to protect the liver against
ischaemia-reperfusion injury (Cimen et al., 2019). The fact that
benidipine is a calcium channel antagonist suggests that it inhibits an
increase in COX-2 activity by decreasing intracellular calcium
concentrations. Our determination of the analgesic effect of
paracetamol in incised tissue indicates that it provides analgesia
through a different mechanism than COX-2 inhibition.

Benidipine and paracetamol significantly inhibited an increase in
IL-6 production in the paw tissue of rats exposed to scalpel incision.
However, BPC reduced the increase in IL-6 more significantly than
benidipine or paracetamol. At the same time, benidipine, paracetamol,
and BPC had no significant effects on IL-6 levels in the without-incision
rats. Our scan of the literature elicited no information about the
relationship between benidipine or paracetamol and IL-6 in
postoperative pain. However, Nakamura et al. reported that
treatment with benidipine exhibited an anti-inflammatory effect by
stabilizing the production of the proinflammatory cytokine IL-6 in
acute kidney failure (Nakamura et al., 2000). Additionally, paracetamol
has been reported to significantly reduce serum IL-6 levels in the
postoperative period (Garrone et al., 2021) and in febrile patients
(Honarmand et al., 2012). Considering that IL-6 increase induces
pain generation (Chen et al., 2013; Kummer et al., 2021), the
additive effects of the combination of benidipine and paracetamol
on the normalisation of tissue IL-6 levels seem to increase
analgesic activity.
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Although paracetamol is a well-tolerated drug that causes few
side effects in the gastrointestinal tract, its effectiveness in relieving
pain has been demonstrated in a limited number of diseases and its
benefits have generally been modest (Jóźwiak-Bebenista and Nowak,
2014; Abdel Shaheed et al., 2021). Additionally, paracetamol-
induced liver toxicity is a worldwide concern (Jóźwiak-Bebenista
and Nowak, 2014). As for benidipine, toxicity studies and clinical
reports show that it is a safe drug over a wide range of doses.
However, no study on the possible toxicity of the combination of
paracetamol and benidipine could be found in the literature review
and this issue needs to be investigated (Yang et al., 2019).

5 Limitations

The measurement of both proinflammatory and anti-
inflammatory cytokine levels is important for a more detailed
clarification of the analgesic effect mechanism. In addition to
determining paw pain thresholds, it is also important to include
different evoked pain behavior tests and ongoing pain behavior tests.
The fact that the sciatic nerve, dorsal root ganglion and spinal cord
tissues related to the pain pathway were not analysed molecularly is
among the limitations of this study.

6 Conclusion

Benidipine, paracetamol, and BPC produced no significant change
in the without-incision animal group paw pain threshold or in oxidant,
antioxidant, COX-2, and IL-6 levels. However, these drugs significantly
prevented a fall in the pain threshold in paws subjected to scalpel
incision. BPC best prevented a decrease in paw pain threshold, followed
by benidipine, and finally paracetamol. In addition, increases in MDA,
COX-2, and IL-6 and a decrease in tGSH in tissue with scalpel incision
were significantly suppressed by benidipine and BPC, although
paracetamol was only capable of inhibiting an increase in the
production of IL-6. The analgesic effect of benidipine may derive
from its more powerful inhibitory effect on MDA, COX-2, and IL-6
and antioxidant activity compared to paracetamol. BPC provided more
powerful analgesia than benidipine or paracetamol alone. This may be
due to the additive inhibitory effects of benidipine and paracetamol on
IL-6. Furthermore, our study results support that the combination we
used produces analgesic activity through both common and different
analgesia mechanisms. Our experimental results suggest that BPC may
be useful in the treatment of severe pain that is not sufficiently
suppressed by paracetamol.
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