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Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor
receptors (VEGFR) and their downstream signaling pathways are promising targets
in anti-angiogenic therapy. They constitute a crucial system to regulate
physiological and pathological angiogenesis. In the last 20 years, many anti-
angiogenic drugs have been developed based on VEGF/VEGFR system to treat
diverse cancers and retinopathies, and new drugs with improved properties
continue to emerge at a fast rate. They consist of different molecular
structures and characteristics, which enable them to inhibit the interaction of
VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit
VEGFR downstream signaling. In this paper, we reviewed the development of
marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some
important drug candidates in clinical trials. We discuss their mode of action, their
clinical benefits, and the current challenges that will need to be addressed by the
next-generation of anti-angiogenic drugs. We focus on the molecular structures
and characteristics of each drug, including those approved only in China.
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1 Introduction

Angiogenesis is a complex process including endothelial cell (EC) proliferation,
migration, vascular tube formation, tube ligation, and finally formation of the new blood
vessels from pre-existing ones (Risau, 1997). Usually, it is a normal physiological
circumstance to supply nutrients and oxygen during embryonic development and wound
healing (Chung et al., 2010). In the 1970 s, Judah Folkman observed the correlation of
angiogenesis and solid tumor growth, which indicated that the growth of tumor beyond a
critical size of 1-2 mm3 needed formation of new vessels around it (Folkman, 1971). This
process is also called sprouting angiogenesis. He proposed to prevent tumor growth by
inhibiting angiogenesis, which is nowadays named antiangiogenic therapy (Folkman, 1972;
1975). Later, angiogenesis was also observed to be related to a wide range of other
pathological conditions, including arthritis, retinopathies, atherosclerosis, and
endometriosis (Carmeliet, 2003; Chung and Han, 2022). From there, the study of the
mechanism of angiogenesis and the development of antiangiogenic drugs has been an
intense research subject.

Normally, angiogenesis is finely regulated by diverse endogenous pro- and anti-
angiogenic factors (Ferrara and Kerbel, 2005; Kopec and Abramczyk, 2022). However,
overexpression of pro-angiogenic factors will break this balance and result in pathological
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angiogenesis (Teleanu et al., 2019). For example, tumor cells can
particularly produce pro-angiogenic factors in the nearby
microenvironment and trigger new blood vessel construction to
supply nutrients required for tumor growth and metastasis (De
Palma et al., 2017). In diabetic macular edema (DME) and
neovascular age-related macular degeneration (nAMD)
conditions, pro-angiogenic factors promote the growth of
abnormal vessels in the retina (Regula et al., 2016).

Well-known pro-angiogenic factors include vascular endothelial
growth factor (VEGF), basic fibroblast growth factor (bFGF),
epidermal growth factor (EGF), platelet-derived growth factor
(PDGF), insulin-like growth factor, transforming growth factor
(TGF), and angiopoietin (Marech et al., 2016). Among them, the
VEGF has been reported as having a crucial role not only in
angiogenesis, but also in lymphangiogenesis (Ferrara and Davis-

Smyth, 1997). The VEGFs are a family of homodimeric
glycoproteins, including VEGF-A, VEGF-B, VEGF-C, VEGF-D
and placental growth factor (PlGF) in mammals (Ferrara, 2016).
Among them, VEGF-A is the first angiogenic factor that was
identified and characterized among the VEGF family (referred to
as VEGF in this review). VEGF-A has numerous distinct isoforms,
such as VEGF-A121, VEGF-A165, VEGF-A189, and VEGF-A206.
Among them, the most active one in angiogenesis is VEGF-A165.
It is critical not only in physiological angiogenic processes, such as in
development of embryonic vascularization, in skeletal
morphogenesis and growth, but also in pathological angiogenesis
including tumor cell metastasis (Ceci et al., 2020). PlGF is the second
discovered VEGF-family member, which is dispensable in
physiological angiogenesis processes and in pathological
angiogenesis (Fischer et al., 2008). VEGF-B was reported to be

FIGURE 1
VEGFR activation by the VEGF family of growth factors; and resulting downstream signaling pathways to angiogenesis and lymphangiogenesis.
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important in inflammatory angiogenesis (Mould et al., 2003).
VEGF-C and VEGF-D are observed to be highly expressed
during the embryo development, also playing a role in
angiogenesis, but more importantly in lymphangiogenesis
(Stacker et al., 2001; Karkkainen et al., 2004; Rauniyar et al., 2018).

The VEGF family binds to 3 TK receptors, VEGFR1,
VEGFR2, VEGFR3, and two coreceptors, neuropilins 1 and 2
(NRP1 and NRP2) (Ferrara, 2016). The VEGFs and VEGFRs
have a crossed binding relationship, which stimulate the
activation of different receptors to induce angiogenesis
and lymphangiogenesis (Figure 1). VEGF-A binds both
VEGFR1 and VEGFR2, VEGF-B and PlGF only bind to
VEGFR1, while VEGF-C and VEGF-D bind to VEGFR2 and
VEGFR3 (Apte et al., 2019). VEGFR1 and VEGFR2 are mainly
expressed on vascular endothelial cells (ECs), but also on some
types of cancer cells. The VEGFR2 has been clearly studied as the
main VEGF signaling receptor. The binding of VEGF to
VEGFR2 stimulates strong downstream signaling to promote
EC proliferation, migration and tube formation (Dakowicz
et al., 2022). However, the exact mechanism of
VEGFR1 signaling is not fully understood. The binding of
VEGF to VEGFR1 stimulates much weaker downstream
signaling. As a result, it is sometimes considered as a decoy
receptor for VEGF (Weddell et al., 2017). On the other hand,
VEGFR1 can also activate downstream signaling especially in
pathological conditions, such as in several cancers, where
VEGFR1 was observed to be overexpressed (Jayson et al.,
2016; Weddell et al., 2017). VEGFR3 is specifically expressed
on lymphatic ECs (Monaghan et al., 2021). VEGFR3 binds to
VEGF-C and VEGF-D to mediate lymphangiogenesis and
developmental angiogenesis, and it is considered to be a more
important regulator in lymphangiogenesis (Varney and Singh,
2015; Heinolainen et al., 2017). Although VEGFR1 and
VEGFR3 seem less important in transporting angiogenic
downstream signaling than VEGFR2, when in extreme
condition, such as solely inhibiting VEGFR2 signaling
pathway, VEGFR1 and VEGFR3 are able to substitute
VEGFR2 angiogenic activity (Karaman et al., 2022). Therefore,
inhibition of multi-VEGFR signaling was considered to achieve
better anti-angiogenic activity (Ceci et al., 2020).

