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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which
initially surfaced in late 2019, often triggers severe pulmonary complications,
encompassing various disease mechanisms such as intense lung inflammation,
vascular dysfunction, and pulmonary embolism. Currently, however, there’s no
drug addressing all these mechanisms simultaneously. This study explored the
multi-targeting potential of S-nitrosoglutathione (GSNO) and N6022, an inhibitor
of GSNO reductase (GSNOR) on markers of inflammatory, vascular, and
thrombotic diseases related to COVID-19-induced acute lung disease. For this,
acute lung diseasewas induced in C57BL/6mice through intranasal administration
of recombinant SARS-CoV-2 spike protein S1 domain (SP-S1). The mice exhibited
fever, body weight loss, and increased blood levels and lung expression of
proinflammatory cytokines (e.g., TNF-α and IL-6) as well as increased vascular
inflammation mediated by ICAM-1 and VCAM-1 and lung infiltration by immune
cells (e.g., neutrophils, monocytes, and activated cytotoxic and helper T cells).
Further, the mice exhibited increased lung hyperpermeability (lung Evans blue
extravasation) leading to lung edema development as well as elevated blood
coagulation factors (e.g., fibrinogen, thrombin, activated platelets, and von
Willebrand factor) and lung fibrin deposition. Similar to the patients with
COVID-19, male mice showed more severe disease than female mice, along
with higher GSNOR expression in the lungs. Optimization of GSNO by treatment
with exogenous GSNO or inhibition of GSNOR by N6022 (or GSNO knockout)
protects against SP-S1-induced lung diseases in both genders. These findings
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provide evidence for the potential efficacies of GSNO and GSNOR inhibitors in
addressing themulti-mechanistic nature of SARS-CoV-2 SP-associated acute-lung
disease.
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1 Introduction

Since 2019, more than a million Americans have lost their life
due to the coronavirus disease 2019 (COVID-19). COVID-19 is
caused by an infection by the SARS-CoV-2 virus. Most patients have
mild symptoms, but older individuals (aged 65+) and those with
pre-existing comorbidities are more prone to severe complications
and a higher risk of morbidity and mortality. Additionally, there is a
clear sex-specific bias with males showing a more severe response
and higher mortality (Pradhan and Olsson, 2020). The severity and
mortality of COVID-19 patients are largely attributed to
hypercytokinemia (cytokine storm), vascular dysfunction, and
hypercoagulation. However, currently, there are no drugs that
can simultaneously address these pathologic events/mechanisms
during the acute phase of COVID-19 and post-COVID-
19 conditions known as long-haulers. The proposed studies aim
to investigate the multi-targeting potential of S-nitrosoglutathione
(GSNO) and N6022, an inhibitor of GSNO reductase (GSNOR) for
optimizing endogenous GSNO, for targeting SARS-CoV-2 spike
protein-induced inflammatory and vascular lung diseases that
mimic an acute respiratory disease of COVID-19.

At present, the mechanism underlying SARS-CoV-2-induced
acute lung disease is not clear. SARS-CoV-2 is a novel positive-sense
single-stranded RNA virus. Therefore, the viral RNA molecules can
be recognized by toll-like receptor (TLR) 7 and TLR8 as well as
TLR3 when they replicate to double-stranded RNA (Nazmi et al.,
2014; Bortolotti et al., 2021) and thereby induce inflammation via
activating the NF-κB and IRF-4 signaling pathways (Bortolotti et al.,
2021; Manik and Singh, 2022). The SARS-CoV-2 virus infects cells
by interaction of the S1 domain of its spike protein (SP) with
angiotensin-converting enzyme-related carboxypeptidase-2
(ACE2) present on the surface of host cells (Hoffmann et al.,
2020). Recent studies reported that SP binding to ACE2 induces
NF-κB activation leading to the expression of proinflammatory
cytokines (e.g., TNFα, IL-6, and IL-1β) in human lung cells
(Paidi et al., 2021a). SP is also known to induce proinflammatory
responses both in mice (C57BL/6) and humans via activating toll-
like receptor 4 (TLR4), which mediates Gram-negative bacterial
immune responses, or TLR2, which recognizes many bacterial,
fungal, and viral substances (Khan et al., 2021; Zhao et al., 2021).
It is noteworthy that SP-S1 induces acute lung disease in wild-type
mice (C57BL/6) (Paidi et al., 2021a; Paidi et al., 2021b) as well as in
transgenic mice expressing human ACE2 (K18-hACE2 mice)
(Colunga Biancatelli et al., 2021; Perico et al., 2023). Moreover,
recent studies have documented the presence and function of the
SARS-CoV-2 SP in the bloodstream of individuals undergoing post-
acute sequelae of COVID-19 (Theoharides, 2022; Craddock et al.,
2023). These findings underscore the significance of SP in COVID-
19-associated acute and long-term disease.

Studies have reported that pulmonary vasculopathy and
endotheliopathy are closely linked to Acute Respiratory Distress
Syndrome (ARDS) leading to systemic hypoxia in patients with
severe COVID-19 (Bonaventura et al., 2021). Patients with severe
COVID-19 disease are known to have pulmonary vasoconstriction
as well as persistent increases in blood markers of endotheliopathy
(e.g., von Willebrand factor/vWF, angiopoietin-2, detached
endothelial cells, perivascular immune cell infiltrates) and
dysfunctional endothelial barrier (e.g., fibrinogen leakage and
endothelial apoptosis) (Goncharov et al., 2017; Jin et al., 2020;
Ostergaard, 2021; Martinez-Salazar et al., 2022). Endotheliopathy
in COVID-19 disease is caused by multiple mechanisms, including
high levels of blood proinflammatory cytokines, recruitment of
inflammatory cells, and increased platelet activation, as well as
the local increase in angiotensin II (Ang-II) (Kreutz et al., 2020;
Shang et al., 2020; Sturrock et al., 2020; Carubbi et al., 2021; Gao
et al., 2021). Endotheliopathy frequently accompanies
thromboembolism, a severe complication of COVID-19 that is
strongly linked to mortality (Merrill et al., 2020; Thachil et al.,
2020; Avila et al., 2021). Characteristic changes in hypercoagulation
in severe COVID-19 patients include increased fibrinogen and
thrombin levels, Factor VIII activity, and circulating vWF as well
as exhausted fibrinolysis (Mazzeffi et al., 2021; Rana et al., 2021). The
lung is the likely site of macroscopic or microscopic thrombosis in
most cases of severe COVID-19 (Srivastava et al., 2020).

