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Malignantmelanoma is one of themost aggressive of cancers; if not treated early,
it can metastasize rapidly. Therefore, drug therapy plays an important role in the
treatment of melanoma. Cinobufagin, an active ingredient derived from
Venenum bufonis, can inhibit the growth and development of melanoma.
However, the mechanism underlying its therapeutic effects is unclear. The
purpose of this study was to predict the potential targets of cinobufagin in
melanoma. We gathered known and predicted targets for cinobufagin from
four online databases. Gene Ontology (GO) analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis were then performed. Gene
expression data were downloaded from the GSE46517 dataset, and differential
gene expression analysis and weighted gene correlation network analysis were
performed to identify melanoma-related genes. Using input melanoma-related
genes and drug targets in the STRING online database and applying molecular
complex detection (MCODE) analysis, we identified key targets that may be the
potential targets of cinobufagin in melanoma. Moreover, we assessed the
distribution of the pharmacological targets of cinobufagin in melanoma key
clusters using single-cell data from the GSE215120 dataset obtained from the
Gene Expression Omnibus database. The crucial targets of cinobufagin in
melanoma were identified from the intersection of key clusters with
melanoma-related genes and drug targets. Receiver operating characteristic
curve (ROC) analysis, survival analysis, molecular docking, and molecular
dynamics simulation were performed to gain further insights. Our findings
suggest that cinobufagin may affect melanoma by arresting the cell cycle by
inhibiting three protein tyrosine/serine kinases (EGFR, ERBB2, and CDK2).
However, our conclusions are not supported by relevant experimental data
and require further study.
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1 Introduction

Malignant melanoma is the most aggressive form of skin tumor,
developing from melanin-producing melanocytes (Leonardi et al.,
2018). It can develop from multiple nevi and, once formed, invasion
and metastasis can occur rapidly (Spagnolo et al., 2019). Genetic
mutation is one of the primary drivers in the occurrence and
development of melanoma, including oncogene mutations (RAS,
BRAF, ALK, and MET) and tumor suppressor mutations (TP53 and
CDKN2A) (Tsao et al., 2012). Moreover, several signaling pathways
are also implicated in the growth and progression of malignant
melanoma, such as PI3K-AKT, RAS-RAF-MEK-ERK, and the
canonical Wnt/β-catenin signaling pathway (Lopez-Bergami
et al., 2008). Therefore, multiple mechanisms are involved in the
development of melanoma. After diagnosis, the main treatment
method for early non-metastatic melanoma is surgical resection.
However, in the case of advanced malignant melanoma, which often
has metastases, a comprehensive and multidisciplinary approach
should be applied, such as chemotherapy, radiation, and
immunotherapy (Singh et al., 2017). Therefore, it is necessary to
find new targets and novel therapeutics for melanoma treatment.

Traditional Chinese medicine (TCM) is a valuable body of
knowledge that has made significant contributions to human
health worldwide (Dashtdar et al., 2016). Cinobufagin is one of
the active components of Venenum Bufonis, a traditional Chinese
medicine (Chen et al., 2013). Although cinobufagin was originally
used as a painkiller to relieve cancer pain, it can also inhibit the
growth of many kinds of tumors. The Chinese State Food and Drug
Administration has approved cinobufagin for the treatment of liver
and prostate cancer (Meng et al., 2009). Cinobufagin can apparently
induce apoptosis and cell cycle arrest in several tumor types,
including melanoma (Cui et al., 2010; Qi et al., 2011; Chen et al.,
2013; Lu et al., 2016; Zhu et al., 2017; Pan et al., 2019; Zhao et al.,
2019). Nonetheless, the underlying mechanism of cinobufagin’s
effects in malignant melanoma is not well understood.

Network pharmacology is a useful strategy for exploring the
underlying mechanisms related to cancer development and the
effects of drugs. In our study, we aim to investigate the
mechanism of the effect of cinobufagin in melanoma treatment
by employing network pharmacology, transcriptional sequencing
data analyses, molecular docking, and molecular dynamics
simulation.

