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Cancer represents themain cause of death worldwide. Thyroid cancer (TC) shows
an overall good rate of survival, however there is a percentage of patients that do
not respond or are refractory to common therapies. Thus new therapeutics
strategies are required. In the past decade, drug repositioning become very
important in the field of cancer therapy. This approach shows several
advantages including the saving of: i) time, ii) costs, iii) de novo studies
regarding the safety (just characterized) of a drug. Regarding TC, few studies
considered the potential repositioning of drugs. On the other hand, certain anti-
diabetic drugs, were the focus of interesting studies on TC therapy, in view of the
fact that they exhibited potential anti-tumor effects. Among these anti-diabetic
compounds, not all were judjed as appropriate for repositioning, in view of well
documented side effects. However, just to give few examples biguanides, DPP-4-
inhibitors and Thiazolidinediones were found to exert strong anti-cancer effects in
TC. Indeed, their effects spaced from induction of citotoxicity and inhibition of
metastatic spread, to induction of de-differentiation of TC cells andmodulation of
TC microenvironment. Thus, the multifacial anti-cancer effect of these
compounds would make the basis also for combinatory strategies. The present
review is aimed at discuss data from studies regarding the anti-cancer effects of
several anti-diabetic drugs recently showed in TC in view of their potential
repositioning. Specific examples of anti-diabetic repositionable drugs for TC
treatment will also be provided.
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Introduction

Cancer mortality represents one of the most significant social, medical, and scientific
primary challenges. The course of history teaches us that several effective anti-cancer drugs
have been developed from ancestral compounds. The first employed anti-cancer drugs were
poorly-selective (killing rapidly proliferating cells) and with high-spectrum (effective against
most tumors). More new compounds have been added as possible tools for anti-cancer
therapies, being characterized by amore selective mechanism and fewer side effects, resulting
in better anti-cancer responses and/or fewer side effects. Nowadays, modern anti-cancer
drugs are very selective (against a unique target) and, as a consequence, are effective only
against tumor-bearing specific molecular abnormality (i.e., the higher selectivity, the lower
antitumor spectrum). Recent advances in the knowledge of cancer biology led to the
development of a new diagnostic and therapeutic arsenal that is not limited to selective
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target drugs but also includes already existing drugs that are multi-
targeted or used in polypharmacology (Gonzalez-Fierro and
Dueñas-González, 2021).

Drug repositioning is considered for several types of cancer. The
collection of information regarding the anti-cancer effects of drugs
commonly used for other diseases could be of help in identifying
potential repositionable compounds. As far as thyroid cancer (TC)
treatment is concerned, few studies took into account the potential
repositioning of drugs.

TC is the most common endocrine cancer, which has raised
concern due to its rapidly increasing prevalence. Annual incidence
varies by sex, age, and geographical location (Palanca et al., 2022).
The incidence of TC is the ninth highest in the world (Chen DW.
et al., 2023a) and, during the last 40 years, increased globally.
According to many studies, the increase in TC incidence is a
consequence of the detection of small, low-risk papillary TC due
to increased thyroid ultrasonography use. During the past
5–10 years, TC care experienced profound changes, with several
therapeutic options now available (Palanca et al., 2022; Chen DW.
et al., 2023a).

Most TCs are slow-growing and highly responsive to standard
therapies which include thyroidectomy, and in selected cases
radioactive iodine treatment (RAI), and TSH suppressive therapy
(Haugen et al., 2016). Even if these approaches are successful in
many cases, there is still a subset (≈3%–5% of patients) that progress
to therapeutically refractive disease, constituting the so-called “TC-
related deaths due to the lack of effective treatment.” In this view,
some efforts are ongoing to identify personalized therapy for
refractory patients and drug repositioning represents one of the
potential alternatives (Xu et al., 2019). In particular, several studies
suggested that some anti-diabetic drugs could be of potential interest
because of their anti-cancer effects demonstrated both in vitro and in
vivo on TC.

This review aims to overview the available studies regarding the
multiple anti-cancer effects of anti-diabetic drugs discovered in TC
as well as to discuss their potential repositioning for TC therapy.
Moreover, an exhaustive description of drug repositioning including
specific examples of anti-diabetic repositionable drugs for TC
treatment will be also provided.

Drug repositioning

Drug repositioning is an alternative approach to identify new
fields of application for existing drugs, currently approved for a
different clinical condition. The drug repositioning activity is based
on in vivo and in vitro tests. Polypharmacology is the basis for drug
repurposing: this principle asserts that a drug with multiple targets
can have multiple mechanisms of action (Nowak-Sliwinska et al.,
2019). Therefore, polypharmacology can be used in the search for
more effective and less toxic treatments.

Drug repositioning could indeed present several advantages as
compared to the development of a new drug. Once repositioned,
information regarding the safety, pharmacology, and toxicology of a
given drug already exists, being approved by the Food and Drug
Administration (FDA) for clinical use in humans.