Severe COVID-19 patients are known to exhibit lower blood
levels of endothelial-derived nitric oxide (NO), increased endothelial
oxidative stress and dysfunction, and reduced oxygenation
parameters compared to healthy controls (Montiel et al., 2022),
thus underscoring the importance of NO availability in severe
COVID-19 risk (Nikolaidis et al., 2021). NO is an extra- and
intra-cellular signaling molecule regulating diverse physiological
processes including immune response, inflammatory response,
phagocytic defense mechanism, and cardiovascular homeostasis
(Tuteja et al., 2004). NO mediates its physiological actions via
activation of soluble guanylyl cyclase (sGC)-dependent cGMP
pathway. NO also exerts its physiological actions by reacting with
cellular reductant glutathione (GSH) to form S-nitrosoglutathione
(GSNO) (Gaston et al., 2003). GSNO exerts its biological activity via
post-translational modification of proteins (S-nitrosylation) and is
now recognized to regulate various cellular functions related to
vascular homeostasis as well as anti-thrombotic, anti-inflammatory,
and immunomodulatory processes (Gaston et al., 2003; Kang-
Decker et al., 2007; Lowenstein, 2007; Prasad et al., 2007; Haldar
and Stamler, 2013; Won et al., 2013). GSNO is more stable than free
NO and does not release free NO (Gaston et al., 2003), thus its
vascular effect (hypotension) is known to be milder than other
conventional free NO donors (de Belder et al., 1994; Broniowska and
Hogg, 2012). Cellular GSNO homeostasis is maintained by its
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synthesis by a reaction between NO (synthesized from nNOS, iNOS,
and eNOS) and cellular glutathione (Acevedo et al., 1971), as well as
its catabolism, mediated by GSNO reductase (GSNOR). Recently,
GSNOR has received increasing attention because of its increased
expression/activity under hypoxic and inflammatory conditions and
thus loss of tissue GSNO homeostasis causing inflammation and
compromised airway function (Marozkina et al., 2015). Currently,
several reversible GSNOR selective inhibitors (GSNORi) have been
developed, and among them, N6022 has been tested in Phase I and II
trials for asthma and cystic fibrosis and proven to meet the safety
standard for human use (Colagiovanni et al., 2012).

Aberrant activations of NF-κB, STATs, and IRFs are central
cell signaling pathways to hypercytokinemia causing lung
inflammation and thrombosis (Matsuyama et al., 2020;
Hariharan et al., 2021; Jafarzadeh et al., 2021). Recently,
S-nitrosylation is reported to participate in pro-inflammatory
cell signaling (Fernando et al., 2019). S-nitrosylation of IKKβ
inhibits its activity for IκB phosphorylation and thus NF-κB
nuclear transport (Reynaert et al., 2004). Studies from our
laboratory and others also reported that S-nitrosylation of NF-
κB proteins (p65 and p50) inhibits their interaction with the
target gene promoters (Matthews et al., 1996; Marshall and
Stamler, 2001; Prasad et al., 2007). Moreover, we also reported
that GSNO inhibits IFN-γ-induced STAT1 activation as well as
IL-6-induced STAT3 activation (Nath et al., 2010; Won et al.,
2013; Kim et al., 2014), and accordingly, GSNO inhibits
proinflammatory gene expression (e.g., TNF-α and iNOS)
(Khan et al., 2005; Samuvel et al., 2016) as well as immune
cell proliferation and tissue infiltration (Kim et al., 2014). We
further reported that GSNO/GSNORi modulates the immune
balance between effector vs regulatory T helper cells (Treg >
TH17/TH1) and effector vs regulatory functions of B cells by
regulating their cytokine expression (IL-10 > IL-6) (Prasad et al.,
2007; Nath et al., 2010; Won et al., 2013; Kim et al., 2014; Saxena
et al., 2018; Kim et al., 2021b). GSNOR is known to be a key
regulator of GSNO in lungs (Que et al., 2009) and GSNORi
(N6022) is reported to inhibit NF-κB-mediated pro-
inflammatory responses in the lung under inflammatory
conditions (Blonder et al., 2014). Therefore, the therapeutic
potential of GSNO/GSNORi against SARS-CoV-2-induced
lung inflammation is expected to be high.

The anti-platelet efficacy of GSNO has been tested in humans
and animals and is reported to reduce the rate of embolization
(Molloy et al., 1998; Kaposzta et al., 2001; Kaposzta et al., 2002) at
doses that did not cause adverse effects (e.g., hypotension) (de
Belder et al., 1994). Mechanistically, GSNO is reported to inhibit
platelet activation by inhibiting thrombin-induced cell signaling
pathways (Aburima et al., 2017). Our laboratory also reported
that GSNO inhibits thrombin-induced endothelial barrier
disintegration via inhibiting thrombin-induced intracellular
calcium influx and RhoA activation, and subsequent F-actin
stress fiber formation (Choi et al., 2019). We also reported
that GSNO inhibits matrix metalloprotease (MMP)-mediated
degradation of tight-junction proteins and accordingly
protects the blood-brain barrier and reduces edema formation
in the brain of experimental stroke in rodents (Khan et al., 2012).
Moreover, we also reported that GSNO inhibits pro-
inflammatory cytokine-induced expression of endothelial cell

adhesion molecules (e.g., ICAM-1 and VCAM-1) and thus
reduced vascular inflammation and the leukocyte infiltration
into the CNS under pathological conditions (Prasad et al.,
2007; Won et al., 2013).

Taken together, these studies document the potential of GSNO-
mediated mechanisms in SARS-CoV-2-induced inflammation and
vascular/endothelial dysfunction. Based on these studies, we
evaluated the potential efficacies of GSNO and GSNOR inhibitor
(N6022) against SARS-CoV-2 SP-induced acute lung disease
in mice.

2 Materials and methods

2.1 Animal, treatment, and sampling

C57BL/6 J mice were purchased from Jackson Laboratory
(Bar Harbor, ME, United States; cat. No. 000664). The
GSNOR knockout (GSNOR−/−) mice were gifted by Dr. Shyam
Biswal of Johns Hopkins University. Mice were supplied with
food and water ad libitum and kept in ventilated cages in a
specific pathogen-free animal care facility maintained by the
Medical University of South Carolina throughout the entire
study. Animals were housed at a controlled temperature
(22°C), humidity (45%–55%), and 12 h light/dark cycle. All
animal studies were reviewed and approved by the Medical
University of South Carolina’s Institutional Animal Care and
Use Committee (IACUC). Eight to nine-week-old male and
female C57BL/6 J mice, as well as male GSNOR−/− mice (Casin
et al., 2018), were subjected to daily intranasal administration of
recombinant extracellular fragment (16–685) of SARS-CoV-2
(2019 nCoV: Accession# 6VSB_A) spike protein S1 subunit
(SP-S1) (Mybiosource, San Diego, CA, United States, cat. no.
MBS553722) for 10 days. For intranasal treatment, SP-S1 was
dissolved in sterilized phosphate-buffered saline (PBS) to achieve
a concentration of 100ng/1 μL. Each mouse was given 1 μL
(100 ng) in each nostril using a micropipette, totaling 200 ng
delivered through both nostrils. Throughout the treatment
period, the body temperature and body weight of each mouse
were measured daily. Starting from the fifth day of treatment, the
administration of SP-S1 was combined with daily treatment of
GSNO (1 mg/kg/ip/day; WPI, Sarasota, FL, United States) or
N6022 (1 mg/kg/ip/day; Cayman, Ann Arbor, MI, United States).
On the 10th day of SP-S1 treatment, the mice were sacrificed for
the collection of blood and lung tissues.