2 Materials and methods

2.1 Identification of targets of cinobufagin

The SwissTargetPrediction online database (https://www.
swisstargetprediction.ch/) and ChEMBL online database
(https://www.ebi.ac.uk/chembldb/) were used to inquire about
cinobufagin’s known and possible targets. The Comparative
Toxicogenomics Database (CTD; https://ctdbase.org/) and
SuperPred database (http://prediction.charite.de/) were also
used to predict possible targets of cinobufagin. The functional
enrichment analyses of these drug targets were displayed by the
“clusterProfiler” package of the R Programming Language,
including Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Yu et al., 2012). The three
categories of GO analysis for these drug targets were
identified, namely, cellular component (CC), biological process
(BP), and molecular function (MF), to examine the biological
characteristics of these drug targets. KEGG enrichment was used
to identify potential signaling pathways.

2.2 Identification of DEGs in melanoma

A total of 83 disease samples and 17 healthy samples in the
GSE46517 microarray dataset were acquired from the GEO online
database (http://www.ncbi.nlm.nih.gov/geo). First, row data were
normalized. Using R software’s “limma” package (Ritchie et al.,
2015), differentially expressed genes (DEGs) between disease
samples and healthy controls were identified with the following
criterion: p < 0.05 and |fold change|(FC) > 1. Volcano and heatmap
plots were generated to show the DEGs and the significant genes
were labeled. Gene set enrichment analysis (GSEA) was performed
to identify defined genomes (Subramanian et al., 2007). Through
GSEA analysis, the differences between the two biological processes
of DEGs were identified.

2.3 Weighted gene co-expression
network analysis

The WGCNA package of R was used to construct a gene co-
expression network in GSE46517 (Langfelder and Horvath, 2008). A
hierarchical clustering tree was generated to dispose of the outlier
sample. Then, the topological overlap and correlation matrices
between genes were calculated. The “pickSoftThreshold” function
of the WGCNA package was used to compute the soft threshold
power. Through a set screening threshold, we converted the paired
correlation matrix into a neighborhood correlation matrix to ensure
that the scale-free network individually calculated the paired
Pearson correlation coefficients between all genes. The
eigenvector values were calculated for each module. We then
converted the adjacency matrix to a topological overlap matrix
(TOM), computed the corresponding dissimilarity, and
conducted a hierarchical clustering analysis. Lastly, we measured
the connection between the gene modules and people, normal and
abnormal, via gene significance (GS) values and module
membership (MM) values and then identified the key modules.

2.4 Generation of protein–protein
interaction networks and identification of
key clusters

Using the STRING website (https://string-db.org/), the
protein–protein interactions (PPIs) of drug targets and
melanoma-related genes were investigated. The network nodes
and edges of PPIs performed interactions among these proteins.
We used Cytoscape software to further optimize the PPI networks,
and the molecular complex detection (MCODE) algorithm was
performed to screen the key targets that contribute to melanoma
growth and proliferation.
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2.5 Differential expression of key targets in
melanoma and normal tissues

By putting key targets back into the GSE46517 dataset to
identify the differential expression of the key cluster between
melanoma and control groups, the screening conditions were
p-value < 0.05 and |[(log2 fold-change)]| > 1. TCGA
melanoma data were downloaded from the UCSC XENA
dataset (https://xena.ucsc.edu/). Differential expression of the
key targets in TCGA melanoma data was also conducted.

2.6 Single-cell RNA sequencing data analysis
and identification of melanoma-
associated genes

The row dates of GSE215120 performed in the analysis were
downloaded from the GEO online database. We chose six acral
melanoma samples for our analysis. Using the Seurat package of R
software, we processed data with strict criteria: min.cells = 3,
min.features = 200, af$nFeature_RNA ≥ 200 and af$nFeature_
RNA ≤ 5,000, af$percent.mt ≤ 20, and af$percent.rb ≤ 20. After
cells were filtered based on the above criterion, cells for data analysis
were clustered and visually classified using the unified manifold
approximation and projection dimensionality reduction techniques.
We used R to show the distribution in the “singscore” of
pharmacological key targets on the cell subtype.

2.7 Receiver operating characteristic curve
analysis and survival analysis

RNA sequencing and survival data on melanoma patients
were downloaded from the TCGA public database (http://xena.
ucsc.edu/). The crucial targets were identified at the intersection
of key clusters, melanoma-related targets, and drug-related
genes. Receiver operating characteristic (ROC) curves of these
crucial targets were plotted, and these targets were evaluated by
computing the area under the ROC curve. We selected the overall
survival time of the patients to construct the Kaplan–Meier
survival curve and used all three tests (Log–rank, Breslow, and
Tarone–Ware) to compare the significant differences between the
curves in the graph. Overall survival time is the time from the
start of treatment for melanoma patients to the time of death. The
censored cases were displayed as “+” on the survival curve.

