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Irisin, a myokine, is secreted by the movement of skeletal muscles. It plays an
important role in metabolic homeostasis, insulin resistance, anti-inflammation,
oxidative stress, and bone metabolism. Several studies have reported that irisin-
related signaling pathways play a critical role in the treatment of various diseases,
including obesity, cardiovascular disease, diabetes, and neurodegenerative
disorders. Recently, the potential role of irisin in lung diseases, including
chronic obstructive pulmonary disease, acute lung injury, lung cancer, and
their associated complications, has received increasing attention. This article
aims to explore the role of irisin in lung diseases, primarily focusing on the
underlying molecular mechanisms, which may serve as a marker for the
diagnosis as well as a potential target for the treatment of lung diseases, thus
providing new strategies for their treatment.
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Introduction

Globally, lung diseases, including chronic obstructive pulmonary disease (COPD), bronchial
asthma, interstitial pneumonitis, obstructive sleep apnea hypoventilation syndrome (OSAHS),
pulmonary embolism (PE), and lung cancer, have high morbidity and mortality rates, adding to
the healthcare burden (GBD Chronic Respiratory Disease Collaborators, 2020). Effective
measures to enhance the prevention and treatment of lung diseases are urgently required to
improve the health of patients and to reduce the healthcare burden.

Irisin, a hormone-like substance, comprises of 112 amino acids. Fibronectin type III
domain-containing protein 5 (FNDC5), an irisin precursor, is formed by the cleavage of
irisin (Boström et al., 2012). Exercise improves cardiorespiratory fitness, and irisin is
primarily secreted by skeletal muscles during exercise. Available literature suggests that
soccer players have significantly higher serum irisin levels compared to healthy individuals,
which may be attributed to exercise and skeletal muscle function (Gaudio et al., 2021). Irisin
is essential for the maintenance of metabolic homeostasis, regulation of energy and heat
production, promotion of white fat browning (Wang and Pan, 2016; Xiong et al., 2019; Chen
et al., 2021; Aladag et al., 2023), attenuation of insulin resistance (IR) (Ye et al., 2019; Zheng
et al., 2022), as well as regulation of bone metabolism (Buccoliero et al., 2021; Zhu et al.,
2021) and neurological functions (Pignataro et al., 2021). A growing body of evidence
suggests that irisin may have a protective role in lung diseases. Several studies have shown that
it is aberrantly expressed in lung diseases and is involved in the pathogenesis of COPD, asthma,
acute lung injury (ALI), pulmonary hypertension, lung cancer, and other lung diseases. It acts
by reducing oxidative stress (Ho et al., 2018), improving endothelial cell function (Bi et al.,
2020), resisting apoptosis, and inhibiting inflammatory factor production (Shao et al., 2017a;
Ma et al., 2021). Moreover, irisin inhibits themigration and proliferation of cancer cells and is a
potential target for the treatment of lung cancer (Shao et al., 2017b). It may be a potential
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biomarker and therapeutic target for lung diseases. In this article, we
summarize the possible molecular mechanisms and functions of irisin
in regulating lung diseases (Figure 1), contributing to a better
understanding of the role of irisin in lung diseases, which could
help to identify novel targets for the diagnosis or treatment of lung
diseases as well as to develop promising interventional strategies for
the treatment of these diseases.

Irisin and cellular pathways

Ferroptosis is an iron-dependent mode of cell death that plays a
key role in the pathogenesis of lung disease (Li et al., 2022); therefore,
targeting the associated pathways could be a novel strategy for the
treatment of lung diseases, including idiopathic pulmonary fibrosis
(IPF) (Guo et al., 2023a), ALI (Li et al., 2022), lung cancer (Zhao et al.,
2023), COPD (Yoshida et al., 2019), and asthma (Li et al., 2023). Irisin
appears to be an important regulator of ferroptosis. Serum irisin
expression is reduced in patients with sepsis, with lower irisin levels
indicating a higher sepsis severity (Wei et al., 2020). Irisin has an
inhibitory effect on ferroptosis through different pathways and
beneficial effects on sepsis-related organ damage, such as
encephalopathy (Wang et al., 2022) and liver injury (Wei et al.,
2020). It has effects on different causes of renal injury. For
example, in in-vivo and in-vitro studies, Zhang et al. have
demonstrated that irisin-associated activation of sirtuin 1 (SIRT1)/
nuclear factor E2-related factor 2 (Nrf2) inhibits ferroptosis to
attenuate renal injury in sepsis patients (Qiongyue et al., 2022).
Contrarily, another study has revealed that irisin ameliorates renal
injury in ischemia-reperfusion by promoting the ferroptosis protein

glutathione peroxidase 4 (Zhang et al., 2021). Meanwhile, in pancreatic
cancer, irisin increases ferroptosis and reactive oxygen species (ROS)
accumulation as well as helps protect against pancreatic cancer
progression (Yang and Leung, 2020). Therefore, irisin may be used
to treat lung diseases by modulating ferroptosis-related pathways.