The VEGFRs are dimeric immunoglobulins (Ig) homologues
containing seven extracellular domains, a transmembrane domain,
and an intracellular tyrosine kinase (TK) domain (Karaman et al.,
2018). The VEGF binds to the extracellular domains of VEGFRs,
mainly domain 2 and domain 3 (Wiesmann et al., 1997; Iyer et al.,
2010; Brozzo et al., 2012). The binding of VEGFs and VEGFRs
promotes the dimerization of receptors and is followed by
intracellular approaching and activation of TK domains (Ferrara
et al., 2003). Then, the downstream signaling transduction through
RAF/MEK/ERK, PI3K/AKT/mTOR, and NCK/p38/MAPKAPK2/
3 pathways affects endothelial cell migration, proliferation, tube
formation and survival (Kroll and Waltenberger, 1997; Wang et al.,
2020; Mabeta and Steenkamp, 2022). The activation of RAS/RAF/
MEK/ERK signaling pathway will directly promote EC survival and
proliferation (Takahashi et al., 1999; Mineur et al., 2007). The PI3K/
AKT signaling can activate the production of endothelial nitric oxide
synthase (eNOS) and its release in blood vessels to increase vascular
permeability (Zachary, 2003), it is responsible for the expression of

Cdc42, Rho, and Rac proteins, which are required for tumor cell
invasion and metastasis (Jiang and Liu, 2009; Pang et al., 2011;
Graupera and Potente, 2013). VEGF can also activate the P38/
MAPKAPK2/3 signaling pathway through NCK binding to induce a
change in EC cytoskeleton and promote cell migration, thereby
resulting in new tube formation (Jiang et al., 2020).

Since the “neovascularization” hypothesis of Folkman in 1971
(Folkman, 1971), antiangiogenic therapy has gained considerable
attention and is nowadays a proved therapy to treat different
cancers, DME and nAMD. It consists of disrupting the vascular
supply by blocking the pro-angiogenic factors or inhibiting activity
of their receptors with pharmacological agents (Ramjiawan et al.,
2017). Dozens of antiangiogenic drugs have been approved by the
FDA including antibodies, fusion proteins and small molecules
targeting VEGF/VEGFR axis and its downstream signaling
pathway (Qi et al., 2022). Antibodies and fusion proteins have a
large molecule size, hence are not able to cross the cell membrane.
They either bind to VEGF or VEGFR on the extracellular
compartment to inhibit angiogenesis by blocking the interaction
between VEGF and VEGFR (Liberski et al., 2022). Conversely, all
approved drugs targeting VEGFR TK and its downstream
signaling pathway are small molecules (Li et al., 2022).
Antibodies and fusion proteins can be used as anti-cancer drugs
and drugs to treat DME and nAMD (ElSheikh et al., 2022).
However, all small molecules targeting VEGF/VEGFR axis or
downstream signaling pathway are anti-cancer drugs, none of
them was approved to treat DME and nAMD yet, because of
their safety issues (Poor et al., 2022).

In this review, we present the development of these marketed
antiangiogenic drugs involved in the VEGF/VEGFR axis and its
downstream signaling pathways (Figure 2), as well as some
important drug candidates in clinical trials. We discuss their
mode of action, their clinical benefits and adverse effects, and the
current challenges that will need to be addressed by the next-
generation of anti-angiogenic drugs. We focus on the molecular
structures and characteristics of each drug, including those approved
only in China. The reader is also referred to some recent reviews on
mechanisms of angiogenesis and their applications in oncology and
in ophthalmology (ElSheikh et al., 2022; Mabeta and Steenkamp,
2022; Liu et al., 2023; Cao et al., 2023; Ghalehbandi et al., 2023). This
overview, while presenting emerging new drugs and targets, may
provide insights and perspectives for the future development of
antiangiogenic drugs based on VEGF/VEGFR axis and its
downstream signaling pathways.

2 Inhibitors targeting VEGF/VEGFR
interaction

VEGF binds to extracellular domain of VEGFR to activate
VEGFR intracellular signaling. Molecules blocking the interaction
of VEGF and VEGFR can prevent the activation of VEGFR
signaling, resulting in anti-angiogenic affects. To date, seven
VEGF/VEGFR interaction inhibitors have been approved by the
FDA and one (Conbercept) was approved in China by the National
Medical Products Administration (NMPA). Two of these
biomolecules are approved as anti-angiogenic drugs to treat
cancers, six of them to treat ocular vascular diseases (Figure 3;
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Table 1). None of them is a small molecule, because the large and flat
interaction interface between VEGF and VEGFR is difficult to target.

2.1 Bevacizumab

Bevacizumab was the first anti-angiogenic drug, approved in
2004 in the United States (US) (Muhsin et al., 2004). It is a full-
length humanized monoclonal antibody that binds to circulating
VEGF, preventing the interaction of VEGF with VEGFR and
inhibiting the activation of VEGFR signaling pathways that
promote angiogenesis (Ferrara and Adamis, 2016). Early clinical
development of bevacizumab was focused on several solid tumor
types associated with VEGF driven angiogenesis, including non-
small-cell lung cancer (NSCLC) (Seto et al., 2006), metastatic
colorectal cancer (CRC) (Des Guetz et al., 2006), metastatic
breast cancer (BC) (Foekens et al., 2001), glioblastoma
multiforme (GBM) (Flynn et al., 2008), and ovarian cancer (OC)
(Choi et al., 2015). These clinical studies have conducted to
bevacizumab approval in a wide range of cancer indications
(Garcia et al., 2020). In clinical therapy, the most frequently
observed adverse events under bevacizumab treatment are
hypertension, fatigue, asthenia, diarrhea and abdominal pain.
Complications of surgery and wound healing can happen, and
rare cases of severe or fatal hemorrhage have been reported
(Garcia et al., 2020). These side effects can be usually managed

with standard blood pressure monitoring and treatments with
antihypertensive drugs. Later, bevacizumab was demonstrated to
have better clinical benefits in combination with chemotherapy in
cancer treatment (Wahid et al., 2016). Interestingly, bevacizumab
was recently approved in combination with atezolizumab, an
immunotherapeutic agent (in addition to chemotherapy). The
effectiveness of this combination of an anti-angiogenic and an
immunotherapy approach can be explained by the angiogenesis-
independent role of VEGF in immune modulation (Motz and
Coukos, 2011; Ramjiawan et al., 2017; Socinski et al., 2018).
Bevacizumab is now the most widely used antiangiogenic drug,
marketed in 134 countries worldwide. Due to its mode of action,
bevacizumab was also investigated “off-label” in treatment of nAMD
and DME (Moshfeghi et al., 2006; Schmid-Kubista et al., 2009;
Chakravarthy et al., 2013; Schauwvlieghe et al., 2016). Its cost is
lower than the cost of newer anti-VEGF agents, but it has not been
officially approved in retinopathies.

2.2 Pegaptanib

Pegaptanib is a pegylated polynucleotide aptamer that selectively
binds to VEGF-A165 (an isoform in which the C-terminal part is
present) to inhibit angiogenesis and vessel permeability (Ng et al.,
2006; Zhou and Wang, 2006). It was approved in 2004, as the first
antiangiogenic agent for the treatment of nAMD (Doggrell, 2005). It

FIGURE 2
Marketed drugs targeting the VEGF/VEGFR axis and its downstream signaling pathway.
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is administrated by intravitreal (IVT) injection and mostly caused
not serious ocular side effects such as eye pain, corneal edema,
blurred vision, and non-ocular side effects such as headache, nausea,
and diarrhea (Van der Reis et al., 2011). It was well tolerated and
effective in patients with nAMD (Kourlas and Schiller, 2006).
However, it is not commonly used in clinical practice today
because it targets only one isoform of VEGF, and is replaced by
more effective anti-VEGF drugs like ranibizumab and aflibercept
(Lytvynchuk et al., 2015; Battaglia Parodi et al., 2018).