2.8 Molecular docking and molecular
dynamics simulation

The crystal structures of EGFR, ERBB2, and CDK2 were
downloaded from the PDB website (EGFR:5FED, ERBB2:3PP0,
and CDK2:1B39). For better simulation, protein structures
containing active site inhibitors were preferentially selected. The
structure of cinobufagin was obtained from ChemDraw. First, the
protein was executed using “add hydrogen” and “clean up” in
Discovery Studio 2019, and the ligand was also prepared with
this tool. We utilized the primitive ligand to provide the binding

site. The CDOCKER function was then used to perform molecular
docking and calculate -cdocker interaction energy. CDOCKER is a
docking method with rigid protein and flexible ligand; -cdocker
interaction energy can reflect the energy of the ligand–protein
interaction—the higher the score, the stronger the bond. We
used Discovery Studio to calculate the binding energy. Molecular
dynamics simulation was performed with the
Gromacs2020 package. The CHARMm36 force field was
employed to execute a molecular dynamics simulation. The
system was dissolved in TIP3P water molecules in a
dodecahedral box. Energy minimization and NVT and NPT
simulations were then performed on the system. Finally, a 50-ns-
long molecular dynamics simulation was performed, and root mean
square deviation (RMSD) values were calculated.

2.9 Statistical analysis

All statistical analyses in the present research were implemented
using R software (version 4.3.1). p < 0.05 was used as the threshold
for statistical significance.

3 Results

3.1 General targets of cinobufagin

We identified 108 and 241 related targets of cinobufagin from
the SwissTargetPrediction and ChEMBL databases, respectively.
Through CTD and the SuperPred database, we predicted 39 and
96 additional potential drug targets, respectively (Figure 1A).
These 413 drug-related targets were used for GO and KEGG
analyses. The biological process category in GO was mainly
enriched in positive regulation of the MAPK cascade, response
to xenobiotic stimulus, and the adenylate cyclase-modulating G
protein-coupled receptor signaling pathway. The GO cellular
component category was mainly enriched in the membrane
raft, membrane microdomain, and synaptic membrane. The
molecular function section was mainly gathered in amide
binding, protein serine/threonine kinase activity, and protein
serine kinase activity (Figure 1C). KEGG pathway enrichment of
these drug targets was mainly gathered in neuroactive
ligand–receptor interaction, prostate cancer, hepatitis B, and
the cAMP signaling pathway in cancer (Figure 1B). In total,
these results suggest that cinobufagin might be regulating protein
serine/threonine kinase activity.

3.2 Target genes in melanoma

We downloaded 100 melanoma-related samples from
GSE46517 from the GEO database, including 8 normal skin
tissues, 9 nevus tissues, 31 primary melanoma tissues, and
52 metastatic melanoma tissues. We normalized raw sequencing
data first and then identified DEGs between control groups
(including normal skin tissues and nevus tissues) and melanoma
groups (including primary melanoma tissues and metastatic
melanoma tissues) (Supplementary Figure S1). Among these
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genes, 105 were upregulated and 285 were downregulated
(Supplementary Table S1). The heatmap plot showed
60 significant DEGs, and the top 12 DEGs were shown in the
volcano plot (Figures 2A, B). GSEA analysis was used to evaluate the
pathway enrichment of DEGs between the melanoma and normal
groups. The results of this analysis showed that DNA replication,
mismatch repair, one-carbon pool by folate, other glycan
degradation, and primary immunodeficiency were enriched in
melanoma groups (Figure 2C). The beta-alanine metabolism,
butanoate metabolism, histidine metabolism, steroid hormone
biosynthesis, and terpenoid backbone biosynthesis were inhibited
(Figure 2D). These results suggest that DNA replication may play an
important role in melanoma development.