2.2 Enzyme-linked immunoassay (ELISA)

The concentration of cytokines in the serum was measured by
ELISA using the kits for TNF-α (Mybiosource, cat. #: MBS2500421),
and IL-6 (Mybiosource, cat. #: MBS2023471). Next, the
concentration of blood coagulation factors in the serum was
measured by ELISA using the kit for fibrinogen (Abcam,
Cambridge, MA, United States, cat. #: ab213478), thrombin
(Abcam, cat. #: ab234620), TAT (thrombin anti-thrombin,
Abcam, cat. #: ab137994) and vWF (von Willebrand factor,
Abcam, cat. #: ab208980).
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2.3 Quantitative real-time polymerase chain
reaction (qPCR)

RNA was extracted from lung tissues using RNeasy protect mini
kit (Qiagen, Germantown, MD, United States) based on the
manufacturer’s instructions. Total RNA concentration was
determined by absorbance at 260 nm using a Nanodrop
spectrophotometer (ThermoFisher Scientific, Waltham, MA,
United States). cDNA synthesis was performed using iScript
cDNA synthesis kit (Bio-Rad, Hercules, CA, United States). For
qPCR, the resulting cDNA was mixed with iQ™ SYBR Green
Supermix (Bio-Rad) and primer set for TNF-α (Origene,
Rockville, MD, United States, cat. #: MP217748), IL-6 (Origene,
cat. #: MP206798), IL-10 (Qiagen, cat. #: PPM03017C-200), IFN-γ
(Origene, cat. #: MP206683), IL-17 (Origene, cat. #: MP206759), IL-
1β (Origene, cat. #: MP206724), or GAPDH (Qiagen, cat. #:
PPM02946E-200). The mixture was transferred into a thermal
cycler (BIO-RAD CFX96) for PCR amplification.

2.4 Immunofluorescence staining

The mice were sacrificed under deep anesthesia and perfused
transcardially with phosphate-buffered saline (PBS) and then 4%
paraformaldehyde in PBS (pH 7.4). For immunohistochemistry,
only the left lung, comprising a single lobe, was utilized. The isolated
left lungs were soaked in 4% paraformaldehyde in PBS for 48 h and
then in a cryoprotective solution (30% sucrose). The resulting fixed
lung tissues were embedded in Scigen Tissue-Plus™ O.C.T.
Compound (Thermo Fisher Scientific, Waltham, MA,
United States) and then frozen at −80°C. Cryosections (14 μm
thick) obtained from the lung were used for immunostaining for
GSNOR (Thermo Fisher Scientific, cat. #: 11051-1-AP), CD31
(Thermo Fisher Scientific, cat. #. 14045285), ICAM-1 (Thermo
Fisher Scientific, cat. #: MA5407), VCAM-1 (Thermo Fisher
Scientific, cat. #: MA5-11447), CD11b (Thermo Fisher Scientific,
cat. #: PA5-79532), Ly-6G (Cell Signaling, Danvers, MA,
United States, cat. #: 31469s), fibrin (GeneTex, cat. #: GTX19079)
and fibrinogen (Abcam, cat. #: ab92572). All digital images were
taken using a BX-60 microscope equipped with a DP70 digital
camera unit (Olympus, Tokyo, Japan).

2.5 Isolation of lung and blood cells for
fluorescence flow cytometry

Mice were anesthetized and transcardially perfused with PBS
to remove blood cells. Finely minced lung tissues were incubated
with 2 mL digestion buffer containing 1 mg/mL collagenase D
(Roche, Mannheim, Germany; cat. #: 11,088,866,001) and 50 μg/
mL DNAse I (Roche cat. #: 10,104,159,001) in RPMI
1640 medium (Thermo Fisher Scientific cat. #: 61,870,036) at
37°C. The digested tissues were gently mashed onto a 70-μm
nylon mesh strainer and then cells were collected by
centrifugation (400 x g). The cell pellet was processed using a
percoll density gradient centrifugation (Millipore Sigma, cat. #:
GE17-0891–02). After centrifugation, the leukocyte-containing
layer was carefully collected and subsequently washed with HBSS

(Sigma-Aldrich, St. Louis, MO, United States; cat. #: H9269).
Then, the resulting cells were cultured in the complete RPMI
1640 media (10% fetal bovine serum, 4 mM L-Glutamine, 200 μg/
mL penicillin) containing 50 ng/mL phorbol-12-myristate-13-
acetate (PMA), 500 ng/mL ionomycin, BD GolgiPlug™
(brefeldin A; 1 μL per 1 mL media; BD bioscience, San Jose,
CA, cat. #: 555,029), and BD GolgiStop™ (monensin; 0.7 μL
per 1 mL media; BD bioscience, cat. #: 554,724) for 5 h. The
resulting cells were fixed and permeabilized by Fixation/
Permeabilization Kit (BD), and stained using specific
antibodies, such as anti-CD4-FITC (Biolegend, cat. #:
100,510), anti-CD8-BV-421 (Thermo Fisher Scientific, cat. #:
404–0081-82), anti-IFN-γ-PE (BD bioscience, cat. #. 554,412),
anti-TNF-α-PE-Cy7 (Biolegend, cat. #: 506,324), anti-CD11c-BV
605 (Biolegend, cat. #: 117,333), anti-CD45-BV-650 (BD
bioscience, cat. #: 103,151), anti-IL-17A-APC-Cy7 (BD
bioscience, cat. #: 560,821), and anti-Ly-6G -PerCP-Cy5.5
(Biolegend, cat. #: 127,616). The cells were then washed twice
then subjected to flow cytometry using BD LSRFortessa™ Flow
Cytometer (BD Bioscience). All flow cytometric data were
analyzed using FlowJo software (Treestar, Ashland, OR,
United States). For the isolation of blood cells, the blood
samples drawn from the mice were subjected to Ficoll density
gradient centrifugation (Millipore Sigma, cat. #: F5415).
Following the centrifugation, the buffy coat layer including
mononuclear cells, platelets, and polymorphic cells was
washed with HBSS. Then, the resulting cells were stained for
fluorescence flow cytometry using specific antibodies, such as
anti-CD31-APC-Cy7 (Biolegend, cat. #: 102,534) for circulating
endothelial cells and anti-CD62P-APC (Thermo Fisher
Scientific, cat. #: 17–0626-82) for activated platelets.

2.6 Evaluation of lung endothelial disruption
by evans blue extravasation

Lung endothelial barrier leakage was evaluated using a
previously described method (Choi et al., 2019) In brief, the mice
were injected intravenously with a 5% solution of Evans Blue (EB) in
saline at a dose of 8 mg/kg. The following day, circulating EB in the
blood was removed by cardiac perfusion with PBS under deep
anesthesia. The lung was then extracted, photographed, and
sliced. The lung tissue was homogenized in N,
N-dimethylformamide (DMF), followed by centrifugation at
10,000 × g for 25 min. The supernatant was analyzed
fluorimetrically to measure the content of EB (excitation
wavelength: 620 nm, emission wavelength: 680 nm).

2.7 Statistical analysis

Statistical analysis and data graphs were performed using
GraphPad Prism v8.0 (GraphPad Software, San Diego, CA). One-
way ANOVA with Tukey’s multiple comparisons test was used for
comparing multiple groups. The bar graph shows the mean ±
standard error mean, while the scatter dot plot represents
individual data points. For group-level analyses of daily
variations in body temperature and body weight, a two-way
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ANOVA with repeated measures was used. A probability
value <0.05 indicates statistical significance.