Drug repurposing is time- and cost-saving compared with “de
novo” drug development. Indeed, the time from discovery to clinical

trial averages 9 years, the success rate is less than 10% with elevated
average cost. In contrast, drug repositioning can take 3–4 years to
reach clinical trials (Sams-Dodd, 2005). However, in this case, there
are numerous obstacles to cross, mainly financial and resource
barriers, intellectual properties, data access barriers, biases, and
liability risks (Masuda et al., 2020).

Numerous collaborative initiatives with the final aim of drug
repurposing were objects of debate, among wich: The AZ Open
Innovation program, the NIH National Center for Advancing
Translational Sciences (NCATS) program: Discovering New
Therapeutic Uses for Existing Molecules, the Medical Research
Council (MRC) and AstraZeneca (AZ) Mechanisms of Human
Disease Initiative, The Clinical and Translational Science Award
(CTSA) Pharmaceutical Assets Portal, European College of
Neuropsychopharmacology (ECNP) Medicines Chest Program,
Pfizer’s SpringWorks Program, the AstraZeneca/National
Research Program for Biopharmaceuticals (NRPB) partnership
in Taiwan, the Roche/Broad Institute Collaboration, and the
Drugs for Neglected Diseases Initiative (DNDI), the Clinical
Development Partnerships Initiative (Krishnamurthy et al.,
2022).

Some examples of drugs that have been repositioned for the
treatment of certain types of cancer over the years include Sunitinib,
a drug that was successfully repositioned for the treatment of
gastrointestinal stromal tumors and renal cancers. In addition, in
2010, this compound was also approved for the treatment of
pancreatic neuroendocrine cancers. Another drug Tamoxifen,
that was originally known for its ability to increase fertility, was
repurposed for breast cancer therapy. Moreover, it was proven to
reduce breast cancer risk and approved also for this purpose.
Tamoxifen was included in the standard of care for long-term
adjuvant therapy for estrogen receptor-positive breast cancer
(Krishnamurthy et al., 2022).

The main aim of drug repositioning is to counteract attrition
and rising costs, which, according to “Eroom’s law,” have produced a
large increase in the number of new drugs entering the
pharmaceutical market. However, this approach must be
considered as an add-on rather than an alternative to the search
for novel drugs. (Jourdan et al., 2020).

In drug repositioning it is crucial to understand the disease-drug
relationship, for this reason, there are several approaches to address
the problem:

• In silico approaches: in this type of approach, various public
databases, clinical trials, and bioinformatic systems are used to
identify drug-target interactions (Ekins et al., 2007).

• Cluster approaches tend to find new drug-target or drug-
disease relationships (Parisi et al., 2020).

• Propagation approaches: this approach allows the discovery of
disease-gene, disease-disease, and disease-target relationships
(Picart-Armada et al., 2019).

• Experimental approaches: including target screening, cellular
assays (Shah et al., 2016), animal models (Ridges et al., 2012),
and clinical studies (Zhu et al., 2014).

An important aspect of drug repositioning is to identify a
compound that could also overcome the obstacle of drug
resistance in cancer therapy. Therefore, it is necessary to follow
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TABLE 1 Commonly used anti-diabetic drugs.

Classes of antidiabetcs Name

Biguanides -Metformin (in use)

-Phenformin (removed in 1970)

-Buformin (removed in 1970)

Sulfonylureas -Glibenglamide (in use)

-Glicazide (in use)

-Glimepiride (in use)

Glinides -Gepaglinide (in use)

Thiazolidinediones -Troglitazone (removed in 2000)

-Pioglitazone (in use)

-Rosiglitazone (removed in 2010)

-Ciglitazone (prototype, never used in clinical practice)

-Lobeglitazone (in use only in korea)

DPP-4 enzyme inhibitors -Sitagliptin (in use)

-Gempigliptin (in use)

-Linagliptin (in use)

-Saxagliptin (in use)

-Vildagliptin (in use)

-Alogliptin (in use)

Inhibitors of the renal glucose transporter SGLT-2 -Canagliflozin (in use)

-Dapagliflozin (in use)

-Empagliflozin (in use)

Glp-1 analogues -Exenatide (in use)

-Liraglutide (in use)

-Semaglutide (in use)

-Dulaglutide (in use)

-Lixisenatide (in use)

Insulin analogues Fast acting

- Lispro (in use)

- Aspart (in use)

- Glulisine (in use)

Long acting

- Detemir (in use)

- Degludec (in use)

- Glargine (in use)

Intermediate acting

- Human insulin (in use)

- NPH (in use)
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strategies to minimize drug resistance and maximize antitumor
activity (Wang et al., 2019).

Anti-diabetic drugs repositionable as
potential anti-cancer drugs

Diabetes Mellitus (DM) is a chronic disease that occurs either
when the pancreas does not produce enough insulin or when the
body cannot effectively use the insulin it produces. Insulin is a
hormone that regulates blood glucose. In type 2 diabetes mellitus
(T2DM), hyperglycemia is a common effect of uncontrolled diabetes
and over time leads to serious damage tomany of the body’s systems,
especially the nerves and blood vessels. Hypoglycemic agents, also
known as oral antidiabetics, represent a heterogeneous group of
drugs that are used in the treatment of T2DM.