3.3 WGCNA analysis

We used microarray data on GSE46517 for WGCNA analysis.
The outlier detection indicated no significant outliers in the data
(Figure 3A). The soft threshold power was evaluated as 6 with a
scale-free index of 0.9, indicating that connectivity was reasonable
(Figure 3B). The topological overlap matrix and correlation matrix
between the data genes were constructed. The co-expression
network was then established, and the cluster dendrogram with a
dynamic tree cut and merged dynamic plot was constructed
(Figure 3C). Finally, the results of data clustering were divided
into 14 modules (Figure 3D). The correlation coefficient between
each module and melanoma-related phenotype was calculated. The

FIGURE 1
Screening analysis of cinobufagin targets. (A) Venn diagram of cinobufagin in the four databases (CTD: Comparative Toxicogenomics database). (B)
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of cinobufagin targets. (C) Gene Ontology (GO) enrichment analysis (BP,
biological process; CC, cellular component; MF, molecular function) of cinobufagin targets.
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results suggested that the MEbrown module was the one most
significantly related to primary (cor = 0.3, p = 0.003) and
metastatic (cor = −0.76, p = 6e-20) melanoma. The correlation
heatmap between these modules is shown in Figure 3E. The scatter
plot of module membership (MM) and gene significance (GS)
showed excellent correlation within the MEbrown module (R =
0.62, p < 1e-200) (Figure 3F). Therefore, the MEbrown module
could be an optimized module to explain the anomalous melanoma
phenotypes.

3.4 Identification of key targets

We compared the DEGs andMEbrownmodule genes to identify
329 melanoma-related genes (Figure 4A). 14 genes were identified in
intersection between melanoma-related genes and drug targets
(Figure 4B). The PPI network of all melanoma-related and drug-

related genes was constructed using the STRING online database
(Supplementary Figure S2). The molecular complex detection
(MCODE) algorithm was used to identify 62 essential
subpopulation genes, termed key targets or key clusters
(Figure 4C). The GO analysis of key targets showed that the
biological process category was mainly enriched in the positive
regulation of kinase activity, peptidyl-serine phosphorylation, and
peptidyl-serine modification. The Biological Process category shown
that the key cluster mainly enriched in miRNA transcription, and
chromosomal region, and membrane raft. The results of the
molecular function section were gathered in nuclear
chromosome, DNA-binding transcription factor binding, and
specific DNA-binding transcription factor binding (Figure 4E).
Through KEGG-enriched analysis, we found that these key
targets were mainly gathered in the cell cycle, PI3K-Akt signaling
pathway, and hepatitis B (Figure 4D). Notably, the cell cycle was one
of the primary signaling pathways affected by cinobufagin in cancer.

FIGURE 2
Expression of differentially expressed genes (DEGs) in the GSE46517 dataset. (A)Heatmap plot of DEGs in the GSE46517 dataset. (B) Volcano plot of
DEGs in the GSE4290 dataset. (C,D) GSEA analysis based on KEGG analysis.
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3.5 The expression and distribution of
key targets

Differential expressions between the normal and disease
samples of individual key targets were calculated and shown
in box plots (Figure 5A). We then downloaded the single-cell data
from the GEO database for our analysis. We used the following

criteria to filter cells to guarantee their quality for our analysis:
cells with > 5,000 and < 200 genes per cell and cells with a > 20%
mitochondrial percentage or a > 20% ribosome percentage were
filtered out (Supplementary Figure S3A). Then, the harmony
package was used to remove the batch effect (Supplementary
Figure S3B). The cluster tree was scaled with a resolution of 1.5
(Supplementary Figure S3C), and the principal component value

FIGURE 3
Enrichment levels in genomic weighted gene co-expression network analysis (WGCNA). (A) Sample dendrogram and trait heatmap. (B) Selection of
soft thresholds. (C)Cluster dendrogram of WGCNA. (D)Correlations between gene modules andmelanoma status. (E)Correlation betweenmodules. (F)
Correlation between brown module memberships and gene significance.
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was determined as 13. The results of T-distributed stochastic
neighbor embedding (t-SNE) gathered 13 cell clusters
(Figure 5B). The heatmap showed the gene type of each
cluster (Figure 5C). Using the CellMarker database and
referring to the work of Yang et al. (Zhang et al., 2022), we

annotated these clusters into seven cells, including melanoma,
NK cells, T cells, fibroblasts, mono cells, endothelial cells, and
B cells (Figure 5D). The AUCell functional score analysis was
used to show the distribution of drug targets, with cinobufagin
acting mainly on melanoma cell clusters (Figure 5E).