Macroautophagy (or autophagy for short) is the process by which
cells remove damaged organelles and their own proteins to maintain
cellular homeostasis. It is essential for lung health as well as disease,
and it helps with bacterial clearance (Junkins et al., 2013). First,
autophagy is an important part of lung development and
morphogenesis, and its impairment may lead to
bronchopulmonary dysplasia (Yeganeh et al., 2019). Autophagy is
not only involved in lung development and maintenance of
morphology, but it is also a key link in the development and
treatment of lung diseases (Yeganeh et al., 2019; Zhang et al.,
2022). It plays a crucial role in ALI (Zhang et al., 2018; Nosaka
et al., 2020), asthma (Suzuki et al., 2022), IPF (Gui et al., 2015), lung
cancer (Hou et al., 2020), and COPD (Bodas et al., 2019). There is an
important link between irisin and autophagy. Irisin enhances the
expression of the autophagy protein light chain 3-II in particulate
matter less than 2.5 µm in diameter (PM2.5)-induced ALI and
decreases the expression of p62 protein, which promotes
autophagy and decreases the expression of proinflammatory
factors such as tumor necrosis factor-alpha (TNF-α), interleukin
(IL)-1β, and IL-18 (Ma et al., 2023). In a diabetic cardiomyopathy
model, irisin led to inhibition of autophagy in H9c2 cardiomyocytes
and ameliorated IR through the phosphatidylinositol 3-kinase (PI3K)/
AKT pathway (Song et al., 2021). In contrast, in C2C12 cells, irisin
promoted autophagy and ameliorated IR through the p38–mitogen-
activated protein kinase (MAPK)–peroxisome proliferator-activated

FIGURE 1
Involvement of irisin in the potential pathogenesis of lung diseases ALI, acute lung injury; COPD, chronic obstructive pulmonary disease; CPAP,
continuous airway positive pressure; EMT, epithelial-mesenchymal transition; IPF, idiopathic pulmonary fibrosis; NET, neutrophil extracellular trap;
OSAHS, obstructive sleep apnea hypoventilation syndrome; PE, pulmonary embolism.
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receptor-gamma coactivator 1-alpha (PGC-1α) signaling pathway (Ye
et al., 2019). These contradictory findings are likely due to the use of
different cell lines and the complex pathogenesis involved. Irisin also
plays a key role in bones and joints. It induces autophagy in bone
marrow mesenchymal stem cells, promotes osteoblast differentiation,
and plays a role in osteoporosis, as evidenced by the Wnt/β-catenin
pathway (Chen et al., 2020). In addition, it has a protective role in
degenerative disc disease. Exercise-associated irisin promotes autophagy
in nucleus pulposus cells, inhibits cellular senescence and apoptosis, and
helps to improve degenerative disc disease (Zhou et al., 2022). By
ameliorating cardiac hypertrophy and inducing autophagy through the
AMP-activated protein kinase (AMPK)–Unc-51-like autophagy-
activating kinase 1 pathway as well as reducing cardiomyocyte
apoptosis, irisin may be a novel target for the treatment of cardiac
diseases (Li et al., 2018; Li R. et al., 2019). It has a paradoxical role in the
regulation of autophagy, possibly due to different microenvironments
and acting on different signaling pathways. Therefore, regulation of
autophagy by irisin opens up ideas for treating lung diseases and may
serve as a new approach to therapy.

Irisin not only plays an important role in regulating ferroptosis
and autophagy in lung diseases, but it may be a predictive biomarker
for lung diseases. Its aberrant expression in lung diseases is involved
in the molecular pathogenesis of lung diseases as well as mood

regulation, and it is closely linked to rehabilitative exercises,
prognosis, and even treatment. However, further research is
required to elucidate the potential role of irisin in lung diseases.