2.3 Ranibizumab

Ranibizumab is a recombinant humanized IgG kappa isotype
monoclonal antibody fragment derived from bevacizumab
(Chatziralli, 2021). It contains only the antigen-binding fragment
(Fab) of bevacizumab. Despite being much smaller than
bevacizumab, it has a higher affinity for VEGF (Chen et al.,
1999). It was designed specifically for intravitreal administration
(IVT) to treat neovascular ocular diseases due to its smaller size,

FIGURE 3
Macromolecular drugs targeting the extracellular compartment of the VEGF/VEGFR axis for anticancer and ocular therapies.

TABLE 1 Approved anti-angiogenic drugs targeting VEGF/VEGFR interactions.

Name Chemical properties Targets First
approval

Approved indications

Bevacizumab Full-length humanized monoclonal antibody VEGF-A 2004 by FDA GBM, NSCLC, CRC, BC,
RCC, OC

Pegaptanib Pegylated polynucleotide aptamer VEGF165 2004 by FDA nAMD

Ranibizumab Recombinant humanized IgG kappa isotype monoclonal antibody
fragment

VEGF-A 2006 by FDA nAMD, DME, DR

Aflibercept Recombinant fusion protein consisting of VEGFR-1 D2 and VEGFR-2 D3 VEGF-A/B/C/D,
PlGF

2011 by FDA nAMD, DME, RVO, DR, ROP

Conbercept Recombinant fusion protein consisting of VEGFR-1 D2 and VEGFR-2
D3-D4

VEGF-A/B/C/D,
PlGF

2014 by NMPA nAMD, DME

Ramucirumab Humanized monoclonal antibody VEGFR2 2014 by FDA CRC, NSCLC, GEJ, HCC

Brolucizumab Humanized single-chain fragment antibody VEGF-A 2019 by FDA nAMD

Faricimab Bispecific monoclonal antibody VEGF-A, Ang-2 2021 by FDA nAMD, DME
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which enables it to diffuse from the vitreous into the retina and
choroid (Ferrara et al., 2006; Campochiaro, 2007). Ranibizumab is
considered to be safer than bevacizumab, because of its rapid
systemic clearance in the body (Dervenis et al., 2017). It has
much shorter half lifetime (2–4 days) than bevacizumab (about
3 weeks). Besides, the absence of a fragment crystallizable portion
(Fc) prevents binding complement-associated intraocular
inflammation after IVT (Ferro Desideri et al., 2019).
Ranibizumab was initially approved by the FDA in 2006 for the
treatment of nAMD and DME. The common side effects of
ranibizumab reported are mainly not serious, similar to those of
pegaptanib, such as eye pain and corneal edema, which were
attributed to its administration by intravitreal injection (Lee and
Shirley, 2021).

2.4 Aflibercept

Aflibercept is a recombinant fusion protein consisting of two
fragments: the second extracellular domain (D2) of VEGFR1 and the
third extracellular domains (D3) of VEGFR2, both fused to the Fc
portion of human immunoglobulin G (Ciombor et al., 2013). It
neutralizes multiple VEGFR1 and VEGFR2 ligands, including
VEGF-A, VEGF-B, and PlGF to exhibit antiangiogenic effects. It
was approved by the FDA in 2011 for the treatment of maculopathy
and metastatic CRC (Chung and Pherwani, 2013). In cancer
treatment, Chiron et al. showed that aflibercept had higher
tumor suppressor activity than bevacizumab in patient-derived
xenograft (PDX) models of colorectal cancer (Chiron et al.,
2014). As an ophthalmic agent, aflibercept was indicated for the
treatment of nAMD, DME, macular edema following retinal vein
occlusion (RVO), diabetic retinopathy (DR), and retinopathy of
prematurity (ROP). Its mode of action has been confirmed as the
inhibition of choroidal neovascularization induced by overexpressed
VEGFs (Anguita et al., 2021).

2.5 Conbercept

Conbercept is also a recombinant anti-VEGF protein
comprising the extracellular domains of VEGFR1 and VEGFR2,
fused to the Fc of human IgG. It is engineered from a full human
cDNA sequence in Chinese hamster ovary cells (de Oliveira Dias
et al., 2016). The difference between conbercept and aflibercept is
that conbercept consists of the third and the fourth extracellular
domain of VEGFR2, while aflibercept incorporates only the third
extracellular domain of VEGFR2 (de Oliveira Dias et al., 2016). The
fourth extracellular domain of VEGFR2 does not directly
participate in binding with VEGF, but it facilitates receptor
dimerization and improves the association of VEGF. As a
result, conbercept was reported to have an affinity 50-fold
higher than bevacizumab on binding to VEGF (Cai et al.,
2018). However, until now, conbercept is only approved in
China (since 2014) by the NMPA of China for the treatment of
nAMD and DME. No intraocular inflammation, retinal or vitreous
hemorrhage, or systemic complication have been reported (Qi
et al., 2019). It has not yet been granted approval from the FDA or
the European Medicines Agency (EMA) yet.

2.6 Ramucirumab

Ramucirumab is a humanized monoclonal antibody (IgG)
targeting the extracellular domain of VEGFR2, approved in 2014.
It is now used for the treatment of advanced or metastatic gastric, or
gastro-esophageal junction (GEJ) adenocarcinoma, hepatocellular
carcinoma (HCC), CRC, and NSCLC (Vennepureddy et al., 2017;
Khan and Shah, 2019; Syed, 2020). Ramucirumab binds specifically
to VEGFR2, more precisely on the domain 3 of VEGFR2 (Franklin
et al., 2011). Its binding to VEGFR2 blocks the interactions with its
ligands, including VEGF-A, VEGF-C, and VEGF-D, thereby
preventing VEGFR2 phosphorylation and downstream
consequences such as proliferation, migration, and tube
formation of human endothelial cells, finally inhibiting tumor
angiogenesis. Ramucirumab was the first approved antibody drug
targeting VEGFRs. It is nowadays used in combination with
paclitaxel or docetaxel as second-line therapy to treat gastric
cancer. The major side effects include hypertension, proteinuria,
and thrombocytopenia.

2.7 Brolucizumab

Brolucizumab is a newly (in 2019) FDA-approved anti-VEGF
agent for the treatment of nAMD (Markham, 2019b). It is a novel
humanized single-chain fragment antibody, which inhibits all
isoforms of VEGF-A (Motevasseli et al., 2021b). It is composed
of only 255 amino acids (molecular mass of approximately 26 kDa),
with high solubility and high permeability, which facilitate its
delivery from the vitreous into the retina and choroid (Tadayoni
et al., 2021). Meanwhile, brolucizumab was reported to be more
effective to bind VEGF (binding affinity in a low picomolar range)
than other anti-VEGF agents, about 11 times more efficient than
aflibercept (Eason et al., 2020; Rahman and Singer, 2020). It is also a
long duration anti-nAMD drug, which requires monthly intravitreal
administration. Side effects have been reported such as occlusive
retinal vasculitis and intraocular inflammation (Witkin et al., 2020).
The most common ocular adverse effects are subconjunctival
hemorrhage, vitreous floaters, reduced visual acuity, vitreous
detachment, and the most common non-ocular side effects are
upper respiratory tract infection and urinary tract infection
(Motevasseli et al., 2021a).