3 Results

3.1 Intranasal delivery of SARS-CoV-2 spike
protein S1 domain (SP-S1) induces GSNOR
expression in the lung of C57BL/6 mice

Increased GSNOR expression resulting in loss of GSNO
homeostasis was reported to cause airway dysfunction in asthma
and cystic fibrosis (Marozkina et al., 2015). Therefore, we

investigated whether SARS-CoV-2 spike protein induces GSNOR
expression in the lungs. Previous studies reported that intranasal
delivery of recombinant S1 domain of SARS-CoV-2 spike protein
(SP-S1) induces acute lung disease in C57BL/6 mice (Paidi et al.,
2021a; Paidi et al., 2021b). We used this model to evaluate the status
of GSNOR in the lung in both male and female mice. To assess lung
GSNOR expression, male and female C57BL/6 mice were subjected
to daily intranasal administration of recombinant SARS-CoV-2 SP-
S1 for 10 days. Immunostaining (Figure 1A) and Western analysis
(Figure 1B) for GSNOR show that male and female mice had no
significant difference in the lung GSNOR protein levels under
normal conditions. However, intranasal SP-S1 delivery for
10 days increased the GSNOR levels in both female and male

FIGURE 1
Effects of intranasal SARS-CoV-2 spike protein (S1 domain) delivery on the expression of lung GSNOR in mice. C57BL/6 mice (8–9 weeks old) of
both genders were treated with recombinant S1 domain of SARS-CoV-2 spike protein intranasally (100ng/1 μL saline/each nostril) once daily for 10 days.
Then, GSNOR expression in the lung was analyzed by immunofluorescence (A) andWestern analysis (B). Western analysis for β-actin was used for internal
loading standard. The bar graph represents the mean ± standard error mean and the scatter dot plot represents an individual data point. ***p ≤
0.001 vs control mice (each gender) and +++ p ≤ 0.001 vs as indicated. N.S.: not significant.
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mice, but with greater expression in male mice, suggesting that male
mice are likely to have greater dysfunction in lung GSNO
homeostasis than female mice in response to intranasal SP-S1
delivery.

3.2 Efficacy of GSNO/N6022 against SARS-
CoV-2 SP-S1-induced fever and body
weight loss

We next evaluated the efficacy of exogenous GSNO or
GSNOR inhibitor (N6022), which optimizes endogenous
GSNO, on fever and body weight loss in mice treated with
intranasal SP-S1. For this, male and female C57BL/6 J mice
were subjected to daily intranasal administration of SARS-
CoV-2 SP-S1 for 10 days as described above. COVID-19 has
shown sex-specific bias with severe disease and higher mortality
among males (Pradhan and Olsson, 2020). Accordingly, we also
observed that male mice had a higher fever and greater body
weight loss than female mice (Figure 2Ai and Figure 2Bi).
Starting from the fifth day of daily SP-S1 administration, the
mice were simultaneously treated with GSNO (1 mg/kg/ip/day)
or N6022 (1 mg/kg/ip/day) alongside the SP-S1 administration
on a daily basis. Both GSNO and N6022 treatments decreased the
SP-S1-induced increase in body temperature in males and
females (Figures 2Aii, iii). Further, GSNO and
N6022 treatments also restored body weight loss significantly
in both genders (Figures 2Bii, iii).

3.3 Efficacy of GSNO/N6022 against SARS-
CoV-2 SP-S1-induced hypercytokinemia
(cytokine storm) and lung inflammation

TNFα and IL-6 are reported to play key roles in cytokine
storms and are likely to be responsible for the escalation in
disease severity of COVID-19 (Liu et al., 2016; Buonaguro
et al., 2020; Coomes and Haghbayan, 2020). Therefore, we
next measured the blood levels of TNFα and IL-6 on day
10 of intranasal SP-S1 delivery. Figure 3A shows that
intranasal SP-S1 delivery increased the blood levels of TNFα
and IL-6 in both genders, but more in males, and GSNO/
N6022 treatment decreased these increases significantly in
both genders (Figures 3Ai, ii). Similarly, intranasal SP-S1
delivery also increased TNF-α, IL-6, IFN-γ, and IL-1β mRNA
levels in the lung tissue of both genders and GSNO/
N6022 treatments decreased these increases (Figure 3B).
Notably, male mice had higher levels of TNF-α, IL-6, and IL-
1β mRNA in the lung tissue than female mice but we did not
observe any significant differences in IFN-γ mRNA levels
between males and females (Figure 3B).

Infiltration and hyperactivation of neutrophils and
macrophages are known to be critical for lung inflammation
and the development of severe ARDS following the SARS-CoV-
2 infection (Hazeldine and Lord, 2021; Knoll et al., 2021).
Therefore, we investigated the number of CD11c+ Ly6G− cells
including alveolar macrophages, and CD11c− Ly6G+ cells
including lung neutrophils (Misharin et al., 2013). Figure 4Ai

FIGURE 2
Efficacies of GSNOandN6022 on SARS-CoV-2 spike protein (S1 domain)-induced fever (A) and bodyweight loss (B). Male and female C57BL/6mice
were administered the S1 domain of SARS-CoV-2 spike protein (S1) intranasally on a daily basis for 10 days. (Ai, Bi) show differences in body temperature
change and body weight between gender. Starting from the fifth day of daily S1 treatment, the mice were additionally treated with GSNO or N6022
(1 mg/kg/ip/day each). Then, the efficacy of GSNOor N6022 on S1-induced increase in body temperature and decrease in body weight inmalemice
(Aii, Bii) and femalemice (Aiii, Biii)weremeasured. The line graph represents themean ± standard error mean. *p < 0.05; **p ≤ 0.01, ***p ≤ 0.001, control
vs S1; + p ≤ 0.05, ++ p ≤ 0.01, +++ p ≤ 0.001, as indicated. Please refer to Supplementary Data S1 for an extensive statistical comparison between genders
within each treated group.
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and Figure 4Bi show that intranasal SP delivery increased the
lung infiltration of neutrophils and macrophages in both genders
but males had a greater infiltration than females. In both genders,
both GSNO and N6022 treatments decreased the lung infiltration
of neutrophils and macrophages (Figure 4Ai and Figure 4Bi).
Activated neutrophils and alveolar macrophages are known to
release TNF-α in response to acute lung injury (Bhatia et al.,
2012). We also observed that intranasal SP-S1 delivery increased
the number of TNF-α+ neutrophils and macrophages in the lungs
of male and female mice but with greater numbers in male mice.
GSNO/N6022 treatments decreased the TNF-α+ neutrophils and
macrophages in both genders (Figure 4Aii and Figure Bii).

T cells play an important role in antiviral defenses but their over-
expression of proinflammatory cytokines is reported to cause
adverse outcomes including pulmonary edema and cardiac injury
leading to death (Mehra and Ruschitzka, 2020; Xu et al., 2020).
Figure 5Ai and Figure 5Bi show that male mice have greater

numbers of lung-resident CD8+ (cytotoxic) and CD4+ (helper)
T cells than female mice under normal conditions. Intranasal SP-
S1 delivery slightly decreased the numbers of lung CD8+ and CD4+

cells in females but more in males (Figure 5Ai and Figure 5Bi).
Intranasal SP-S1 delivery, however, greatly increased the number of
activated CD8+ T cells (TNFα+ IFNγ+ cytotoxic T cell type 1; Tc1;
Figure 5Aii) as well as activated effector CD4+ T cells (IFNγ+
TH1 and IL-17a+ TH17; Figures 5Bii, iii) in males but not in
females. It is of interest to note that female mice had a very low
number of TH17 cells in the lungs as compared to male mice under
SP-S1-treated conditions. SP-S1-increased numbers of activated
Tc1 and TH1/TH17 cells were significantly decreased by
treatment with GSNO/N6022 (Figure 5Aii, Figures 5Bii, iii).
These data document that intranasal SP-S1 delivery-induced lung
inflammation and immune responses are greater in males than
females and that GSNO/N6022 treatment ameliorates these
immune/inflammatory responses in both genders.