Irisin and lung diseases

The role of irisin is well established in metabolic, neurological,
and cardiovascular diseases (Polyzos et al., 2018; Yu et al., 2019; Qi
et al., 2022). Though its role in lung diseases is promising, it has been
less studied and requires further exploration. In this article, we
summarize the link between irisin and lung diseases as well as its
mechanism of action in lung diseases (Table 1).

Irisin in ALI/acute respiratory distress
syndrome (ARDS)

ALI/ARDS is a severe disease with a high mortality rate. It is
caused by a variety of factors, including infection, trauma (Ware and
Matthay, 2000), sepsis, and coronavirus disease 2019 infection
(Roden et al., 2022; Sang et al., 2022). Its pathogenesis varies
depending on the microenvironment of the disease. Recently, the

TABLE 1 Expression of irisin in lung diseases and the related molecular mechanisms.

Stimulus Disease Tissue/Cell
type

FNDC5/Irisin
expression level

Signaling
pathway

Function and potential
role

References

Exercise and
smoking

COPD Serum Increase (higher than the
control and smoking groups)

Nrf2/HO-1 Reduces oxidative stress and
improves emphysema

Kubo et al. (2019)

ARDS Serum Decrease — Negative correlation with disease
severity and mortality

Bi et al. (2020)

LPS — Endothelial
cells

— Src-MLCK-β-catenin,
AMPK-Cdc42/Rac1

Improves mitochondrial function,
enhances barrier function,
reduces pulmonary edema, and is
anti-inflammatory

Bi et al. (2020)

LPS ALI A549 cells — AMPK/SIRT1, MAPK/
NF-κB

Anti-inflammatory, anti-
apoptotic, and improves alveolar
epithelial cell dysfunction

Shao et al. (2017a), Li
et al. (2019b)

LPS ALI MH-S cells — HSP90/NLRP3/caspase-
1/gasdermin-D

Inhibits M1, promotes M2,
attenuates macrophage
pyroptosis, and is anti-
inflammatory

Han et al. (2023a)

LPS ALI A549 cells — miR-199a/Rad23b Anti-inflammatory and reduces
lung damage

Ma et al. (2021)

PM2.5 ALI MH-S cells — AMPK/mTOR, Nod2/
NF-κB

Enhances autophagy, is anti-
inflammatory, and attenuates ALI
damage

Jiao et al. (2023), Ma
et al. (2023)

NRDS Serum/BALF Decrease/Increase — Protects mitochondrial function
and is protective against lung
injury

Chen et al. (2017)

Lung
cancer

— — PI3K/AKT Reduces lung cancer migration,
proliferation, and invasion

Shao et al. (2017b)

Lung
cancer

NSCLC cell
lines

Decrease NF-κB/MDR1 Increases the sensitivity of NSCLC
cells to paclitaxel treatment

Fan et al. (2020)

Asthma — — BDNF Higher irisin/BDNF levels are
associated with improved mood
disorders

Szilasi et al. (2017)
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role of irisin in ALI has received great attention. In patients with
ARDS, the serum irisin level is less than that of healthy individuals;
in addition, as the irisin level increases, the disease is milder and the
prognosis is better (Bi et al., 2020). Similarly, the serum irisin levels
are reported to be less in patients with neonatal respiratory distress
syndrome than in healthy neonates, while its concentrations in
bronchoalveolar lavage fluid are less than the serum levels.
Moreover, exogenous administration of irisin prior to lung
ischemia/reperfusion is reported to be protective (Chen et al.,
2017). It is further suggested that irisin plays an anti-
inflammatory role in the pathogenesis of ALI. Irisin improves
endothelial barrier function and lung permeability as well as
attenuates lung edema and inflammation in ALI, possibly
through the AMPK/SIRT1 signaling pathway and inhibition of
p-Src/myosin light-chain kinase/β-linker protein, activation of
AMPK-Ras-related C3 botulinum toxin substrate 1/cell division
control protein 42 homolog, and protection of mitochondrial
function (Chen et al., 2017; Li et al., 2019; Bi et al., 2020).
Similarly, the protective effect of irisin against ALI has been
validated by Shao et al. in in-vivo and in-vitro ALI models. The
results demonstrate that irisin suppresses MAPK and induces
nuclear factor kappa B (NF-κB) pathways, and simultaneously
inhibits apoptosis and inflammation in lung epithelial cells (Shao
et al., 2017a). Irisin inhibits the heat shock protein 90/NOD-like
receptor family pyrin domain containing 3/caspase-1/gasdermin D
pathway, suppresses M1 polarization, promotes M2 polarization,
and inhibits macrophage cell pyroptosis (Han et al., 2023). Another
study has demonstrated that irisin can exert anti-inflammatory
effects in lipopolysaccharide (LPS) and Nrf2-induced ALI by
inhibiting miR-199a, thus upregulating downstream upregulated
Rad23b (Ma et al., 2021). Irisin also has been shown to ameliorate
inflammatory cell infiltration in PM2.5-induced ALI, and this is
attributed to promotion of autophagy and inhibition of nucleotide-
binding oligomerization domain-containing protein 2/NF-κB (Jiao
et al., 2023; Ma et al., 2023). Thus, irisin exerts a protective effect
against ALI through a variety of mechanisms and is a potential
molecule for the treatment of ALI.