DM is characterized by elevated blood sugar (glycemic)
levels, therefore the role of these drugs is to reduce glycemic
levels, possibly avoiding hypoglycemic events. The other
important aim of modern anti-diabetic therapy is to reduce
mortality risk and long-term complications of T2DM, such as
cardiovascular, renal and neurological damage. These drugs work
by different mechanisms, some reduce blood glucose by
increasing the secretion of insulin; others slow intestinal
absorption of glucose, others increase renal elimination of
glucose and others increase insulin sensitivity of target tissues.

The classes of antidiabetics currently in use are summarized in
Table 1.

The rationale behind the use of anti-diabetic drugs as potential
candidates for drug repositioning in anti-cancer therapy, especially
for TC, stems from several data. First of all, it is widely recognized
that T2DM is a risk factor for developing several types of cancer,
mainly colorectal, liver, pancreatic, and endometrial cancer (Ling
et al., 2023). Some studies have also suggested a possible correlation
between T2DM and TC (Aschebrook-Kilfoy et al., 2011; Yeo et al.,
2014). Moreover, some authors have suggested that
hyperinsulinemia, hyperglycemia, and chronic inflammation
typical of untreated DM would be risk factors for TC
development and/or progression (Jee et al., 2005; Giovannucci
et al., 2010), and thus correcting them with anti-diabetic drugs
would have indirect therapeutic effects for TC. Nevertheless, it must
be acknowledged that some studies failed to report any association
between T2DM and TC (Kitahara et al., 2012; Tse and ng, 2012; Seo
et al., 2017). Moreover, the association observed in some
epidemiological studies could be sustained by the fact that T2DM
and TC could share some common risk factors, such as obesity and
increasing age (Kitahara et al., 2020), and TC is often diagnosed
incidentally in patients with T2DM due to the performance of
screening imaging (such as carotid artery ultrasound), potentially
leading to a selection bias (Croce et al., 2023).

The second reason why anti-diabetic drugs could be beneficial in
TC is that TC cells often display abnormal metabolic pathways that

FIGURE 1
The effects of common anti-diabetic drugs in thyroid cancer.Anti-diabetic compounds exerting anti-cancer effects are have been reported in the
blue boxes, also highlighting their respective effects. Anti-diabetic compounds exerting pro-tumorigenic effects are have been reported in the red boxes,
also highlighting their respective effects.
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could be sensitive to the specific action of anti-diabetic drugs. In
particular, malignant cells can modify their energy metabolism in
response to a challenging environment, allowing tumor cells to
survive and spread (Coelho et al., 2018). Most malignant cells rely on
glucose metabolism through aerobic glycolysis, the so-called
Warburg effect, with a sharp increase in glucose uptake and
lactate production (Lin et al., 2020). This metabolic shift has also
relevant consequences beyond favoring cancer growth, such as
influencing tumor microenvironment and vascular invasion.
Some anti-diabetic drugs can interfere with intracellular
metabolic regulation, for example, through activation of AMPK
or inhibition of glucose uptake, favoring TC cell death and also
reducing its aggressiveness.

Biguanides

Biguanides are oral hypoglycemic drugs derived from theGalega
officinalis plant, originally developed for the treatment of T2DM.
The active components responsible for the effects were guanidines
and galectins. In 1918, animal studies demonstrated that guanidine
had hypoglycemic activity, but it was highly toxic for clinical use.
Due to this reason, attention was focused on synthetic derivatives of
these natural compounds. The first biguanide to be tested on
humans in the XX century was metformin. In 1957, Jean Stern
physician and clinical pharmacologist published the results of a
study on the antidiabetic properties of several biguanides. Among
them, dimethyl biguanide (known as metformin) was selected for
clinical development with the suggestive name of “Glucophage,”
which means “glucose eater.” The other biguanides, phenformin and
buformin, were more potent than metformin, however in the late
1970s they were removed in most countries because of their
association with lactic acidosis (Blough et al., 2015). Thus, among
biguanides, metformin remains at present the most widely employed
anti-diabetic drug. Of note, biguanides are not limited to be used as
anti-diabetic drugs. Indeed, biguanide derivatives are used for
multiple therapeutic purposes ranging from antimalarial
(proguanil, cycloguanil), antiviral (monoxydine), anti-septic and
disinfectant (chlorhexidine, alexidine, pycloxidine, polyhexanide)
(Kathuria et al., 2021). Biguanides are extensively studied for their
potential anti-cancer properties in several types of cancer including
the thyroid one. The anti-cancer properties of biguanides are
displayed through several mechanisms of action, including the
activation AMPK pathway with the consequent inhibition of
mTOR and reduction of several pro-tumorigenic effects including
cell proliferation and production of inflammatory mediators
(Seyfried et al., 2014; Luengo et al., 2017). Biguanides also
interacts with REDD1, (Luengo et al., 2017), IRS receptors,
(Luengo et al., 2017), glucose metabolism, (Luengo et al., 2017;
IDF, 2021; WHO, 2023), oxidative phosphorylation, (Stine et al.,
2022; Batta et al., 2020; Abudawood, 2019), lactic acid production,
(Luengo et al., 2017), and cell cycle (Bell et al., 2023). Of note many
other mechanisms are involved in the anti-cancer effects of
biguanides, some of them more related to the specific cancer
type, like, for example, the interaction of proguanil with EGFR in
glioblastoma cells. Thus, due to the broad spectrum of action,
biguanides are currently regarded as extremely interesting
compounds.