FIGURE 3
Efficacies of GSNO and N6022 on SARS-CoV-2 spike protein (S1 domain)-induced blood cytokine levels in mice. Male and female C57BL/6 mice
were administered the S1 domain of SARS-CoV-2 spike protein (S1) intranasally on a daily basis for 10 days. Starting from the fifth day of daily S1 treatment,
the mice were treated with GSNO or N6022 (1 mg/kg/ip/day each). On the 10th day, the mice were euthanized, and the gender-specific differences as
well as the efficacy of GSNO or N6022 on blood levels of TNFα (Ai) and IL-6 (Aii)were analyzed using ELISA. In addition, lung expression of TNFα (Bi),
IL-6 (Bii), IFN-γ (Biii), and IL-1β (Biv) mRNA was analyzed by quantitative real-time PCR. GAPDH was used for internal control. The bar graph represents
the mean ± standard error mean and the scatter dot plot represents an individual data point. *p < 0.05; **p ≤ 0.01, ***p ≤ 0.001 vs control mice and+p <
0.05; ++ p ≤ 0.01, +++ p ≤ 0.001 vs as indicated.N.S.: not significant. Please refer to Supplementary Data S1 for an extensive statistical comparison between
genders within each treated group.
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3.4 Efficacy of GSNO/N6022 against SARS-
CoV-2 SP-S1-induced lung vascular
pathology

Endothelial/epithelial hyperpermeability leading to
pulmonary edema formation is recognized as a key pathology
of severe COVID-19 (Jin et al., 2020; Zhu et al., 2020; Biering
et al., 2021; Bonaventura et al., 2021). To investigate the effect of
GSNO and N6022 on intranasal SP-S1 delivery-induced lung
endothelial barrier disruption, the mice received Evans blue dye
solution intravenously and its extravasation into the lung tissue
and the development of lung edema were analyzed. We observed
that intranasal SP-S1 delivery increased the extravasation of
Evans blue dye from the blood into the lungs (Figure 6A) and
induced the development of lung edema (Figure 6B) in
both genders but to a greater degree in males and these
increases were significantly reduced by GSNO/N6022 therapy
(Figures 6A, B).

Patients with severe COVID-19 are known to have increased
vascular inflammation characterized by increased expression of
lung endothelial ICAM-1 and VCAM-1, which facilitate the
infiltration of inflammatory cells into the lung tissue
(Birnhuber et al., 2021). Accordingly, we observed that
intranasal delivery of mice with SP-S1 resulted in increased
expression of ICAM-1 and VCAM-1 in both genders but to a
greater degree in males (Figure 6C). We further observed that
both GSNO and N6022 treatments decreased the SP-S1-induced
increase in ICAM-1 and VCAM-1 expression in the lungs of both
genders (Figure 6C).

3.5 Efficacy of GSNO/N6022 against SARS-
CoV-2 SP-S1-induced thrombotic pathways

Pulmonary thrombosis and thromboembolism are themost serious
complications among COVID-19 patients (Merrill et al., 2020;
Srivastava et al., 2020; Thachil et al., 2020; Avila et al., 2021). The
predilection for thrombosis in COVID-19 is driven by at least two
distinct, but interrelated, processes: a hypercoagulable state responsible
for large-vessel thrombosis and thromboembolism and direct vascular
and endothelial injury responsible for in situmicrovascular thrombosis
(Poor, 2021). Hypercoagulation among COVID-19 patients involves
increased blood levels of fibrinogen, thrombin, thrombin-anti-
thrombin complex, activated platelets, von Willebrand factor (vWF),
and circulating endothelial cells (Kichloo et al., 2020; Mazzeffi et al.,
2021). Similarly, we observed that mice that received intranasal SP-S1
delivery had increased blood levels of fibrinogen (Figure 7Ai), thrombin
(Figure 7Aii), thrombin-antithrombin complex (TAT; Figure 7Aiii),
activated platelets (Figure 7Aiv), vWF (Figure 7Av), and circulating
endothelial cells detached from endothelium (Figure 7Avi). Notably, we
observed male mice had significantly higher blood levels of fibrinogen,
TAT, and circulating endothelial cells than female mice in response to
the intranasal SP-S1 delivery. In both genders, both GSNO and
N6022 treatments decreased the blood levels of those coagulation
factors.

Alveolar fibrin deposition is characteristic of diverse forms of
acute lung injury (Idell, 2003). Therefore, we next investigated the
effect of GSNO and N6022 treatment on the deposition of fibrin in
the lung of SP-S1-treated mice. Immunofluorescence staining for
fibrin and endothelial cells (CD31) shows that intranasal SP-S1

FIGURE 4
Efficacies of GSNO and N6022 on SARS-CoV-2 spike protein (S1 domain)-induced lung infiltration of neutrophils and macrophages. Male and
female C57BL/6 mice were administered the S1 domain of SARS-CoV-2 spike protein (S1) intranasally on a daily basis for 10 days. Starting from the fifth
day of daily S1 treatment, themice were treatedwith GSNOor N6022 (1 mg/kg/ip/day each). On the 10th day, themicewere euthanized, and the gender-
specific differences as well as the efficacy of GSNO or N6022 on lung infiltration of total (Ai, Bi) and TNFα+ (Aii, Bii) neutrophils (CD11cˉ Ly6G+) (A)
and macrophages (CD11c+ Ly6Gˉ) (B) was analyzed by fluorescence flow cytometry. The bar graph represents the mean ± standard error mean and the
scatter dot plot represents an individual data point. *p < 0.05; **p ≤ 0.01, ***p ≤ 0.001 vs control mice and+p < 0.05; ++ p ≤ 0.01, +++ p ≤ 0.001 vs as
indicated.N.S.: not significant. Please refer to Supplementary Data S1 for an extensive statistical comparison between genders within each treated group.

Frontiers in Pharmacology frontiersin.org08

Kim et al. 10.3389/fphar.2023.1304697

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1304697


delivery induces endothelial deposition of fibrin in the lungs
(Figure 7Bi). The SP-S1-induced fibrin deposition in the lungs
was greater in male mice than female mice and both GSNO and
N6022 treatment decreased the fibrin deposition in SP-S1-treated
mice (Figure 7Bii).

3.6 Effects of GSNOR knockout on intranasal
SARS-CoV-2 SP-S1-induced lung disease

Next, we investigated the role of GSNOR in SP-S1-induced lung
disease using WT (C57BL/6) and GSNOR knockout (KO) mice. We
observed that SP-S1-treated GSNOR−/− mice had significantly lower
levels of blood TNFα (Figure 8Ai) and lung infiltration of
neutrophils (Ly6G+) and macrophages (CD11c+) (Figures 8Aii,
iii) compared to SP-S1-treated WT mice. In addition, GSNOR−/−

mice as compared to WT mice showed much lower levels of Evans
blue extravasation into the lungs (Figure 8Bi) and lung edema
development (Figure 8Bii), lung vascular expression of ICAM-1
and VCAM-1 (Figures 8Ci, ii), blood pro-coagulation factors (vWF
and fibrinogen; Figures 8Di, ii), and lung fibrin deposition (Figures
8Ei, ii) in response to intranasal SP-S1 delivery. Collectively, these
findings provide compelling evidence for the pathological
involvement of GSNOR in SARS-CoV-2 SP-S1-induced acute
lung disease in mice.