2.8 Faricimab

Faricimab was developed as the first bispecific monoclonal
antibody for the treatment of nAMD and DME, which was
approved in 2021 (Shirley, 2022). It is the first humanized
bispecific antibody designed for treatment of ocular diseases. As
a bispecific heterodimeric antibody, faricimab has different light
chains in each of the Fab regions, one binds to VEGF and the other
one binds to angiopoietin-2 (Ang-2) (Nair et al., 2022). Ang-2 is
another pro-angiogenic factor, which activates Tie2 receptor and its
downstream signaling to promote cell survival and vascular stability
(Joussen et al., 2021). Tie2 receptor has an important role in
inflammation and vascular destabilization (Heier et al., 2021).
Faricimab can neutralize circulating VEGF and Ang-2
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simultaneously to prevent VEGF-induced angiogenesis and restore
vascular stability by decreasing leakage, inflammation, and
neovascularization (Heier et al., 2022; Liberski et al., 2022). In
the faricimab molecule, the Fc fragment, which is the
crystallizable region of antibodies binding to cell receptors and
complement proteins, has also been modified to reduce
undesirable immune system response (Nair et al., 2022). Phase
2 trials in patients with nAMD demonstrated that the safety and
efficacy of faricimab was comparable with ranibizumab.
Interestingly, the IVT injection interval of faricimab can be up to
16-week, thus reducing the burden for patients. However, it has been
argued that the high dose of faricimab injected (6 mg) might be a
major reason for the decrease in number of IVT injections, and that
the extent to which Ang-2 blockade contributed to the therapeutic
efficacy is still unclear (Cao et al., 2023).

All the above molecules are biomolecules targeting the
extracellular VEGF-VEGFR interaction. At the beginning, they
were targeting only VEGF-A and later they were developed to
neutralize more VEGF family members. Two of them are used to
treat cancers, in combination with cytotoxic chemical drugs
(Table 1). Reported adverse effects are hypertension, fatigue,
diarrhea, and complications due to weaker wound-healing ability.
Six of them are used to treat retinopathies (Table 1). The intraocular
injection (IVT) of these drugs leads to additional adverse effects in
the eye including eye pain, corneal edema, blurred vision/reduced
vision acuity. Prior to these drugs, many of retinal diseases patients
were treated with ablative laser therapy. Therefore, the anti-VEGF
therapy has improved vision outcomes and quality of life for
millions of people in a revolutionary manner. In behalf of the
high specificity of antibodies, antibody-drug conjugates (ADC)
are actually in great boom of investigation, but no ADC has been
approved for antiangiogenic therapy yet.

3 Inhibitors targeting VEGFR tyrosine
kinase (TK)

Protein kinases are enzymes that catalyze the transfer of the
phosphate group from ATP to hydroxylated amino acids, such as
serine, threonine, and tyrosine (Al-Obeidi et al., 1998; Cohen,
2002). They play significant roles in the pathogenesis of
autoimmune, inflammatory, nervous and cardiovascular
diseases, notably in malignancies. Consequently, they are
nowadays one of the most important drug targets (Roskoski,
2023). A protein kinase domain is a protein region with
conserved structure containing the catalytic function of
protein kinases (Arter et al., 2022). VEGFR1, VEGFR2, and
VEGFR3 are structurally related TK receptors, responsible for
physiological and pathological vascularization. They have two
intracellular TK domains responsible for the activation of
VEGFRs and the initial signal transportation of VEGFR
downstream signaling. Thus, the VEGFR TK has become one
of the most important targets for the development of anti-
angiogenic drugs. So far, a total of 72 drugs have been
approved by the FDA targeting different protein kinases, most
of them are multikinase inhibitors (Roskoski, 2023). Among
them, 13 drugs directly inhibit the activity of VEGFR tyrosine
kinases (Table 2), along with other receptor RTKs including

FGFRs, PDGFRs, TGF-βRs, etc., All these small molecules are
approved for anticancer but not for retinopathies treatment.

3.1 Sorafenib

Sorafenib is the first approved, in 2004, anti-angiogenic inhibitor
targeting all three VEGFRs (VEGFR1-3) as well as other RTKs,
including the stem cell-factor receptor (c-Kit), FLT3, the glial cell-
line derived neurotrophic factor receptor (GDNF), PDGFR-β, and
the papillary thyroid carcinomas (PTC) (Wilhelm et al., 2006;
Keating, 2017). It contains a structure of unsymmetrical
substituted urea and was initially approved by the FDA for the
treatment of advanced RCC in 2005, and subsequently approved for
the treatment of advanced HCC in 2007, for differentiated thyroid
carcinoma (DTC) in 2013 and for thyroid cancer in 2014 (Escudier
et al., 2019). Sorafenib exhibits a dual mechanism of action by
inhibiting VEGFRs and PDGFR signaling and thus inhibiting the
RAF/MEK/extracellular signal-regulated kinase (ERK) pathway to
reduce tumor angiogenesis and to induce tumor cell apoptosis
(Ramakrishnan et al., 2010).

3.2 Sunitinib

Sunitinib is the second approved anti-angiogenic TKI, approved
1 year after sorafenib, in 2006, for the treatment of RCC and
imatinib-resistant gastrointestinal stromal tumor (GIST) (Motzer
et al., 2017). It is an oral oxindole derivative, multi-targeting RTKs,
such as VEGFR1/2/3, PDGFRα/β, c-Kit, colony stimulating factor
receptor Type 1 (CSF1R), RET (rearranged during transfection), and
FLT3 (Hao and Sadek, 2016; Schmid and Gore, 2016). Sunitinib also
showed potent antitumor activity against neuroendocrine tumors
and obtained its further approval in 2011 for the treatment of
progressive, well-differentiated pancreatic neuroendocrine tumors
(pNET) in adult patients with unresectable locally advanced or
metastatic disease (Blumenthal et al., 2012).

3.3 Pazopanib

Pazopanib is a second-generation multitargeted TK inhibitor
against VEGFR1/2/3, PDGFRα/β, FGFR-1/3, and c-Kit (Sonpavde
and Hutson, 2007; Sloan and Scheinfeld, 2008). It is an
indazolylpyrimidine that competes with adenosine triphosphate
for binding to the TK domains of these receptors and prevents
the ATP-induced receptor activation. It inhibits purified VEGFR1/
2/3 kinases with IC50 of 10, 30, and 47 nM (Miyamoto et al., 2018).
Pazopanib was developed as a therapeutic agent against various
types of cancers, however, it has been so far approved only for the
treatment of RCC and advanced soft-tissue sarcoma (STS).

3.4 Vandetanib

Vandetanib is an anilinoquinazoline derivative antineoplastic
kinase inhibitor, which inhibits the activities of VEGFR2/3, EGFR,
RET, BRK, TIE2, and EPH (Morabito et al., 2010). It showed a lesser
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TABLE 2 Approved anti-angiogenic drugs targeting VEGFR tyrosine kinase.