Metformin

Metformin is an effective hypoglycemic agent, recommended as
a first-line oral therapy for T2DM. Metformin was first approved in
Canada in 1972, and received subsequent FDA approval in the
United States in 1995. Metformin exerts its anti-diabetic effects
through several mechanisms, such as inhibition of hepatic
gluconeogenesis, reduction of insulin resistance, and
enhancement of peripheral glucose uptake. Among its many
possible pharmacologic properties, also anti-cancer effects have
been reported. (Kushchayeva et al., 2014). Indeed, both in vitro
and in vivo studies showed that metformin exerts benefits in several
types of cancer. Metformin was shown to display anti-cancer effects
through its insulin-lowering activity, which may slow tumor
proliferation in individuals with insulin resistance. Moreover,
metformin targets the respiratory complex I of the electron
transport chain in the mitochondria of preneoplastic and
neoplastic cells, reducing energy consumption in the cell. Other
mechanisms on which Metformin play an action are: mammalian
target of rapamycin (mTOR, crucial to tumor cell metabolism),
adenosine mono-phosphate-activated protein kinase (AMPK),
mitochondrial glycerophosphate dehydrogenase (mGPDH), and
the nuclear factor kB (NF-kB) (Chan, 2016). Importantly, some
studies suggest that metformin could cooperate with
chemotherapeutic drugs (Kushchayeva et al., 2014; Yoshida et al.,
2020).

Controversially, emerging evidence suggest that metformin has
potential clinical applications in stem cell medicine, regenerative
medicine and anti-aging (Jiang and Liu, 2020). Indeed, several
studies have demonstrated that metformin promotes osteogenic,
neuronal, myogenic, and adipogenic differentiation with varying
results (Zhan et al., 2020; Ould-Brahim et al., 2018; Dadwal et al.,
2015; Ahn and Cho, 2017; Fatt et al., 2015; Smieszek et al., 2018).
Metformin induces cell proliferation at low concentrations‘ but it
has anti-tumor activity at higher concentrations and can inhibit
the proliferation of cancer cells (Nashif et al., 2023). At present,
research is limited to in vitro and experimental animal models,
however it can be hypothesized that the contradictory effects of
metformin might be dependent upon specific cell types and/or
dose differences.

Results from clinical studies regarding the anti-cancer effects of
metformin are rather controversial. Indeed, while some
retrospective-case control studies, have shown that metformin is
able to reduce overall cancer incidence and mortality by 10%–40%
(IDF, 2021), RCTs failed to show a significant reduction in cancer
incidence and mortality (Stevens et al., 2012; Wen et al., 2022). This
discrepancy could be due, at least in part, to the short follow-up time
and/or to the biological heterogeneity of cancer. Given its multiple
pathways of action and its anti-cancer effects observed in different
types of cancer, metformin is the anti-diabetic drug that was most
studied in the field of TC. Here will follow a summary of the crucial
studies that highlight the importance of metformin in the treatment
of TC.

Given its multiple pathways of action and its anti-cancer effects
observed in different types of cancer, metformin is the anti-diabetic
drug that was most studied in the field of TC. Here will follow a
summary of the crucial studies that highlight the importance of
metformin in the treatment of TC.
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Similarly, some authors observed that metformin users had a
lower clinical severity of TC at presentation and a longer disease free
survival in metastatic patients (Jang et al., 2015), while other authors
did not observe any difference in the risk of developing metastases
when compared with non-treated patients (Noh et al., 2019). Among
the possible mechanisms contributing to the anti-tumoral effect of
metformin in TC, a TSH-lowering effect can be observed in patients
treated with metformin, for several clinical condition (Isidro et al.,
2007; Rotondi et al., 2011; Cappelli et al., 2012; Cappelli et al., 2014).
This effect would be specific for TC and coud play a role especially in
combination with other therapies. Nevertheless, it must be
acknowledged that available data all come from retrospective and
non-randomized studies. High quality data coming from
prospective randomized trials on the use of metformin, alone or
in combination, in the treatment of TC are currently lacking.