Irisin in COPD

COPD, a chronic airway obstructive heterogeneous disease,
includes chronic bronchitis and emphysema. Its pathogenesis
involves oxidative stress, cellular senescence, and inflammatory
mechanisms (Barnes, 2021; Barnes, 2022). Its high morbidity and
mortality rates have burdened the physical and mental health of
patients as well as the healthcare system alike (López-Campos et al.,
2016). Infection and smoking are among the most common risk factors
for acute exacerbation of COPD. Traditional treatment can effectively
control the disease and reduce the risk of acute exacerbation, but
exacerbations are still unavoidable due to the heterogeneity of the
disease. Multiple factors have been identified as COPD biomarkers,
providing a new direction for individualized treatment. Irisin has been
recognized as a promising biomarker for COPD. It has been shown that
the serum irisin levels are lower in COPD patients than in healthy
individuals (Ijiri et al., 2015), and these low levels are involved in the
development of emphysema (Sugiyama et al., 2017). The serum levels
are reduced in COPD patients who smoke (Kureya et al., 2016), and the

levels are reported to be elevated in mice in the exercise and smoking
group compared to mice in the smoking-only group. Exercise and irisin
ameliorate cigarette-induced emphysema, and this effect is through the
Nrf2/heme oxygenase 1 (HO-1) pathway (Kubo et al., 2019). Moreover,
COPD mice have reduced skeletal muscle FNDC5/irisin expression,
and this is due to the fact that irisin promotes skeletal muscle growth
and exposure to cigarette smoke leads to skeletal muscle dysfunction
(Zhang et al., 2022).

Aging and oxidative stress are important aspects of COPD
pathogenesis, and irisin is closely related to both. Oxidative stress
due to oxidative/antioxidative imbalance is a critical link in the
pathogenesis of COPD. Many studies have demonstrated that
irisin exhibits antioxidant activity that inhibits oxidative stress. For
example, exogenous irisin administration has been shown to inhibit
oxidative stress as well as ameliorate pancreatic inflammation and
fibrosis in chronic pancreatitis (Ren et al., 2020); furthermore, it
decreases nicotine-induced oxidative stress and endothelial cell
dysfunction (Sarwar et al., 2022). In diabetes-induced cardiac
microangiopathy, irisin increases antioxidant protein expression
and reduces oxidative stress through activation of the ERK1/2/
Nrf2/HO-1 pathway (Zhu et al., 2022). Moreover, exercise-induced
secretion of irisin reduces oxidative stress and attenuates cigarette
smoke-induced emphysema by activating the Nrf2/HO-1 pathway
(Kubo et al., 2019). Nrf2/HO-1 has antioxidant activity and is closely
related to irisin, which may attenuate oxidative stress in a variety of
other diseases through a spectrum of mechanisms that may have
beneficial effects in lung diseases. However, additional studies are
required to explore these mechanisms.

Aging reduces skeletal muscle strength, impairs body function,
and increases the chance of disease. COPD accelerates aging of the
lungs, and exercise can slow this process. Serum irisin levels are
significantly lower in the elderly than in young and middle-aged
individuals (Chang et al., 2017). Similarly, the serum FNDC5 levels are
reported to be reduced in aging mice, and exogenous irisin
administration helps to ameliorate aging-associated impaired
cardiac function, cardiac remodeling, and inflammation (Hu et al.,
2022). Irisin helps to delay osteoblast senescence, and in a study
involving patients undergoing total hip or knee arthroplasty, old age
was associated with lower serum irisin levels (Colaianni et al., 2021).
Moreover, irisin is positively correlated with vertebral and femoral
bone density, and serum irisin levels have been found to be lower in
osteoporotic patients (Colaianni et al., 2021). Exercise improves
muscle mass and function, and resistance training increases blood
expression of irisin and enhances muscle strength in the elderly (Kim
et al., 2015). In COPD patients, the senescence suppressor gene klotho
has been found to be expressed significantly less among smokers than
nonsmokers, and the levels are positively correlated with irisin; thus,
the relationship between senescence and irisin levels in COPD
deserves to be investigated (Kureya et al., 2016). Irisin helps to
ameliorate aging, and exercise training increases its expression,
which may be potentially beneficial for COPD treatment.