4 Discussion

In this study, we evaluated the efficacies of GSNO and N6022, an
inhibitor of GSNOR that optimizes cellular GSNO homeostasis, to
alleve SARS-CoV-2 SP-S1-induced acute lung disease in mice.
Similar to patients with COVID-19, the mice treated with
intranasal SP-S1 showed increased body temperature and body
weight loss (Figure 2), increased blood levels and lung mRNA
levels of proinflammatory cytokines (Figure 3), lung infiltration
by neutrophils, monocytes, and activated cytotoxic and helper
T cells (Figures 4, 5) as well as lung vascular hyperpermeability
and edema development (Figure 6), and elevation in blood
thrombotic factors and lung fibrin deposition (Figure 7). As
observed in patients with COVID-19 (Pradhan and Olsson,
2020), SP-S1-induced acute lung disease in mice was more severe
in males than in females.

Notably, intranasal SP-S1 delivery also increased the expression
of GSNO catabolic enzyme (GSNOR) in the lungs with male mice
displaying higher levels than female mice (Figure 1). In addition, the
administration of exogenous GSNO, or N6022, for optimizing
endogenous GSNO levels confers protection against SP-S1-
induced acute lung disease in both male and female mice.
Furthermore, GSNOR knockout mice as compared to wild-type
mice exhibited reduced inflammatory markers (such as lowered
blood levels of TNFα and decreased numbers of infiltrated
macrophages and neutrophils in the lungs) in response to
intranasal SP-S1 treatment (Figure 8A). GSNOR knockout mice
also displayed significantly lower lung vascular pathologies
compared to wild-type mice. This was evidenced by decreased
lung hyperpermeability (Evans blue extravasation), reduced
edema (wet/dry weights ratio), and reduced expression of
inflammatory cell adhesion molecules (ICAM-1 and VCAM-1) in
mice with SP-S1 treatment (Figures 8B, C). Additionally, GSNOR
knockout mice compared to wild-typemice had lower levels of blood
coagulation factors (e.g., vWF and fibrinogen) and lung fibrin
deposition in response to SP-S1 treatment (Figures 8D, E).

These studies provide compelling evidence that optimizing
GSNO through exogenous GSNO treatment or inhibition of

FIGURE 5
Efficacies of GSNO and N6022 on SARS-CoV-2 SP (S1 domain)-
induced lung infiltration of T cells. Male and female C57BL/6 mice
were administered the S1 domain of SARS-CoV-2 spike protein (S1)
intranasally on a daily basis for 10 days. Starting from the fifth day
of daily S1 treatment, the mice were treated with GSNO or N6022
(1 mg/kg/ip/day each). On the 10th day, the mice were euthanized,
and the gender-specific differences as well as the efficacy of GSNO or
N6022 on lung infiltration of total (Ai) and TNFα+ IFNγ+ (Aii) cytotoxic
T cells (CD3+ CD8+) was analyzed by fluorescence flow cytometry. In
addition, lung infiltration of total (Bi), IFNγ+ TH1 (Bii), IL-17a+ TH17 (Biii)
helper T cells (CD3+ CD4+) were also analyzed. The bar graph
represents the mean ± standard error mean and the scatter dot plot
represents an individual data point. *p < 0.05; **p ≤ 0.01, ***p ≤
0.001 vs control mice and+p < 0.05; ++ p ≤ 0.01, +++ p ≤ 0.001 vs as
indicated. N.S.: not significant. Please refer to Supplementary Data S1
for an extensive statistical comparison between genders within each
treated group.

Frontiers in Pharmacology frontiersin.org09

Kim et al. 10.3389/fphar.2023.1304697

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1304697


GSNOR activity offers protection against SP-S1-induced multi-
mechanistic diseases associated with COVID-19, including
cytokine storm, hypercoagulopathy, pulmonary embolism, and
inflammatory and vascular lung diseases. These findings strongly
suggest that GSNOR inhibitor N6022 holds promise as a multi-
targeting drug for addressing COVID-19-associated acute lung
disease.

While SARS-CoV-2 is reported as not readily infecting
conventional laboratory strains of mice due to its low affinity to
mouse ACE2 (Lucas et al., 2020), mouse ACE2 does interact with
SARS-CoV-2 SP but with less potency than observed with human
ACE2 (Ni et al., 2023). Furthermore, SARS-CoV-2 SP-pseudo-typed
lentivirus was reported to infect type II alveolar cells in C57BL/
6 mice and induce lung inflammation in a receptor binding domain
(RBD) dependent manner (Cao et al., 2021). In addition, intranasal
treatment of C57BL/6 mice with SARS-CoV-2 SP-S1, identical to

SP-S1 used in this study, was also reported to induce acute lung
disease in C57BL/6 mice and this effect was inhibited by a specific
peptide that inhibits the interaction between SP-S1 and ACE2 (Paidi
et al., 2021a; Paidi et al., 2021b; Paidi and Pahan, 2022). SARS-CoV-
2 SP-S1 is reported to induce proinflammatory cell signaling via
interacting with ACE2 as well as other receptors, such as TLR4 and
TLR2 (Khan et al., 2021; Zhao et al., 2021). Although the mechanism
underlying SARS-CoV-2 SP-S1-induced acute lung disease is not
fully understood, the previously reported studies (Paidi et al., 2021a;
Paidi et al., 2021b; Cao et al., 2021; Paidi and Pahan, 2022) and our
observations of SP-S1-induced inflammatory and vascular lung
pathologies in C57BL/6 mice suggest that this model is useful for
understanding of SARS-CoV-2 SP-induced acute lung pathologies.

Glucocorticoids, as broad-spectrum anti-inflammatory agents,
primarily exert their function via glucocorticoid receptor-alpha
(GRα), mediated by nuclear factor-kB (NF-kB), along with other

FIGURE 6
Efficacies of GSNO and N6022 on SARS-CoV-2 SP (S1 domain)-induced lung vascular pathology. Male and female C57BL/6mice were administered
the S1 domain of SARS-CoV-2 spike protein (S1) intranasally on a daily basis for 10 days. Starting from the fifth day of daily S1 treatment, the mice were
treated with GSNO or N6022 (1 mg/kg/ip/day each). On the 10th day, the mice were euthanized, and the gender-specific differences as well as the
efficacy of GSNO or N6022 on lung vascular hyperpermeability were investigated by Evans blue dye extravasation assay; (Ai) shows representative
lung photos of male and femalemice and (Aii) shows quantitative data. In addition, lung edema development (water content) was analyzed by comparing
wet vs dry lungweights (B). Lung endothelial (CD31) expressions of ICAM-1 and VCAM-1were analyzed by immunofluorescence staining of lung sections;
(Ci) shows representative photos of ICAM-1 and VCAM-1 in male mice and (Cii, iii) shows quantitative data (pixel counts). The bar graph represents the
mean ± standard error mean and the scatter dot plot represents an individual data point. *p < 0.05; **p ≤ 0.01, ***p ≤ 0.001 vs control mice and+p < 0.05;
++ p ≤ 0.01, +++ p ≤ 0.001 vs as indicated. N.S.: not significant. Please refer to Supplementary Data S1 for an extensive statistical comparison between
genders within each treated group.
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genomic and non-genomic pathways that ultimately lead to a reduced
proinflammatory cytokine expression (Rhen and Cidlowski, 2005).
During the pandemic, systemic glucocorticoids were widely used for
COVID-19-associated ARDSmanagement as a protective agent against
the cytokine storm (Marmor and Jonas, 2020; Salton et al., 2022).
However, the therapeutic use of glucocorticoids is associated with many
well-known adverse events thus limiting their use. Recently,
S-nitrosylation has been recognized to mediate anti-inflammatory
cell signaling. S-nitrosylation of IKKβ is reported to inhibit its
activity for IκB phosphorylation and thus NF-κB nuclear transport
(Reynaert et al., 2004). Studies from our laboratory and others also
reported that S-nitrosylation of NF-κB proteins (p65 and p50) inhibits
their interaction with the target gene promoters (Matthews et al., 1996;
Marshall and Stamler, 2001; Prasad et al., 2007). Moreover, we also