Name Chemical structure Targets First approval Current indications

Sorafenib VEGFR1/2/3 and c-Kit/FLT3/RET/PTC/
PDGFR-β

2005 by FDA RCC, HCC, DTC, Thyroid cancer

Sunitinib VEGFR1/2/3 and PDGFRα/β, c-Kit, CSF1R,
RET, FLT3

2006 by FDA RCC, GIST, Pancreas neuroendocrine tumor

Pazopanib VEGFR1/2/3 and PDGFRα/β, FGFR-1/3,
c-Kit

2009 by FDA RCC, STS

Vandetanib VEGFR2/3 and EGFR, RET, BRK,
TIE2, EPH

2011 by FDA MTC

Axitinib VEGFR1/2/3 2012 by FDA RCC

Cabozantinib VEGFR1/2/3 and Tie2, c-Met, c-Kit,
RET, AXL

2013 by FDA MTC, RCC, HCC

Regorafenib VEGFR1/2/3 and PDGFRα, FGFR1/2,
BRAF

2012 by FDA CRC, GIST, HCC

Apatinib VEGFR2 and c-Src, c-Kit 2014 by NMPA Gastric cancer

Nintedanib VEGFR1/2/3 and FGFR1/2, PDGFRα/β 2014 by FDA NSCLC

Lenvatinib VEGFR1/2/3 and FGFR1/2/3/4, RET, c-Kit,
PDGFRα

2015 by FDA DTC, Thyroid cancer, RCC, HCC,
Endometrial carcinoma

Anlotinib VEGFR2/3 and PDGFRα/β, RET, FGFRs,
c-Kit

2018 by NMPA NSCLC, STS, SCLC

(Continued on following page)
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extent inhibition to VEGFR1 TK. In 2011, vandetanib was approved
by the FDA for the treatment metastatic medullary thyroid carcinoma
(MTC) of adult patients, which makes it as the first effective systemic
therapy forMTC (Tsang et al., 2016). This indication was attributed to
its inhibitory effect on RET, which is a TK hyperactivated by
mutations in MTC (Yoh et al., 2017). Vandetanib can cause some
common adverse effects including nausea, diarrhea, hypertension,
headache and some significant cardiac toxicities, which restrains its
application in other cancers (Ton et al., 2013).

3.5 Axitinib

Axitinib is also a second-generation TK inhibitor that works by
selectively inhibiting VEGFRs (VEGFR1/2/3), thus blocking
angiogenesis, tumor growth and metastases (Kessler et al., 2012).
It was reported to be more potent than sunitinib and sorafenib in
inhibiting the TK activities of VEGFRs (Goldstein et al., 2010; Gross-
Goupil et al., 2013). It is a diarylthioether derivative, which received
FDA-approval in 2012 for RCC, particularly as second-line
treatment (Bellesoeur et al., 2017).

3.6 Cabozantinib

Cabozantinib is a diarylether derivative multitargeted TK
inhibitor, targeting VEGFRs, Tie2, c-Met, c-Kit, RET, AXL, etc.,
(Ruiz-Morales and Heng, 2016; Osanto and van der Hulle, 2018). It
is a non-specific TK inhibitor with potent kinase inhibitory activity.
Its high inhibitory effect on RET promoted the initial approval of
cabozantinib for the treatment of MTC in 2012 (Nagilla et al., 2012).
Subsequently, it was approved by the FDA for the treatment of RCC
in 2016, and for the treatment of HCC in 2019 (Al-Salama and
Keating, 2016; El-Khoueiry et al., 2021).

3.7 Regorafenib

Regorafenib is a fluoro-derivative of sorafenib developed by Bayer.
It is also an oral multikinase inhibitor, as sorafenib, but with additional
kinase targets, such as PDGFRα, FGFR1/2 and BRAF (Wilhelm et al.,
2011). Regorafenib received first FDA approval in 2012 (Crona et al.,
2013). The FDA expanded its indication to advanced GIST 1 year later
and to HCC in 2017 (Grothey et al., 2020).

3.8 Apatinib

Apatinib, with substituted 2-amino nicotinamide core, was
developed by a Chinese pharmaceutical company, Hengrui
Medicine, and approved by the NMPA of China for the
treatment of advanced gastric cancer in 2014 (Roviello et al.,
2016). It was granted the second approval by NMPA for the
second-line treatment of advanced HCC in 2021. It was reported
as an anti-angiogenic inhibitor targeting VEGFR2, c-Src, and c-Kit
(Scott, 2018).

3.9 Nintedanib

Nintedanib is an indolinone derivative multikinase inhibitor
targeting VEGFR1/2/3, FGFR1/2, and PDGFRα/β. Thus, drug
was developed from a program of searching angiogenesis
inhibitors targeting VEGFR2 at Boehringer Ingelheim (Roth
et al., 2015). Nintedanib showed an IC50 of 34 nM, 21 nM and
13 nM for VEGFR1, VEGFR2, and VEGFR3 TK in an adenosine
5′-triphosphate (ATP) assay (Hilberg et al., 2008). As a potent
kinase inhibitor, nintedanib has been evaluated in several solid
tumors, including NSCLC, ovarian cancer, CRC, RCC, and HCC
(Roth et al., 2015). However, it gained its first approval from the
FDA only for the treatment of idiopathic pulmonary fibrosis in
2014. And later, it gained approval as a second-line combination
therapy with docetaxel for patients with NSCLC (Alshangiti et al.,
2018).

3.10 Lenvatinib

Lenvatinib is a 4-O-aryl quinoline derivative acting as a
multiple TKs inhibitor targeting VEGFR1/2/3, FGFR1/2/3/4,
c-Kit, RET, and PDGFRα (Inoue et al., 2012; Cabanillas and
Habra, 2016). It was firstly approved in 2015 for the treatment
of DTC and thyroid cancer. A randomized, open-label, phase III
trial in patients with unresectable HCC showed that patients
treated with lenvatinib had a similar overall survival (OS) as
sorafenib treated patients, but with significant improvements in
objective response rate, progression-free survival and time to
progression (Ikeda et al., 2016; Al-Salama et al., 2019). These
results promoted the approval of lenvatinib as the first-line
treatment for HCC in 2018 (Baxter et al., 2018).

TABLE 2 (Continued) Approved anti-angiogenic drugs targeting VEGFR tyrosine kinase.

Name Chemical structure Targets First approval Current indications

Fruquintinib VEGFR1/2/3 2018 by NMPA CRC

Tivozanib VEGFR1/2/3 2017 by EMA,
2021 by FDA

RCC
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3.11 Anlotinib

Anlotinib, a quinolen-indole derivative, was co-developed by
Jiangsu Chia-Tai Tianqing Pharmaceutical and Advenchen
Laboratories in China (Syed, 2018). It is a multikinase inhibitor
targeting VEGFR2/3, PDGFRα/β, FGFRs, c-Kit, and RET. It showed
significant inhibitory effects on angiogenesis and tumor growth
(Gao et al., 2020). Anlotinib has demonstrated potent efficacy
and a sufficient safety in many malignant cancers in clinical
studies (Han et al., 2018a; Han et al., 2018b). It received its first
approval from NMPA of China in May 2018, as a third-line
treatment for refractory advanced NSCLC. Subsequently, it was
approved to treat advanced STS and to treat relapsed small cell lung
cancer (SCLC) in 2019 and 2020, in China.