Irisin in asthma

Asthma, a heterogeneous disease, involves chronic
inflammation of the airways. Based on the proportion of
inflammatory cells in the induced sputum, it is categorized as
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eosinophilic asthma, neutrophilic asthma, granulocyte-deficient
asthma, and mixed-cell asthma. The pathogenesis of different
types of asthma varies (Simpson et al., 2006).

Irisin and macrophages in asthma

Macrophages are important cells in the immune response, and
exposure to allergenic stimuli in asthmatics leads to monocyte
recruitment to promote an inflammatory response, whereas
macrophages in the alveoli act as suppressors to maintain
homeostasis (Zasłona et al., 2014). Irisin has a significant effect on
macrophage polarization and regulates monocyte infiltration in
different microenvironments. In cerebral ischemia, irisin has
beneficial effects on neurons by inhibiting monocyte infiltration
and microglia activation as well as decreasing the levels of the
proinflammatory factors TNF-α and IL-6 (Li et al., 2017). Irisin
regulates macrophage function, activity, and polarization. The
macrophage activity is regulated by reducing ROS overproduction,
thereby exerting anti-inflammatory effects (Mazur-Bialy, 2017). We
speculate that irisin may likewise have a protective role in asthma by
inhibiting monocyte infiltration in the lungs and promoting the
activation of resident alveolar macrophages to exert an anti-
inflammatory effect, which is worth investigating in the future.

M1-M2 macrophage polarization affects the asthma inflammatory
subtype, with M1 and M2 polarization mainly involved in neutrophilic
and eosinophilic asthma, respectively (Robbe et al., 2015). Depending on
the microenvironment, irisin has a dual effect on macrophage
polarization. In an LPS-induced mouse model of sepsis and in-vitro
cell- and bone marrow-derived macrophages, irisin induces anti-
inflammatory differentiation of M2 macrophages, an effect that has
been shown to be mediated by the induction of the peroxisome
proliferator-activated receptor gamma-related anti-inflammatory
system and the Janus kinase 2-signal transducer and activator of
transcription 6-dependent transcriptional activation of Nrf2-
associated antioxidant genes (Tu et al., 2023). In addition, irisin-
induced M2 polarization enhances osteogenesis in osteoblasts, an
effect that may be related to AMPK activation (Ye et al., 2020).
Moreover, aerobic exercise can effectively activate the FNDC5/irisin
and PI3K/AKT signaling pathways, promote the polarization of
M2 macrophages, and inhibit the inflammatory response of the liver
after myocardial infarction (Wang et al., 2023). In mice, irisin
administration following LPS stimulation leads to inhibition of
M1 polarization and promotion of M2 polarization, thus reducing
LPS-induced production and secretion of IL-1β, IL-18, and TNF-α,
resulting in anti-inflammatory activity and reduced alveolar
inflammatory cell infiltration (Han et al., 2023). However, the role of
irisin in macrophage polarization in asthma inflammatory subtypes
seems to be contradictory, possibly due to different experimental
reagents and cells as well as the presence of multiple signaling
pathways; the exact reason for this is unclear and requires further
investigation.

Irisin and neutrophils in asthma

Neutrophilic asthma, a hormone-resistant asthma, is insensitive
to hormone therapy, and a specific drug for its treatment is still being

investigated. Irisin inhibits neutrophil infiltration and IL-1β
expression at 24 h after cerebral hemorrhage, inhibits
macrophage activation, increases M1 polarization to M2, and is
neuroprotective (Wang et al., 2022b). Neutrophil extracellular traps
(NETs) are a key component in asthma, and plasma NET
biomarkers are reduced in asthmatics compared to healthy
individuals and are negatively correlated with lung function
(Varricchi et al., 2022). In an in-vitro model of neutrophilic
inflammation, irisin reduced NET formation, inhibited
pancreatitis inflammatory cell infiltration, and attenuated injury
via the integrin αVβ5-P38/MAPK pathway (Han et al., 2023).
Meanwhile, airway smooth muscle cells express αVβ5 integrin
and activate transforming growth factor beta in vivo, thus
promoting cellular hypertrophy in asthma models (Tatler et al.,
2011). Nevertheless, the relationship between irisin and neutrophilic
asthma remains to be elucidated.