reported that GSNO inhibits IFN-γ-induced STAT1 activation as well
as IL-6-induced STAT3 activation (Nath et al., 2010; Won et al., 2013;
Kim et al., 2014), and accordingly, GSNO inhibits proinflammatory
gene expression (e.g., TNF-α and iNOS) (Khan et al., 2005; Samuvel
et al., 2016) as well as immune cell proliferation (Kim et al., 2014).
GSNOR is known to be a key regulator of GSNO in lungs (Que et al.,
2009) and GSNOR inhibitor (N6022) is reported to inhibit NF-κB-
mediated pro-inflammatory responses in the lung under inflammatory
conditions (Blonder et al., 2014). Similar to these observations, we also
observed that the administration of SP-S1-treated mice with GSNO or
N6022 decreased the blood levels and lung expression of
proinflammatory cytokines (Figure 3). Additionally, GSNO and
N6022 treatment also decreased the lung vascular expression of
ICAM-1 and VCAM-1 (Figure 6C) and reduced lung infiltration by

FIGURE 7
Efficacies of GSNOandN6022 on SARS-CoV-2 SP (S1 domain)-induced thrombotic pathway. Male and female C57BL/6micewere administered the
S1 domain of SARS-CoV-2 spike protein (S1) intranasally on a daily basis for 10 days. Starting from the fifth day of daily S1 treatment, themice were treated
with GSNO or N6022 (1 mg/kg/ip/day each). On the 10th day, the mice were euthanized, and the gender-specific differences, as well as the efficacy of
GSNO or N6022 on blood levels of fibrinogen (Ai), thrombin (Aii), thrombin-antithrombin complex (Aii), activated platelets (Aiv), vWF (Av), and
circulating endothelial cells (Avi), were analyzed by ELISA and fluorescence flow cytometry. In addition, lung vascular (CD31) deposition of fibrin was also
analyzed by immunofluorescence staining of the lung tissue section; (Bi) shows a representative photo of male mice and (Bii) shows quantitative data
(pixel count). The bar graph represents the mean ± standard error mean and the scatter dot plot represents an individual data point. *p < 0.05; **p ≤ 0.01,
***p ≤ 0.001 vs control mice and+p < 0.05; ++ p ≤ 0.01, +++ p ≤ 0.001 vs as indicated. N.S.: not significant. Please refer to Supplementary Data S1 for an
extensive statistical comparison between genders within each treated group.
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neutrophils, macrophages, and activated cytotoxic and helper T cells
(Figures 4, 5). Moreover, similar observations were also made in
GSNOR knockout mice (Figure 8).

Alongside their anti-inflammatory effects, GSNO andN6022might
also alleviate SP-S1-induced acute lung disease by protecting against
endothelial dysfunction. Figure 7 shows that GSNO/N6022 treatment
decreased the intranasal SP-S1-induced elevations of blood markers
related to endotheliopathy (e.g., vWF and circulating endothelial cells).

Moreover, the treatments resulted in a decrease in blood coagulation
factors induced by SP-S1 treatment, including fibrinogen, thrombin,
thrombin-antithrombin complex, and activated platelets, as well as a
reduction in lung fibrin deposition (Figure 7). Notably, comparable
observations were also made in GSNOR knockout mice (Figure 8).

Endotheliopathy or endothelial dysfunction is a prominent
feature of severe COVID-19 including ARDS. Presently, there is
no direct evidence indicating that SP-S1 induces lung

FIGURE 8
Role of GSNOR in SARS-CoV-2 SP (S1 domain)-induced lung diseases. Male WT (C57BL/6) and GSNOR knockout (KO) mice were administered the
S1 domain of SARS-CoV-2 spike protein (S1) intranasally on a daily basis for 10 days and blood levels of TNFα (Ai), lung infiltrations of CD11c+
macrophages and Ly6G + neutrophils (Aii, iii), extravasation of Evans blue into the lungs (Bi), lung edema (Bii), lung vascular (CD31) expression of ICAM-1
(Ci) and VCAM-1 (Cii), blood levels of vWF and fibrinogen (Di, ii), lung deposition of fibrin (Ei, ii)were analyzed. The bar graph represents the mean ±
standard error mean and the scatter dot plot represents an individual data point. *p < 0.05; **p ≤ 0.01, ***p ≤ 0.001 vs control mice and+p < 0.05; ++ p ≤
0.01, +++ p ≤ 0.001 vs as indicated. N.S.: not significant.
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endotheliopathy leading to ARDS in patients. Nonetheless,
numerous animal and in vitro studies suggest that SP-S1 may be
a direct factor contributing to endotheliopathy under COVID-19-
associated ARDS conditions. Notably, endothelial cells express
ACE2, functioning as both a SARS-CoV-2 entry mechanism and
a signaling receptor (Hamming et al., 2004). Although SARS-CoV-
2 typically does not replicate within endothelial cells (Schimmel
et al., 2021), its SP has been documented to initiate ACE2-mediated
signaling within these cells, leading to the production of
proinflammatory cytokines and reactive oxygen species, along
with impairment of metabolic function (Kim et al., 2021a; Kumar
et al., 2021; Lei et al., 2021; Agostinis et al., 2022). It is noteworthy
that the S-nitrosylation of ACE2 inhibits its interaction with SARS-
CoV-2 SP (Oh et al., 2023), thus suggesting that GSNO may protect
against SP-S1-induced endotheliopathy through S-nitrosylation of
endothelial ACE2. GSNOwas also reported to inhibit Angiotensin II
(Ang II)-dependent Ang II type 1 receptor (AT1R)-mediated
vasoconstriction of cerebral arteries (Bouressam et al., 2019).
SARS-CoV-2 SP binding to ACE2 is reported to increase the
local levels of Ang-II by inducing the internalization of ACE2,
thus decreasing the cell surface activity of ACE2 for Ang-II
conversion to angiotensin (1–7) (Nazerian et al., 2021).
Consequently, the increased Ang-II level is known to induce
endothelial dysfunction and endotheliopathy (Dandona et al.,
2007). Previously, our laboratory reported that GSNO inhibits
thrombin-induced endothelial barrier disruption (Choi et al.,
2019) and protects against the blood-brain barrier (BBB)
disruption under inflammatory and ischemic conditions (Choi
et al., 2019). Taken together, these studies indicate that beyond
its anti-inflammatory activity, GSNO (or N6022) is likely to protect
against lung vascular/endothelial damage by directly acting on
endothelial cell signaling.

In humans and animals, GSNO acts as a potent inhibitor for
platelet activation and reduces the rate of embolization (de Belder
et al., 1994; Molloy et al., 1998). GSNO is also known to inhibit
platelet aggregation via S-nitrosylation and inhibition of clotting
factor XIII (Catani et al., 1998). Further, GSNO is reported to inhibit
fibrinogen polymerization into fibrin by modifying the fibrinogen
structure (Chanchikov and Beriia, 1990). These studies in turn
suggest GSNO (and N6022) as a stand-alone anti-thrombotic
agent against SARS-CoV-2-mediated hypercoagulability and lung
thrombosis. Accordingly, we also described that GSNO and
N6022 treatment reduces intranasal SP-S1-induced elevations of
blood coagulation factors (e.g., fibrinogen, thrombin, thrombin-
antithrombin complex, and activated platelets) and lung fibrin
deposition (Figure 7). Collectively, these studies propose that the
anticoagulation activities of GSNO (N6022) could potentially aid in
mitigating the acute lung disease induced by SARS-CoV-2.