Interesting findings emerged also from studies in vitro on
different types of thyroid cells (human anaplastic, differentiated
cancer cells, as well as human normal and cancer thyroid primary
cell cultures, TC stem cells and rat follicular thyroid cells). These
studies highlighted several anti-cancer effects exerted by metformin
on TC cells including: i) induction of cell death, ii) reduction of cell
growth, iii) inhibition of the metastatic potential iv) modulation of
chemokines in the tumor microenvironment, v) de-differentiating
effects (increase in iodine up-take) (Chen et al., 2012; Klubo-
Gwiezdzinska et al., 2013; Cho et al., 2014; Moon and
Mantzoros, 2014; Rotondi et al., 2015; Kim et al., 2018a; Klubo-
Gwiezdzinska et al., 2012; Han et al., 2015; Kheder et al., 2017;
Nozhat et al., 2018; Ye et al.; Sloot et al., 2019; Durai et al., 2021;
Morale et al., 2022). The reduction of cell growth and viability
showed in TC cells were due to the regulation by metformin of the
AMPK-mTOR pathway, inhibiting cell cycle progression and
inducing apoptosis (Klubo-Gwiezdzinska et al., 2012; Klubo-
Gwiezdzinska et al., 2013; Thakur et al., 2019). Other
mechanisms explaining the effects of metformin on thyroid cell
growth and viability are the downregulation of cyclin D1, the
increase of the ER stress and the reduction of mRNA levels of
AKT, PI3K, and FOXO1 LRP2 and p-JNK, genes that play a crucial
role in cell proliferation and survival (Oyadomari and Mori, 2004;
Bikas et al., 2015; Nozhat et al., 2018; He et al., 2020). Moving to the
ability of metformin to reduce the metastatic potential, it was
demonstrated that the drug not only reduced the migration of
MTC cancer cells (Klubo-Gwiezdzinska et al., 2012), but also
modified the expression of several markers of the epithelial-
tomesenchimal-transition (EMT) (Han et al., 2015). A further
interesting anti cancer effect of metformin was the ability to
reduce the TNF-α-induced CXCL8 secretion by thyroid cells
in vitro. CXCL8 is a protumorgenic chemokine, thus, this
CXCL8-lowering effect of metformin was considered as a further
indirect anticancer property of the drug. Metformin was also shown
to play a potential role in the re-differentiation of TC cells. Indeed,
undifferentiated TC cells express low levels of sodium/iodine-
symporter (NIS), a protein membrane crucial for iodine uptake
by thyrocites and consequently essential for the efficacy of RAI, the
most effective therapy for TC in case of not complete surgical
removal. A recent study in ATC cells showed that metformin
increased NIS mRNA and protein expression (as well as mRNA
of thyroglobulin, TSHR, and NKX2.1) acting also as a demethylating
agent (Durai et al., 2021).

Finally, some studies also showed that metformin could
synergize with other drugs increasing their anti-cancer effects.
Indeed metformin showed synergic effects with Sorafenib (a
multikinase inhibitor) (Chen et al., 2015), with vemurafenib (a
selective inhibitor of BRAFV600E), with gemigliptin (dipeptidyl
peptidase-IV inhibitor) (Kim et al., 2018a) and pioglitazone (a
TDZ) (Kim et al., 2018a; Ozdemir Kutbay et al., 2020) in several
TC models (Hanly et al., 2015; Durai et al., 2021).

These in vitro studies make metformin desirable for potential
repositioning as anti-cancer compounds in the treatment of TC,
thus several studies are still ongoing to deeply characterize its
effect.

Phenformin

In the late 1950s, Phenformin was introduced in the
United States for the treatment of non-insulin-dependent
(NIDDM) and was 50 times more powerful than metformin.
Despite this, it was removed from the market in the late 1970s
because of its high risk of lactic acidosis (Luft et al., 1978). The higher
efficacy of phenformin compared with metformin seems to be due to
different modes of entry into cells. Indeed, the fact that
administration of phenformin can induce lactic acidosis, while
metformin does not, suggests that these two biguanides act
through different pathways (García Rubiño et al., 2019).

Various in vitro and in vivo studies performed in different types
of tumors, highlighted the ability of phenformin to reduce cancer
cell proliferation strongly than metformin (Janzer et al., 2014).

Up to now, only one study demonstrated the ability of
phenformin to reduce cell viability in TC cells. Moreover,
phenformin, at non-cytotoxic concentrations, had also an indirect
anti-cancer effect through modulation of the chemokine milieu
within the thyroid tumor microenvironment (inhibition of
CXCL8 secretion) (Rotondi et al., 2018). These data expand the
potential benefits of this molecule as an antitumor drug in vivo
(Rotondi et al., 2015). Furthermore, phenformin could also display
synergism with other anti-cancer molecules (i.e., immune-
therapeutics, chemotherapeutic).

In 2011, a study revealed that the administration of phenformin
in combination with 2-deoxyglucose can prevent the development of
lactic acidosis, reducing toxicity. Therefore, in terms of cancer
therapy, perhaps phenformin should be reevaluated (Lea et al.,
2011).