Irisin and mental health

Irisin also plays an important role in regulating mood. Owing to
physical discomfort, COPD patients often have abnormal moods,
including anxiety and depression (Yohannes et al., 2022; Martínez-
Gestoso et al., 2022). Irisin has a beneficial effect on improving
mood. Serum irisin levels are lower in patients with poor moods, and
an association has been reported to be related to brain-derived
neurotrophic factor (BDNF) (Papp et al., 2017). Moreover, exercise
leads to an increase in serum irisin levels; this effect is observed after
8 weeks of exercise training, and appropriate physical activity may
help to improve COPD (Ijiri et al., 2015). The exercise-associated
increase in irisin levels leads to an improved quality of life and
prognosis in COPD patients (Greulich et al., 2014; Boeselt et al.,
2017). Similar to its role in COPD, the irisin-BDNF signaling
pathway contributes to attenuation of mood disorders, including
anxiety and depression, in asthma patients (Szilasi et al., 2017).

Irisin in IPF

IPF is a type of interstitial lung disease with an unknown etiology
and a poor prognosis (León-Román et al., 2022). There is an
inextricable relationship between irisin and fibrosis. It has a
protective effect in hepatic fibrosis, renal fibrosis, pancreatic
fibrosis, and cardiac fibrosis, and it may be a potential target for
therapy (Ren et al., 2020; Pan et al., 2021; Armandi et al., 2022; Yang
et al., 2023). In a mouse model of carbon tetrachloride-induced
hepatic fibrosis, irisin appears to play a key role and can alleviate
endoplasmic reticulum stress and hepatic fibrosis through inhibition
of protein kinase RNA-like endoplasmic reticulum kinase-mediated
destabilization of heterogeneous nuclear ribonucleoprotein A1 (Liao
et al., 2021). In addition, patients with the presence of the
FNDC5 rs3480 A>G gene variant have a low prevalence of
fibrosis in nonalcoholic fatty liver disease (NAFLD). In hepatic
fibrosis, irisin is expressed at higher levels in both the serum and the
hepatic tissue, and it has a profibrotic effect that is associated with
hepatic stellate cell activation (Petta et al., 2017; Dong et al., 2020). In
nonobese, nondiabetic, nonalcoholic patients with fatty liver disease,
the role of irisin is reversed. The serum irisin levels are more
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pronounced in patients with more severe fibrosis, and correlation
analyses have demonstrated a positive correlation between irisin and
the representative fibrosis markers P type III collagen propeptide
and type VI collagen cleavage product, which may participate in the
pathogenesis of fibrosis (Armandi et al., 2022). In addition, the
administration of nicotinamide ribose to mice with NAFLD has
been shown to increase the plasma FNDC5/irisin levels as well as
FNDC5 deubiquitination and deacetylation via sirtuin 2 for the
treatment of NAFLD (Li et al., 2021). Irisin also reduces renal
fibrosis. In-vivo and in-vitro studies on diabetic nephropathy have
revealed that irisin attenuates epithelial-mesenchymal transition
(EMT) and fibrosis as well as reduces renal injury by inhibiting
the Smad/β-catenin pathway (Yang et al., 2023). Furthermore, irisin
attenuates angiotensin II-induced and doxorubicin-induced cardiac
fibrosis as well as cardiomyocyte hypertrophy (Chen et al., 2019; Pan
et al., 2021). In conclusion, irisin is a promising target for the
treatment of fibrotic diseases; however, its effect on fibrosis
associated with interstitial lung disease remains to be investigated.