FIGURE 4
Identification of key targets and functional analysis. (A) Intersection of DEGs and WGCNA brown module genes, named melanoma-related genes.
(B) Intersection of melanoma-related genes and drug targets. (C) Cytoscape’s plugin code for all melanoma-related genes and drug targets, named key
cluster. Deep green: melanoma-related gene; brown: drug targets; deep green and brown: both melanoma-related genes and drug targets. (D) KEGG
analysis of key genes. (E) GO analysis of the key cluster.
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3.6 Identification of crucial targets

Through comparison with key targets and intersect genes
from the intersection of drug targets and melanoma-related
genes, we identified three crucial targets (Figure 6A). The
ROC curves showed that all three had excellent robustness for
melanoma (area under the ROC curve > 0.8) (Figure 6C).
Moreover, melanoma patient survival data downloaded from
the TCGA database (http://xena.ucsc.edu/) was used for
survival analysis. Results showed that all three target genes
had a significant impact on melanoma patient survival
(Figure 6D). However, among these crucial targets, EGFR and
ERBB2 were downregulated compared with the normal sample,

and CDK2 was upregulated (Figure 5A). The expression data
from TCGA melanoma show the same results (Figure 6B).

3.7 Molecular docking

To validate the findings from network pharmacology, we selected
crucial targets (CDK2, EGFR, and ERBB2) for molecular docking
analysis to evaluate the screened targets. The structure of cinobufagin
was identified by Chem Draw in 2022. After testing the feasibility of
the docking method by redocking, the compound–target interactions,
as well as their modes of binding, were visualized using Discovery
Studio 2019 (Figures 7A–C). All these had high cdocker interaction

FIGURE 5
Expression and distribution of the key cluster. (A) Boxplot of differential expression of key genes in normal tissue and tumor tissue of data in
GSE46517. (B) Unified manifold approximation and projection clustering into 13 clusters. (C) Heatmap of each gene table level. (D)Manual annotation of
13 clusters, finally identifying 7 clusters. (E) Melanoma drug pathways of action.
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energy, indicating that all three molecular docking targets combine
very well with cinobufagin (Table1).

3.8 Molecular dynamics simulation

To further describe the binding patterns of protein–compound
complexes, we performed molecular dynamics simulations of the
above three molecular docking models. The RMSD curve can reflect
the fluctuations of the system. As shown in Figure 8A, CDK2-
cinobufagin was stable after 30 ns, and EGFR-cinobufagin and
ERBB2-cinobufagin were stable after 10 ns (Figures 8C, E). The
number of hydrogen bonds in the protein–cinobufagin complexes
reflected their binding strengths (Figures 8B, D, F). Among them,
ERBB2–cinobufagin had the highest hydrogen bond density and
strength (Figure 8F). These data suggested that these three crucial
targets interacted very well with cinobufagin in accordance with the
molecular docking results.

4 Discussion

Malignant melanoma is considered the most aggressive skin
cancer—more dangerous than other skin cancers. If not removed at
an early stage, it can spread and metastasize rapidly. Thus,
anticancer drug therapy is an important anti-melanoma therapy
(Helmbach et al., 2001). However, standard chemotherapy does not
produce satisfactory results due to chemotherapy resistance
(Helmbach et al., 2001; Jilaveanu et al., 2009; Abildgaard and
Guldberg, 2015; Kalal et al., 2017). The development of new,
effective treatments for melanoma is thus vital.

Venenum bufonis is a traditional Chinese medicine that has
been widely used in China (Zhang et al., 2012; Zhu et al., 2017). It
has been reported that its extract can inhibit the growth of many
tumor cells (Park et al., 2012). Cinobufagin is one of the active
components of Venenum bufonis , which piqued our research
interest. It is reported that cinobufagin can effectively inhibit the
growth and development of lung cancer cells (Adjei et al., 2010),

FIGURE 6
Identification of crucial targets, receiver operating characteristic curve (ROC) analysis, and survival analysis. (A) Intersection of key clusters and
melanoma-related genes and drug targets, named crucial targets. (B)Differential expression of crucial targets in normal tissue and tumor tissue of data in
TCGA database. (C) ROC curve of three crucial targets. (D) Survival curve of EGFR, ERBB2, and CDK2.
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liver cancer cells (Cui et al., 2010), prostate cancer cells (Yu et al.,
2008), and osteosarcoma cells (Dai et al., 2017) in vitro.
Moreover, cinobufagin can also inhibit the proliferation of
melanomas (Pan et al., 2019; Kim et al., 2020; Zhang et al.,
2020). However, the underlying mechanism and potential targets
of cinobufagin in melanomas are unclear.