As far as thyroid cancer is concerned, in vitro and in vivo studies
focused on the potential anti-cancer effects of metformin and
phenformin. A parallel of the effect reported for two biguanides
(metformin and phenformin) in thyroid cancer and other solid
cancer should be overviewed. Besides the well-known targets such as
the inhibition of the mTOR signaling pathway, several additional
metformin and phenformin targets (e.g., mGPDH, ATF3, STAT3,
GSK3, cyclins) have been identified in other cancers (Thakur et al.,
2019). Induction of cell cycle arrest, reduction of viability and
induction of ROS were observed in several types of cancers by
both drugs. Thus, the anti-cancer effects of both compounds appear
to be exerted through several modes of action (action on AMPK, cell
cycle, mytocondrial complex-I), likely occurring without a cancer
type specificity.
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On the other hand, other biguanides (not limiting to anti-
diabetic compounds) were tested for their potential anti-cancer
properties in different types of cancer. Just to give few examples,
buformin and phenformin were showed to inhibit the viability of
pituitary cancer cells in vitro (Vázquez-Borrego et al., 2019).
Chemical modification of metformin into sulfenamides and
sulfonamides has also improved the cellular accumulation of
these compounds in cancer cells, with a subsequent increase in
their cytotoxic efficacy. Many sulfonamide derivatives of metformin
exerted cytotoxicity in human breast cancer cells (MCF-7 or MDA-
MB-231, or both) induced particularly by methylated phenyl
sulfonamides and was associated with their ability to arrest the
cell cycle in the G0/G1 phase and subsequently to cause apoptosis
(Torunoglu et al., 2023). The novel biguanide MC001 showed much
stronger antitumor effect and relatively weaker proglycolytic activity
compared with metformin as shown in vitro in colorectal cancer
cells (Fu et al., 2022). In breast cancer cell lines, it was shown that
Cycloguanil and its most promising analogue, NSC127159, were
shown to inhibit Dihydrofolate reductase (DHFR), an established
anti-cancer drug target whose inhibition disrupts folate metabolism
and STAT3-dependent gene expression. A very recent study
demonstrated that novel biguanide derivative, IM176, induces
prostate cancer cell death in vitro by modulating the AMPK-
mTOR and androgen receptor signaling pathways (Kim et al.,
2023). A study on glioblastoma stem cells reported that
phenformin, moroxydine, proguanil and cycloguanil exerted a
significant impairment of glioblastoma stem cells proliferation,
invasiveness and self-renewal (Barbieri et al., 2018). In 2015,
Wysham et al., performed a comparative study of metformin and
the novel biguanide NT1014 demonstrating anti-proliferative
activity of metformin and NT1014 in ovarian cancer cell lines by
inducing cell cycle arrest in G1 phase followed by apoptosis. In vivo,
NT1014 reduced tumor weight by 61%, whereas metformin by only
32%. A study on bladder cancer showed that proguanil induces
autophagic death of BC cells by specific binding to EGFR and
inhibiting its expression.

Taken together the anti-cancer effect of biguanides is being
studied in several types of cancer suggesting the potential
repurpositioning not only of the anti-diabetics, but also of
numerous other biguanides-related compounds.

Sodium-glucose transporters (SGLT)-
inhibitors

The treatment of T2DM with glyflozines, sodium-glucose co-
transporter 2 inhibitors, represents a new therapeutic approach
(Devineni and Polidori, 2015). These classes of inhibitors act by
decreasing renal glucose uptake and increasing urinary glucose
excretion. SGLT2 is located in the initial segment of the proximal
tubule, and is responsible for 80%–90% of reabsorption, while
SGLT1s reabsorb the remaining 10%–20% (DeFronzo et al.,
2017).

Among SGLT2 inhibitors, three of them have been approved by
the FDA and EMA: canagliflozin (2013), dapagliflozin (2014) and
empagliflozin (2014); three other compounds have been approved in
Japan (Ipragliflozin, Tofogliflozin, Luseogliflozin), while others are
in development (Ertugliflozin and Sotagliflozin) (Devineni and

Polidori, 2015). Recent studies have highlighted that
SGLT2 inhibitors, including canagliflozin and Dapagliflozin, can
inhibit cancer and colorectal cell growth through inhibition of
SGLT2-mediated glucose uptake (Dutka et al., 2022).

Canagliflozin

Canagliflozin [(1 S)-1,5-andro-1-[3-[[5-(4-fluorophenyl)-2-
tienil]metil]-4-metilfenil]-d- GLUCITOLO emirate], is a
C-glycosyl compound that is used (in the hemihydrate form) for
the treatment of T2DM through inhibition of sodium/glucose co-
transporter 2 (Choi, 2016) and was approved by the FDA in 2013.
Canagliflozin is an orally active selective SGLT2 inhibitor. It is
administrated orally and is rapidly absorbed, reaching peak plasma
concentration in 1–2 h (Devineni and Polidori, 2015). Canagliflozin
acts both delaying intestinal glucose absorption as well as increasing
urinary glucose excretion; this mechanism contributes to lower
postprandial blood glucose.

It was initially approved by the FDA in 2013 for the
management of T2DM and later approved in 2018 for a second
indication of reducing the risk of cardiovascular events in patients
diagnosed with T2DM. Recently, it was observed that canagliflozin
promotes AMPK activity by inhibiting mitochondrial respiration in
embryonic kidney cells and mouse cells (Hawley et al., 2016). As
with biguanides, canagliflozin inhibits mitochondrial respiration
and cell proliferation, suggesting that it may be useful in cancer
prevention and treatment.