COVID-19 exhibits a sex-specific bias, with males experiencing
more severe disease and higher mortality rates than females
(Pradhan and Olsson, 2020). Similarly, our observations reveal
that male mice exhibited a greater extent of acute lung disease
compared to female mice in response to intranasal SP-S1 delivery. In
addition, male mice express higher levels of GSNOR in the lung than
female mice in response to intranasal SP-S1 delivery (Figure 1). At
present, it remains uncertain whether the gender-specific bias in
GSNOR expression, triggered by SP-S1 treatment, plays a role in the
gender-specific severity of acute lung disease. However, the observed

mitigation of the acute lung disease by GSNOR inhibitor (N6022) or
knockout of GSNOR provides evidence for the pathogenic
involvement of GSNOR, suggesting its participation in gender-
specific disease severity under SP-S1-induced acute lung disease
conditions.

Studies reported that approximately 63% of COVID-19 patients
experience T-cell lymphopenia (Lucas et al., 2020). It is of interest to
note that even with the decreased counts of CD4+ and CD8+ T cells,
their status was hyperactivated in COVID-19 patients (Xu et al.,
2020). Similarly, we observed that intranasal SP-S1 treatment
decreased the number of total CD4+ and CD8+ T cells in the
lungs but with increased numbers of TNF-α+ IFN-γ+ cytotoxic T
(Tc) cells and IFN-γ+ TH1 and IL-17a+ TH17 cells (Figure 4). These
increases were reduced by GSNO and N6022 treatment. Previously,
we made similar observations that GSNO and N6022 treatments
decreased the number of autoreactive TH17 cells in mice with EAE
(Nath et al., 2010; Saxena et al., 2018). Interestingly, we observed
that male mice had a greater number of Tc, TH1, and TH17 cells in
the lung than female mice (Figures 4B, C). Estrogen has been shown
to suppress CD4+ and CD8+ T cell activations (Khan and Ansar
Ahmed, 2015), thus suggesting that the observed sex-specific bias of
T cell activation in SP-S1-intoxicated mice may be due to estrogen-
related mechanisms. In addition, we also expect that sex-specific bias
of lung GSNO expression may also participate in the sex-specific
immune/inflammatory responses against the intranasal SP-S1
treatment. At present, the relationship between sex hormone-
dependent regulation of GSNOR expression is not understood
well, therefore, further studies are necessary.

In recent studies, researchers have highlighted oxidative stress
and nitric oxide as pivotal molecular mechanisms underlying both
the progression and potential treatments for COVID-19 (Tsermpini
et al., 2022). In ARDS patients, dysfunctional eNOS induced by
inflammation and oxidative stress plays a critical role in endothelial
dysfunction (Guimarães et al., 2021). Moreover, the presence of
eNOS polymorphism has been suggested to contribute to the
differing mortality rates in COVID-19 between Asian and non-
Asian countries (Guan et al., 2020). Notably, levels of nitric oxide
were elevated in COVID-19 patients upon hospitalization compared
to control groups (Mete et al., 2021). However, severe cases of
COVID-19 exhibited lower nitric oxide levels than those with mild
or moderate symptoms (Cekerevac et al., 2021). GSNO plays a
critical role in nitric oxide signaling in the respiratory track (Que
et al., 2009). Therefore, supplementation of exogenous GSNO or an
increase in endogenous GSNO by N6022 is a potential therapeutic
approach for managing COVID-19 by restoring proper nitric oxide
signaling andmitigating endothelial dysfunction caused by oxidative
stress and inflammation.

There is a growing body of evidence suggesting that the spike
protein contributes to the development of long-COVID syndrome,
which is characterized by persistent symptoms following an acute
infection with SARS-CoV-2, irrespective of the initial disease’s
severity (Theoharides, 2022). Recent studies have shown the
presence of spike protein from SARS-CoV-2, along with its viral
RNA fragments, in the bloodstream of individuals experiencing
post-acute sequelae of COVID-19 for up to 1 year or more after the
initial infection (Craddock et al., 2023). In this study, we did not
investigate the uptake of SP-S1 by lung tissue, nor its release into the
bloodstream in mice subjected to intranasal SP-S1. However, a
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recent report described that C57BL/6 mice receiving intranasal SP-
S1 experienced neuroinflammation and cognitive deficits (Paidi and
Pahan). Additionally, we observed that intranasal administration of
SP-S1 to C57BL/6 mice led to a dysfunctional blood-brain barrier
and increased edema (refer to Supplementary Data S2). At present, it
is unclear whether these neurological effects of intranasal SP-S1 arise
from its direct release into the bloodstream or from the activation/
induction of systemic inflammatory or vascular toxic agents.
Nevertheless, exploring the impact of GSNO and GSNOR
inhibitors on SARS-CoV-2 SP-mediated long-COVID syndrome
in future studies will be of particular interest.

N6022, a specific reversible small molecule GSNOR
inhibitor, was developed for the treatment of cystic fibrosis
and asthma (Southern et al., 2020). The pharmacokinetics,
pharmacodynamics, and toxicology of N6022 have been
already studied in humans (Southern et al., 2020). In humans,
N6022 treatment up to 40mg/iv/day for 7 days showed no
adverse effects and was well-tolerated by healthy volunteers
as well as by patients with mild asthma or cystic fibrosis
(Southern et al., 2020). In rodents, N6022 treatment up to
10 mg/kg/iv/day was reported to be well tolerated and had no
biological adverse effect (Colagiovanni et al., 2012). In the
present study, we also did not observe any obvious adverse
effect of N6022 (1 mg/kg/ip/day) in SP-S1-treated mice.

In summary, here, we assessed the therapeutic potential of
exogenous GSNO and GSNOR inhibitor (N6022) on disease
markers observed in human COVID-19 cases using a SARS-
CoV-2 SP-S1-induced mouse model of COVID-19-associated
acute lung disease. We observed that both GSNO and
N6022 treatments decreased the intranasal SP-S1-induced fever
and body weight loss as well as elevations of blood levels of
proinflammatory cytokines and coagulation factors, lung
infiltrations of inflammatory/activated immune cells, and lung
fibrin deposition. GSNO is an endogenous compound
modulating cell signaling for pro-inflammatory responses, blood
coagulation pathways, endothelial permeability, and immune cell
modulation. Moreover, recent studies reported that S-nitrosylation
of ACE2 inhibits its binding to SARS-CoV-2 SP thus inhibiting/
blocking cellular infection of SARS-CoV-2 (Oh et al., 2022).
S-nitrosylation is also reported to inhibit palmitoylation of SARS-
CoV-2 spike protein and thus inhibits membrane fusion and
internalization of the SARS-CoV-2 viral particles (Keyaerts et al.,
2004; Akerstrom et al., 2009). Moreover, S-nitrosylation is also
reported to inhibit SARS-CoV replication and thus viral RNA
production (Akerstrom et al., 2005; Akerstrom et al., 2009).
Therefore, GSNO and N6022 seem like promising choices as
drugs with multiple targets for treating COVID-19-related acute
lung disease. However, further investigation and evaluation are
necessary to confirm their effectiveness.
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