3.12 Fruquintinib

Fruquintinib, a quinazoline-benzofuran derivative, is a highly
selective kinase inhibitor of VEGFRs with potent anti-angiogenic
activities (Burki, 2018). It was developed to treat solid tumors
involved with pathological angiogenesis (Shirley, 2018).
Fruquintinib gained the first global approval from NMPA of
China in September 2018, for the treatment of CRC.

3.13 Tivozanib

Tivozanib is a quinoline-urea derivative that specifically targets
kinase domains of VEGFR1, VEGFR2, and VEGFR3 (Jacob et al.,
2020). It was firstly approved in the European Union by EMA as a
first-line treatment for advanced RCC in adult patients (Kim, 2017).
Tivozanib was later approved by the FDA for the treatment of
relapsed or refractory RCC in March 2021.

Since the first report of small molecules inhibiting EGFR TK
activity (Yaish et al., 1988), the development of inhibitors of RTK
(receptor tyrosine kinase) has been a hot topic, leading to the first
approved TK inhibitor (TKI) imatinib in 2001. The first drug
targeting VEGFR, sorafenib, was approved some years later in
2005. A dozen of TKIs targeting angiogenic receptors, mainly
VEGFRs, are now on the market in anticancer therapy. They are
beneficial for certain types of cancers with significant improvement
of patient’s outcomes. However, as all other small chemical drugs,
they have also undesirable side effects, such as abdominal pain,
nausea, diarrhea, fatigue, hand-foot skin reaction, etc. The most
severe side effects are cardiovascular and renal adverse effects
(Goldman et al., 2021; Van Wynsberghe et al., 2021).

4 Inhibitors targeting VEGFR
downstream signaling

VEGFR downstream signaling is a complex process, activated
by cross phosphorylation of the VEGFR TK domains. The
angiogenesis signals are transported by different signaling
pathways, resulting in cell survival, proliferation, migration and
tube formation. The RAS/RAF/MEK/ERK pathway and the PI3K/
AKT/mTOR pathway are the most well studied VEGFR

downstream signaling pathways (Simons et al., 2016). Other
signaling pathways, such as NCK/p38/MAPKAPK2/3 pathway
and SRC/FAK/Paxillin pathway are also reported to be involved
in VEGFR downstream signaling (McMullen et al., 2005; Sun et al.,
2012). These signaling proteins are also kinase proteins, which are
called non-receptor kinase proteins. The signaling transport is a
linear cascade of kinase protein interactions and phosphorylation.
As a result, inhibitor targeting these non-receptor protein kinases
can also inhibit VEGFR induced angiogenesis. Here, we
summarize 16 approved drugs targeting VEGFR downstream
RAS/RAF/MEK/ERK signaling pathway and PI3K/AKT/mTOR
signaling pathway. However, these drugs are not commonly
classified as anti-angiogenic inhibitors, because their protein
kinase targets are also involved in many other cellular
processes. Inhibiting non-receptor kinase proteins of RAS/RAF/
MEK/ERK signaling pathway and PI3K/AKT/mTOR signaling
pathway can induce not only antiangiogenesis effect, but also
other biological effects, such as antiproliferation, cytotoxicity,
apoptosis, etc. Currently, these drugs are mainly used in
anticancer therapy (Table 3).

4.1 Inhibitors targeting RAS/RAF/MEK/ERK
signaling pathway

The Rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma
(RAF)/mitogen-activated extracellular signal-regulated kinase
(MEK)/extracellular signal regulated kinase (ERK)/signaling
pathway is a well-known signaling pathway that regulates cell
survival, growth, and proliferation in normal cells and cancer
cells. Among them, RAS is a small GTPase that binds tightly to
GTP with picomolar affinities. The mutants KRAS and NRAS are
frequently found in cancers (Liu et al., 2023). RAF is a serine/
threonine kinase directly activated by RAS. It includes the mutants
ARAF, BRAF, and CRAF, also frequently found in cancers (Yoshino
et al., 2019). MEK1/2 is a dual-specificity protein kinase activated by
RAF, which can subsequently phosphorylate ERK1/2 and transport
signaling into nucleus to promote cell survival and proliferation
(Degirmenci et al., 2020).

RAS was thought to be an undruggable target because of its
picomolar binding affinity to GTP, until the discovery of irreversible
inhibitors targeting KRAS G12C (Zheng et al., 2022). Recently, two
small molecules KRAS inhibitors, sotorasib and adagrasib were
granted FDA approval in 2021 and in 2022 for the treatment of
KRAS G12Cmutant non-small cell lung cancer (Rathod et al., 2023).

For RAF, especially BRAFmutations have beenmore commonly
identified in melanomas and other malignancies. Three BRAF
inhibitors, vemurafenib (Tsai et al., 2008), dabrafenib (Hauschild
et al., 2012), and encorafenib (Li et al., 2016) have been approved for
the treatment of non-resectable BRAF V600E or V600K mutant
melanoma and anaplastic thyroid cancer (Liu et al., 2019). Sorafenib
(Table 2), which is a multi RTK inhibitor, also showed inhibitory
activity to BRAF (Casadei Gardini et al., 2016).

With the success of BRAF inhibitors, MEK and ERK were
subsequently investigated as potential targets of RAS/RAF/MEK/
ERK signaling pathway. Four MEK inhibitors, trametinib,
cobimetinib, binimetinib and selumetinib have been approved by
FDA for the treatment of unresectable or metastatic melanoma
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TABLE 3 Approved drugs targeting VEGFR downstream signaling, classified by their targets.

Name Chemical structure Targets First approval Current indications

Sotorasib KRAS 2021 by FDA NSCLC

Adagrasib KRAS 2022 by FDA NSCLC

Vemurafenib BRAF 2011 by FDA Melanoma

Dabrafenib BRAF, CRAF 2013 by FDA Melanoma, NSCLC, ATC

Encorafenib BRAF 2018 by FDA Melanoma

Trametinib MEK1/2 2013 by FDA Melanoma, NSCLC, ATC

Cobimetinib MEK1/2 2015 by FDA Melanoma

Binimetinib MEK1/2 2018 by FDA Melanoma

(Continued on following page)
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TABLE 3 (Continued) Approved drugs targeting VEGFR downstream signaling, classified by their targets.