Studies in vitro and in vivo have demonstrated the inhibitor
effect of canagliflozin on TC cells. The SGLT2 inhibitor could
suppress the glycolysis level of TC cells and also interfere with
glucose uptake and glycolysis in TC cells. In addition, the treatment
with canagliflozin induced cell apoptosis of TC cells (Wang et al.,
2022). Furthermore, this anti-diabetic drug increases the activation
of ATM/CHK2 in TC cells, indicating DNA damage repair is
initiated. In addition, recent studies have shown that
Canagliflozin is also able to activate AMPK, through inhibition
of complex I of the respiratory chain. This suggests that some
therapeutic benefits of canagliflozin could result from the
activation of AMPK, rather than inhibition of SGLT2 (Hawley
et al., 2016). Thus, further studies are needed to evaluate
Canagliflozin as a candidate for repositioning as an anticancer
agent, including TC.

DPP-4 inhibitors

These compounds, by preventing deactivation by dipeptidyl
peptidase-4 (DPP4) inhibitors, improve the concentration of
endogenous incretins (Ahrén et al., 2002; Vangoitsenhoven et al.,
2012). Currently, DPP-IV inhibitors are widely used as
monotherapy or combination therapy for the treatment of
patients with T2DM.

DPP-IV modulates diverse cellular processes including survival,
proliferation, and differentiation, and thereby enhances or
diminishes tumorigenesis depending on the types or phases of
tumors (Havre et al., 2008). In this regard, DPP-IV can be either
overexpressed or underexpressed in human solid tumor tissues,
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suggesting the possible role of DPP-IV as a potential diagnostic
marker and therapeutic target in solid tumors (Havre et al., 2008).

Initially, a register-based study from Taiwan suggested that the
administration of DPP-4 inhibitors could be associated with an
increased risk of TC (Tseng, 2016). On the other hand, the
investigation of DPP-4 inhibitors as potential anti-cancer agents
was not discouraged by this study because DPP4 expression in TC
was demonstrated to be associated with cellular invasion, promoting
TC cell metastasis, and a more aggressive disease in papillary TC
(Lee et al., 2017; He et al., 2022). More interestingly a recent in vitro
study showed that DPP4 gene silencing inhibits papillary TC cell
proliferation and EMT and promotes cell apoptosis (Hu et al., 2021).
In addition, in contrast with previous findings, a systematic review
and metanalysis by Overbeek et al. (2018), showed that it is not
possible to conclude whether DPP-4 inhibitors were associated with
an increased risk of site-specific cancer including TC. Another
population-based cohort study of patients with T2DM with a
concomitant cancer showed that no increased risk of metastasis
was associated with DPP-4 inhibitor therapy (Noh et al., 2019).
Thus, the targeting of DPP4 was considered as a potential
therapeutic strategy for DPP4-expressing TC and further studies
were encouraged.

Sitagliptin
Sitagliptin is an oral dipeptidyl peptidase-4 (DPP-4) inhibitor

used in conjunction with diet and exercise to improve glycemic
control in patients with T2DM. The effect of this medication leads to
glucose-dependent increases in insulin and decreases in glucagon to
improve control of blood sugar. Sitagliptin was granted FDA
approval on 16 October 2006 (National Center for Biotechnology
Information, 2023f).

Tseng (2016) showed that among Taiwanese patients with
T2DM, sitagliptin use may be associated with an increased risk
of TC. On the other hand, this compound showed a reduction of
TC cell viability, proliferation, and some aspects related to the
metastatic process in vitro. Indeed, Hu et al. (2021) reported
cytotoxic effects of Sitagliptin on TC cell lines TPC-1 and
GLAG-66 as well as a reduction of cell proliferation in both TC
cell lines. Interestingly, Sitagliptin was able to reduce TC cell
migration by influencing the expression of some markers of the
epithelial-to-mesenchimal-transition (EMT) which ultimately
drives cancer cell migration (Hu et al., 2021). In addition, a
recent in silico molecular docking study regarding the DPP4/
CTNNB1/MET signatures showed that stagliptin could be a
potential TC drug, however more investigations are surely
needed to confirm it (Cheng et al., 2022).

Gemigliptin
Gemigliptin is an orally bioavailable inhibitor of DPP-4,

with hypoglycemic and potential renoprotective activities.
Upon administration, gemigliptin binds to DPP-4 and
inhibits the breakdown of the incretin hormones, glucagon-
like peptide-1 (GLP-1), and glucose-dependent insulinotropic
polypeptide (GIP). This prolongs incretin activity, increases
postprandial insulin secretion from pancreatic beta cells,
decreases glucagon secretion, delays gastric emptying, and
lowers blood glucose levels (National Center for
Biotechnology Information, 2023a).

In 2017, Kim et al. (2017) demonstrated that gemigliptin was
able to induce TC cell death in vitro. Another study of the same
group further demonstrated the cytotoxic in vitro effect of
gemigliptin in TC cells also showing an increase in its cytotoxic
activity when combined with one histone deacetylase inhibitor
(PXD101) (Kim et al., 2018b). More interestingly, these
investigators showed that gemtigliptin in combination with
another anti-diabetic compound, but belonging to a different
class (biguanides), Metformin (Kim et al., 2018a), exerts a
stronger adverse effect on TC cells in vitro. Indeed, TC cells
treated with both gemigliptin and metformin showed synergistic
cytotoxicity of two agents, exerted by acting on Akt and AMPK
pathways. The same study also showed that gemigliptin increased
the inhibition of cell proliferation and migration induced by
metformin by involving of ERK,MMP-2-9, p53, p21, VCAM-1,
and (Kim et al., 2018a).