Irisin in lung cancer

Lung cancer is one of the cancers with a high mortality and
morbidity. Cell proliferation, invasion, migration, angiogenesis,
EMT, and drug resistance can all contribute to its progression.
EMT can promote lung cancer invasion and metastasis (Tang et al.,
2019; Wang et al., 2022), and it is associated with drug resistance in
lung cancer (Cheng et al., 2020). Irisin expression levels vary in
different types of cancers, and its role appears to be contradictory.
The serum irisin levels were significantly lower in patients with
colon, bladder, liver, and breast cancers than in healthy controls
(Provatopoulou et al., 2015; Pazgan-Simon et al., 2020; Taken et al.,
2022; Celik et al., 2023), whereas they were elevated in patients with
kidney cancer (Altay et al., 2018). There are also differences
regarding its effects. On the one hand, it is harmful to humans,
with increased levels of irisin in liver cancer tissues without changes
in the serum, and promotes cancer development (Shi et al., 2017).
On the other hand, irisin is beneficial to humans and inhibits cell
proliferation, migration, and invasion in ovarian, glioma, and
pancreatic cancer cells (Zhang et al., 2019; Huang et al., 2020;
Alizadeh Zarei et al., 2023). In pancreatic cancer, irisin is
reported to inhibit EMT via the AMPK-mTOR pathway and to
suppress tumor progression (Liu et al., 2018). In addition, irisin is
highly expressed in breast cancer tissues and is associated with a
longer survival and a good prognosis in patients (Cebulski et al.,
2022). Irisin appears to be beneficial in lung cancer by reversing the
activity of EMT through the PI3K/AKT pathway, which may be
useful in controlling the proliferation, invasion, and migration of
lung cancer and controlling cancer progression (Shao et al., 2017b).
Importantly, FNDC5 expression is decreased in paclitaxel-resistant
non-small-cell lung cancer, and exogenous irisin can increase the
sensitivity of lung cancer to paclitaxel, thus contributing to
treatment. This effect is mediated through the NF-κB/multidrug
resistance protein 1 pathway (Fan et al., 2020). Moreover, cachexia, a
muscular dystrophy, is a common manifestation of cancer patients
and is associated with a poor prognosis. Irisin appears to be an
important influencing factor for cachexia, with high levels
contributing to a reduced likelihood of developing sarcopenia in

metastasis-free colorectal cancer (Oflazoglu et al., 2022). In-vivo
experiments demonstrate that irisin ameliorates sarcopenia in aged
mice (Guo et al., 2023b). In summary, irisin is crucial in the
development of cancer. Therefore, exogenous irisin
administration is expected to be a therapeutic agent for targeting
lung cancer.

Irisin in PE/idiopathic pulmonary
hypertension

PE is an obstructive disease of the pulmonary arteries, and
chronic PE can lead to pulmonary hypertension and right
ventricular hypertrophy, a disease with a high morbidity rate.
Irisin expression can be used to evaluate the hemodynamic
changes in idiopathic pulmonary hypertension, and lower serum
irisin levels are associated with higher mean pulmonary arterial
pressures and a poorer prognosis (Sun et al., 2021). The serum irisin
levels are significantly lower in patients with acute PE than in
controls without PE, and they are negatively correlated with the
PE severity index. Irisin detection is useful for the diagnosis of PE;
however, its sensitivity and specificity are poorer than those of
D-dimers (Gurger et al., 2021). Consistently, in a study of patients
with acute PE, the group with a higher serum irisin level had a better
prognosis, was hemodynamically more stable, and had a lower
probability of deterioration (Sun et al., 2020). In summary, irisin
can be used as a biomarker for the diagnosis of PE and has some
significance in predicting the prognosis of patients.

Irisin in OSAHS

Irisin appears to play a crucial role in OSAHS, with irisin
expression negatively correlating with OSAHS severity (Huang
et al., 2020). Excessive daytime sleepiness symptoms are
associated with high serum irisin and BDNF levels (More et al.,
2019). Continuous positive airway pressure (CPAP) is an important
technical tool for the treatment of OSAHS, and studies have shown
that receiving short-term CPAP therapy increases irisin levels
compared to subtherapeutic CPAP (Ng et al., 2017).

Irisin and treatment

Traditional therapeutic drugs

Glucocorticosteroids have anti-inflammatory and
immunomodulatory properties. They are one of the main drugs
used to treat lung diseases. However, they are associated with various
adverse effects, including osteoporosis, muscle atrophy, high blood
pressure, and high blood sugar levels, which need to be prevented. It
has been reported that irisin has an ameliorative effect on
dexamethasone-induced muscle atrophy (Chang and Kong,
2020). Moreover, in hepatocytes, glucocorticoid receptor
enhances the transcription of the FNDC5 gene and the
expression of irisin (Kim et al., 2017). Paradoxically,
dexamethasone downregulates irisin expression (Mohammed
et al., 2019). Meanwhile, N-acetylcysteine is an antioxidant that
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reduces ALI inflammation, asthmatic airway hyperresponsiveness,
and emphysema formation as well as attenuates pulmonary fibrosis
(Zhang et al., 2014; Breau et al., 2019; Lee et al., 2020; Zhao et al.,
2022). It also has an important role in lung diseases and elevates
irisin levels as well as attenuates oxidative stress and tissue damage
in a diabetes model (Yalçın and Gürel, 2021). Furthermore, long-
acting muscarinic receptor antagonists are bronchodilators that are
one of the mainstays in the treatment of asthma and COPD. COPD
treatment with long-acting muscarinic receptor antagonists can
raise the serum irisin levels, and a positive correlation exists
between the two, which can lead to an improved prognosis and
have a beneficial effect on the patient (Mandal et al., 2018).