Name Chemical structure Targets First approval Current indications

Selumetinib MEK1/2 2020 by FDA Neurofibromatosis type 1, Plexiform neurofibromas

Idelalisib PI3Kδ 2014 by FDA CLL, Follicular lymphoma

Copanlisib Pan-PI3K 2017 by FDA Follicular lymphoma

Duvelisib PI3Kγ/δ 2018 by FDA CLL, SLL, Follicular lymphoma

Alpelisib PI3Kα 2019 by FDA Breast cancer

Temsirolimus mTOR 2007 by FDA RCC

Everolimus mTOR 2009 by FDA RCC, pancreatic cancer, breast cancer

Sirolimus mTOR 2015 by FDA LAM
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alone or in combination with BRAF inhibitors. Trametinib is a
reversible, highly selective, non-ATP competitive allosteric inhibitor
of MEK1/2 by binding to unphosphorylated MEK1 and MEK2 with
high affinity (Salama and Kim, 2013) and blocks the catalytic activity
of MEK1/2. It was first approved by the FDA in 2013 as
monotherapy for the treatment of melanoma (Wright and
McCormack, 2013). Currently, it is more often used as
combination therapy with BRAF inhibitors (Table 3) for the
treatment of unresectable or metastatic melanoma harboring
BRAF V600E and/or V600K mutation (Roskoski, 2018).
Cobimetinib and binimetinib were granted FDA approval also as
combination therapy with BRAF inhibitors for the treatment of
patients with unresectable or metastatic melanoma with BRAF
V600E/V600K mutation (Eroglu et al., 2016). Selumetinib, having
a similar structure as binimetinib (Table 3), has been approved in
2020 by the FDA as monotherapy for the treatment of
Neurofibromatosis type 1 (NF-1) (Markham and Keam, 2020). It
is a more selective and potent second-generation allosteric MEK1/
2 inhibitor (Hedayat et al., 2022). Selumetinib is still under
investigation for a variety of solid tumors, for example, phase II
trials for endometrial cancer and non-small cell lung cancer
(Coleman et al., 2015; Seto et al., 2018), and a phase III trial in
differentiated thyroid (Ho et al., 2022), and melanoma (Carvajal
et al., 2018). Currently, no ERK inhibitor has yet been reported to be
used in the clinic.

Inhibitors targeting the RAS/RAF/MEK/ERK signaling
pathway have made brilliant progress in the clinic, promoting
the development of a variety of novel inhibitors targeting this
cascade. New KRAS G12C inhibitors such as GDC-6036, JDQ443,
LY3537982, MK-1084, JAB-21822, BI-1823911, and D-1553 are in
pre-clinical and clinical development (Lorthiois et al., 2022; Parikh
et al., 2022; Xu et al., 2022; Li et al., 2023). Novel RAF inhibitors
have been developed as well, such as PF-07284890 (ARRY-461), a
small molecule inhibitor targeting BRAF V600E and
V600K(Bouhana et al., 2021); XL281 (BMS-908662), a potent
and selective inhibitor of wild-type and mutant RAF kinases
(Dickson et al., 2015); and RO5126766, which was evaluated as
a dual RAF/MEK allosteric inhibitor with a novel coumarin
skeleton based structure (Martinez-Garcia et al., 2012; Wada
et al., 2014). Recently, two novel MEK inhibitors, AZD-8330
and GDC-0994, are under clinical trials for the treatment of
advanced solid malignancies (Cohen et al., 2013; Weekes et al.,
2020).

4.2 Inhibitors targeting PI3K/AKT/mTOR
signaling pathway

The phosphatidylinositol 3-kinase (PI3K)/V-AKT murine
thymoma viral oncogene homolog (AKT)/mammalian target of
rapamycin (mTOR) signaling cascade is also a well-studied
signaling pathway that controls normal cells and cancer cells
growth, proliferation, and survival (Huang et al., 2022). The
PI3Ks family contains three classes of lipid kinases, PI3Ks class I,
PI3Ks class II and PI3Ks class III, according to the subunits and
substrates structures. Among them, PI3K class I is the major isoform
implicated in cancer, which can be further divided into class IA
(contains PI3Kα, PI3Kβ, and PI3Kδ) and class IB (contains PI3Kγ).

PI3Ks can be activated by RTKs (including VEGFRs) and GPCRs.
PI3Ks catalyze the phosphorylation of phosphatidylinositol and
promote the transfer from PIP2 to PIP3, which subsequently
activates AKT with two phosphorylation sites (Chalhoub and
Baker, 2009). Phosphorylated AKT adjacently induces mTOR
activation, which results in cell growth, cell survival, inhibition of
apoptosis, increased glucose metabolism, protein synthesis, and
further signal transduction (Li et al., 2022). Over activation of
the PI3K/AKT/mTOR signaling increases not only tumors
progress, but also the drug resistance of tumors (Guerrero-
Zotano et al., 2016). As an important VEGFR downstream
signaling pathway, PI3K/AKT/mTOR signaling pathway becomes
an attractive target for developing antiangiogenesis and antitumor
targeted drugs.

The study of PI3K inhibitors mainly focuses on inhibitors
targeting the four isoforms of the class I PI3Ks (α, β, γ, and δ).
Idelalisib was the first selective PI3Kδ inhibitor approved by the
FDA in 2014 for the treatment of relapsed or refractory chronic
lymphocytic leukemia (CLL) (Shah and Mangaonkar, 2015). It
showed acceptable safety and durable antitumor activity
accompanied with improved quality-of-life outcomes in
clinical trails. Copanlisib is a pan-PI3K inhibitor more potent
than idelalisib, approved in 2017 for the treatment of adult
patients with relapsed follicular lymphoma and a treatment
history of at least two prior systemic therapies. Compared to
idelalisib, copanlisib adopts a flat conformation better-fitting in
the adenine-binding pocket, and further extends into a deeper
pocket of the catalytic p110 subunit (Krause et al., 2018). It has
IC50 values in the single digit nanomolar range against class I
PI3K-α, β, γ, and δ isoforms (Liu et al., 2013). Duvelisib is a dual
inhibitor of PI3Kγ and PI3Kδ (Vangapandu et al., 2017). It also
binds to the ATP-binding pocket of p110 (Vangapandu et al.,
2017). The FDA has approved duvelisib for the treatment of
relapsed or refractory CLL or small lymphocytic lymphoma
(SLL) in adult patients who had at least two prior therapies
(Blair, 2018). Alpelisib is a selective inhibitor targeting class I
PI3Kα with high in vitro affinity (Furet et al., 2013; James et al.,
2015). This drug is indicated as combination therapy with
fulvestrant, an estrogen receptor antagonist, for the treatment
of hormone receptor (HR)-positive, human epidermal growth
factor receptor-2 (HER2)-negative breast cancer in patients with
a PI3KCAmutation (Markham, 2019a). More PI3K inhibitors are
undergoing preclinical and clinical evaluation, such as
ZSTK474 analogues, pilaralisib and IPI-549. They showed a
favorable safety profile and antitumor activity in different
cancers (Matulonis et al., 2015; Wang et al., 2016; Liu et al., 2020).

The development of AKT inhibitors seems more challenging.
No AKT inhibitor has been yet approved as antiangiogenesis or
antitumor agent. Most of them are still undergoing preclinical and
clinical evaluation. Among these molecules, the ATP-competitive
AKT inhibitors, such as ipatasertib, capivasertib, afuresertib, and
uprosertib have shown potent antitumor activity in clinical trials
(McKenna et al., 2018; Alzahrani, 2019). For example, ipatasertib
in combination with abiraterone and prednisone/prednisolone
showed efficacy in patients with HR-positive and HER2-
negative locally advanced unresectable or metastatic breast
cancer in a phase III trial (Sweeney et al., 2021); A phase II
trial showed that the combination of capivasertib and
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fulvestrant significantly prolonged progression-free survival of
patients with metastatic breast cancer (Jones et al., 2020);
Afuresertib showed favorable safety, pharmacokinetics, and
clinical activity as monotherapy in multiple myeloma in a phase
I trial (Spencer et al., 2014); Uprosertib showed satisfying safety
and good tolerability in patients with solid tumors (Aghajanian
et al., 2018). However, these AKT inhibitors still need more clinical
evidence before being approved in clinical use.