In this study, we combined network pharmacology, bulk RNA
sequencing data, and single-cell RNA sequencing data to finally identify

the potential targets of cinobufagin in melanoma. First, we found and
predicted the 413 potential targets of cinobufagin. It is interesting that
the molecular function section comprised in GO was gathered in
protein serine/threonine kinase activity, protein serine kinase
activity, and protein tyrosine kinase activity. Then, we downloaded
GEO data for DEGs and WGCNA analysis, finally identifying
329 disease-related genes. By inputting these disease-related and
drug-related genes into the STRING online database, we constructed

FIGURE 7
Molecular docking of crucial targets. (A) Re-docking of three targets in Discovery Studio 2019 software. (B,C) The CDOCKER results of cinobufagin
with three crucial targets (CDK2, EGFR, ERBB2).

TABLE 1 Docking information on crucial targets.

Targets of cinobufagin Re-docking (RMSD) CDOCKER interaction energy (kcal/mol) Binding energy (kcal/mol)

EGFR 0.7976 38.045 −43.5327

ERBB2 1.4621 25.9757 −21.7207

CDK2 1.1905 51.525 −62.8743

Frontiers in Pharmacology frontiersin.org10

Yang et al. 10.3389/fphar.2023.1315965

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1315965


a PPI network. To further identify potential targets of cinobufagin in
melanoma, we used the molecular complex detection (MCODE)
algorithm to define a more important subset. Interestingly, the GO
analysis of these key targets showed that the biological process category
was enriched in the positive regulation of kinase activity, the regulation
of protein serine/threonine kinase activity, and the molecular function
category, showing that the key cluster was enriched in protein tyrosine
kinase activity and protein serine kinase activity, which was in keeping
with previous results. Furthermore, the KEGG analysis showed that
these potential targets were mainly enriched in the cell cycle; it is
reported that this pathway is one of the main effects of cinobufagin on
cancer cells (Pan et al., 2019; Yang et al., 2021). We then downloaded
single-cell data from theGEOdatabase to verify the distribution of these

key targets. The results show that 62 key targets weremainly gathered in
melanoma cells. By intersecting the key cluster and the intersection of
drug-related genes and melanoma-related genes, we finally identified
three crucial targets, EGFR, ERBB2, and CDK2, which are all protein
serine/threonine kinases and are involved in cell cycle regulation (Lo
and Hung, 2006; Hirai et al., 2017; Kirova et al., 2022). It has been
reported that cinobufagin can inhibit the EGFR-CDK2 signaling
pathway in hepatocellular carcinoma, which is consistent with our
predicted results (Yang et al., 2021).

The crucial targets we identified all have excellent robustness in
melanoma. TCGA data indicate that these three crucial targets have a
significant impact on melanoma patient survival by three test methods.
It was confusing that EGFR and ERBB2 had low expression in tumor

FIGURE 8
Molecular dynamics analysis. (A,C,E) Rootmean square deviation (RMSD) of three systems (three crucial targets and cinobufagin). (B,D,F)Number of
hydrogen bonds in three systems.
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tissue compared to normal tissue whether in GEO or TCGA data,
perhaps due to the disadvantage of bulk sequencing. Finally, we showed
the molecular docking results of cinobufagin with these three crucial
targets, and the molecular dynamics simulation was performed. These
data suggest that docking of cinobufagin with three proteins is
reasonable, indicating that these might be potential targets of
cinobufagin in melanoma.

Network pharmacology is a practical strategy that uses computer
technology to deepen our understanding of the modes of drug action
across multiple scales of complexity (Hopkins, 2008). We combined
network pharmacology with other sequencing data to identify key
targets. Through single-cell sequencing analysis, we found that these
key targets were mainly distributed in melanoma cells. We used
molecular docking to show that the crucial targets were potential
targets of cinobufagin in melanoma. Moreover, the results of our
analysis have been partly verified in other tumors (Yang et al., 2021),
indicating that this method has great value in drug target prediction.

It should be noted that this study had some limitations. First,
sequencing data for our analysis were retrieved from the literature and
databases; therefore, the reliability and accuracy of the predictions are
dependent on data quality. The second is the absence of evidence to
verify our predictions; clinical trials, animal experiments, and X-ray
diffractometers are needed to confirm the findings. Third, experimental
validation is necessary to further verify cinobufagin’s ability to bind and
inhibit crucial targets, such as affinity assays (surface plasmon resonance
(SPR) or isothermal titration calorimetry (ITC)) or direct mutation
studies. Our conclusions remain preliminary as long as computational
predictions are not supported by experimental validation.
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