Irisin and vitamin D

Vitamin D is a potential medication for asthma and COPD, and
it has been associated with asthmatic lung function, airway
hyperresponsiveness, and sensitivity to glucocorticoids, with
lower levels suggesting a worse prognosis (Sutherland et al.,
2010). Vitamin D supplementation reduces asthma airway
hyperresponsiveness and inflammation (Agrawal et al., 2013).
Moreover, it decreases ALI and pulmonary emphysema-
associated inflammation with beneficial effects (Shi et al., 2016;
Hu et al., 2019). In type 2 diabetes, vitamin D supplementation
increases SIRT1 and irisin expression as well as improves IR
(Safarpour et al., 2020). Interestingly, the serum vitamin D and
irisin levels are positively correlated in women with sarcopenia
(Wang et al., 2022d). Vitamin D supplementation also increases
the serum irisin levels in hyperparathyroidism, as demonstrated in
skeletal muscle cells in-vitro, probably acting through the SIRT1 and
PGC-1α pathways (Sanesi et al., 2023). Thus, vitamin D has a
positive effect on irisin, increasing its levels and playing a critical
role in various diseases.

Irisin and other potential therapies

In summary, ferroptosis and autophagy have important
contributions in the pathogenesis of lung diseases, and alleviation
of lung diseases by drugs that modulate ferroptosis-related pathways
and autophagic processes is a potential therapeutic option. The close
association between irisin and iron-dependent death as well as
autophagy and targeting it opens up the opportunity of treating
lung diseases and may serve as a new therapeutic approach worth
developing.

Conclusion

In summary, irisin is closely associated with the diagnosis,
treatment, and prognosis of lung diseases, making it an attractive
target for the treatment of lung diseases. However, the mechanisms
underlying the development and progression of various lung
diseases are highly intricate and involve multiple influencing
factors and signaling pathways. Exogenous administration of
irisin may be a novel strategy for the treatment of lung diseases.
Therefore, an in-depth study regarding the role of irisin in the
development and progression of lung diseases will help to create new
avenues for disease prevention and treatment. Moreover, additional
studies are required to elucidate the mechanism of action of irisin in
various lung diseases and its potential as a therapeutic target.
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Glossary

ALI acute lung injury

AMPK AMP-activated protein kinase

ARDS acute respiratory distress syndrome

BALF bronchoalveolar lavage fluid

BDNF brain-derived neurotrophic factor

Cdc42 cell division control protein 42 homolog

COPD chronic obstructive pulmonary disease

CPAP continuous airway positive pressure

EA eosinophilic asthma

EMT epithelial-mesenchymal transition

FNDC5 fibronectin type III domain-containing protein 5

HO-1 heme oxygenase 1

HSP90 heat shock protein 90

IL interleukin

IPF idiopathic pulmonary fibrosis

IR insulin resistance

LPS lipopolysaccharide

MAPK mitogen-activated protein kinases

MDR1 multidrug resistance protein 1

MLCK myosin light-chain kinase

NA neutrophilic asthma

NAFLD non-alcoholic fatty liver disease

NETs neutrophil extracellular traps

NF-κB nuclear factor kappa B

NRDS neonatal respiratory distress syndrome

Nrf2 nuclear factor E2-related factor 2

NLRP3 NOD-like receptor family pyrin domain containing 3

NSCLC non-small cell lung cancer

NOD2 nucleotide-binding oligomerization domain 2

OSAHS obstructive sleep apnea hypoventilation syndrome

PE pulmonary embolism

PI3K phosphatidylinositol 3-kinase

PM2.5 particulate matter less than 2.5 µm in diameter

ROS reactive oxygen species

Rac1 Ras-related C3 botulinum toxin substrate 1

SIRT1 sirtuin 1

TGF-β transforming growth factor beta

TNF-α tumor necrosis factor alpha
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