mTOR (mammalian target of rapamycin) inhibitors are the first
compounds developed to target the PI3K/AKT/mTOR signaling
pathway. Rapamycin analogs are the first-generation mTOR
inhibitors, which inhibit only mTORC1 (mTOR complex 1) but
not mTORC2 (Benjamin et al., 2011). Three rapamycin macrolide
analogs with slight molecular modifications, temsirolimus,
everolimus, and sirolimus have been approved by the FDA in
2007, in 2009 and in 2015, respectively. They are used in the
treatment of various cancers, including RCC, breast cancer,
pancreatic cancer and lymphangioleiomyomatosis (LAM). The
second-generation mTOR inhibitors, such as sapanisertib,
vistusertib, and GDC-0349, binding competitively to the ATP-
binding pocket of mTOR with high binding affinity, are
undergoing preclinical and clinical trials (Benjamin et al., 2011;
Hsieh et al., 2012; Pei et al., 2013). Several dual PI3K/mTOR
inhibitors have also been discovered and developed, such as
bimiralisib, dactolisib and gedatolisib (Shi et al., 2018; Collins
et al., 2021; Shor et al., 2022). They showed simultaneous ATP-
binding domain inhibition to PI3K and mTOR, which induces
promising PI3K/AKT/mTOR signaling cascade blockage.
Nonetheless, none of them has been approved in clinical use yet.

5 Conclusion and perspectives

Angiogenesis plays an important role in several diseases’
progression, such as malignant tumors and retinopathies. The
VEGF/VEGFR axis, including VEGF/VEGFR interaction, VEGFR
tyrosine kinase phosphorylation and VEGFR downstream signaling,
is the key process of angiogenesis. Indeed, anti-angiogenic therapy
has become one of the most effective clinical therapeutic approaches
for DME, nAMD and multiple cancers. Dozens of inhibitors
targeting the VEGF/VEGFR axis have been approved and used in
clinic. Many more are undergoing preclinical and clinical trials. In
this review, we classify these drugs as inhibitors of the VEGF/
VEGFR interaction, inhibitors of VEGFR TK and inhibitors of
VEGFR downstream signaling.

Inhibitors of VEGF/VEGFR interaction are mainly biological
molecules, such as antibodies, antibody Fab and fusion proteins.
They are highly specific agents acting on the VEGF/VEGFR
interaction blockade by effectively binding to VEGFs or VEGFRs.
Among them, the anti-VEGF agents, such as brolucizumab,
aflibercept, ranibizumab, conbercept, and faricimab, are currently
the unique drugs approved to treat retinopathies including DME
and nAMD. Anti-VEGF agents can also be used as antitumor drugs,
such as bevacizumab. However, ramucirumab, which binds
specifically to the extracellular domain of VEGFR2 and blocks
the interaction of VEGFR2 with its ligands (VEGF-A, VEGF-C,

and VEGF-D) was approved only for cancer treatment, but not in
retinopathies therapy. It seems that neutralizing specifically VEGFs
induces milder antiangiogenic effects than blocking VEGFRs.
Blocking VEGFRs or inhibiting VEGFR TK domain or inhibiting
VEGFR downstream signaling inhibits not only cell growth,
proliferation, migration, but also induces apoptosis, which is
accompanied with cytotoxicity. Recently, we have been working
on development of peptide inhibitors to block the VEGF/VEGFR
interaction (Wang et al., 2017; Wang et al., 2019; Ye et al., 2023).
Some of our peptides showed effective activity to block the VEGF/
VEGFR interaction, and induced inhibition of HUVEC
proliferation, migration, and formation of microtubes. They
showed antitumor effects on a xenografted mouse model (Wang
et al., 2021).

Inhibitors of VEGFR TK are mostly multiple kinase
inhibitors, due to the similarity of kinase catalytic domains
of RTKs, such as VEGFRs, FGFRs, Kits, PDGFRs and TGFRs.
They inhibit not only VEGFR induced angiogenesis but also
other RTKs induced cell growth, proliferation, survival,
migration, and tube formation. They are mainly used as
antitumor therapy.

The VEGFR downstream signaling is complex. The key proteins
and enzymes involved can be activated not only by phosphorylation
of VEGFR TK, but also by other RTKs. They induce cell cycle
regulation, invasion and metastasis. We summarized here the
clinical used drugs targeting RAS/RAF/MEK/ERK signaling
pathway and PI3K/AKT/mTOR signaling pathway. Most of them
showed anti-proliferative activity and cytotoxicity by blocking the
essential proteins such as KRAS, BRAF, MEK1/2, PI3Kα, β, γ, δ, and
mTOR. Inhibitors targeting these signaling pathways will cut off all
the signaling transportation in the cascade, certainly suppressing the
cell survival, growth, proliferation and migration. However, it is also
accompanied with side effects, such as cytotoxicity and drug
resistance.

All anti-angiogenic agents suffered a major challenge, the
drug resistance. The biologic drugs targeting VEGF/VEGFR
interaction and small molecules targeting VEGFR TK and
downstream signaling all come across drug resistance after a
period of monotherapy in treatment of cancer or retinopathies.
As a result, combination therapy is often applied, especially in
cancer treatment to achieve desired results and to minimize
drug resistance. For example, clinical trials showed that
bevacizumab combined with erlotinib significantly prolonged
PFS compared with monotherapy in treatment of patients with
EGFR-positive advanced NSCLC (Deng et al., 2022). Moreover,
some signaling pathway inhibitors are only approved in
combination therapy, such as binimetinib, cobimetinib,
encorafenib and alpelisib (Markham, 2019a; Logenthiran
et al., 2020). Improved combination compositions are
undergoing clinical trials including multi-targets, dual-
functions, etc., (Li et al., 2022).

In conclusion, the inhibitors targeting VEGF/VEGFR axis are
essential in regulating the pathological angiogenesis in cancers and
eye diseases. They will continue to be an intense drug research
topic because of their clear mechanism and effective outcomes in
the clinic.
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Glossary

ATC anaplastic thyroid cancer

Ang-2 angiopoietin-2

BC breast cancer

CLL chronic lymphocytic leukemia

CRC colorectal cancer

DR diabetic retinopathy

DTC differentiated thyroid carcinoma

DME diabetic macular edema

ECs endothelial cells

EGF epidermal growth factor

FGF fibroblast growth factor

GEJ gastro-esophageal junction

GIST gastrointestinal stromal tumor

GBM glioblastoma multiforme

HCC hepatocellular carcinoma

IVT intravitreal

LAM lymphangioleiomyomatosis

MTC medullary thyroid carcinoma

nAMD neovascular age-related macular degeneration

NRP1 and NRP2 neuropilins 1 and 2

NSCLC non-small-cell lung cancer

OC ovarian cancer

PlGF placental growth factor

PDGF platelet-derived growth factor

PTC papillary thyroid carcinomas

RTKs receptor tyrosine kinases

RCC renal cell carcinoma

RET rearranged during transfection

RVO retinal vein occlusion

ROP retinopathy of prematurity

SCLC small cell lung cancer

STS soft-tissue sarcoma

TGF transforming growth factor

TK tyrosine kinase

VEGF vascular endothelial growth factor
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