Thiazolidinediones

Thiazolidinediones (TZDs), (also called “glitazones”) were
introduced in 1996 for T2DM, when troglitazone (Rezulin;
Parke-Davis/Warner-Lambert) was approved by the Food and
Drug Administration. TZDs uniquely target insulin resistance,
which is a core physiologic defect in T2D, and significantly
improve glucose control. Unfortunately, due to severe hepatic
and cardiovascular side-effects, most TZDs were removed from
the clinical use, with on pioglitazone still recommended by most
guidelis as an anti-diabetic drug. However, TZDs improve insulin
action in adipose, hepatic tissue and muscle, agonizing with of
peroxisome proliferator–activated receptor-γ (PPAR-γ) nuclear
receptors. PPAR-γ activation is translated into different vascular
and metabolic effects including the upregulation and
downregulation of different genes essential for e lipid and glucose
metabolism, but also for inflammatory response. In vitro data
highligted that PPARγ could be suggested as targets for TC
therapy (Chung et al., 2002; Martelli et al., 2002; Hayashi et al.,
2004).

Troglitazone
Troglitazone was the first TZD approved for use in the

United States and was licensed for use in T2DM in 1997, but
withdrawn 3 years later because of the frequency of liver injury,
including acute liver failure, associated with its use. Troglitazone has
several recognized therapeutic properties as a hypoglycemic agent,
an antioxidant, a vasodilator agent, an anticonvulsant, an
anticoagulant, a platelet aggregation inhibitor, an antineoplastic
agent, an EC 6.2.1.3 (long-chain-fatty-acid--CoA ligase) inhibitor
and a ferroptosis inhibitor (National Center for Biotechnology
Information, 2023h).

A first in vitro evaluation of the potential anti-cancer effects of
troglitazone showed that the compound was efficient in inducing re-
differentiation of TC cells in vitro, enhancing RAI-uptake.
Subsequent studies showed that troglitazone inhibited anaplastic
TC cell proliferation in vitro and increased the effect of paclitaxel
(Copland et al.).

Combined treatment with ovastatin and lovastatin (a cholesterol-
lowering agent) inhibited epidermal growth factor-induced migration
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of anaplastic TC cells (Chin et al., 2017). Moreover, an in vitro and in
vivo mouse model of anaplastic TC showed that troglitazone +
Lovastatin display anti-cancer effects such as reduction of cell
proliferation and tumor regression (Zhong et al., 2018).

Pioglitazone
Pioglitazone is both a PPARα and PPARγ agonist with

hypoglycemic activity and an insulin-sensitizing role.Pioglitazone
is the only drug of the TZD class still commonly used in clinical
practice. Moreover, it is recognized to be a pantothenate kinase
inhibitor, a long-chain-fatty-acid--CoA ligase inhibitor, a ferroptosis
inhibitor, a cardioprotective agent, an antidepressant, and a
geroprotector (National Center for Biotechnology Information,
2023g).

Several studies reported that pioglitazone could exert benefits
against TC.

Indeed, it was shown that Pioglitazone increased the iodide
uptake in vitro by thyroid cells (Fröhlich et al., 2005) and exerted a
reduction of cell proliferation in anaplastic TC cells in vitro
(Antonelli et al., 2009). Pioglitazone was demonstrated to induce
cellular lipid accumulation in TC cells in vitro. Moreover, it was
demonstrated that TF-1 interacts with PPFP to inhibit the pro-
adipogenic response to pioglitazone and that the ability of
pioglitazone to decrease TTF-1 expression contributes to its pro-
adipogenic action (Xu et al., 2016). Ozdemir Kutbay et al. (2020)
showed that the combination of metformin and pioglitazone
induced significant reductions in the level of oncogenic genes
(AKT3, DEPTOR, EIF4E, ILK, MTOR, PIK3C, and PRKCA) in
TC cells. This finding would indicate that TC progression could be
prevented and these genes could be selected as therapeutic targets
(Ozdemir Kutbay et al., 2020).

Interesting data regarding the potential anti-cancer activity of
pioglitazone come from studies performed with a transgenic
mouse model characterized by a PAX8-PPARγ fusion protein
(PPFP) (found in 30% of follicular thyroid carcinomas). This
particular fusion confers oncogenic capacity in transgenic mice.
A 2011 in vivo study demonstrated that, in this mouse model, the
administration of Pioglitazone induces a proadipogenic
antitumor response, with the final result of preventing
metastasis and reducing tumor size (Dobson et al., 2011).
Another 2017 study in the same mouse model showed that
pioglitazone exerted the induction of infiltration of immune
cells (macrophages and T cells) only in the presence of PPFP
(Zhang et al., 2017) highlighting the importance of the use of this
compound in that specific clinical setting. Indeed, a subsequent
clinical trial showed that pioglitazone may be therapeutic in
patients with TC bearing PPFP (Giordano et al., 2018).
Among the available clinical data in human subjects, in
2012 one case report showed that pioglitazone treatment could
have some positive effects in radioiodine-negative and
progressive DTC patients (Rosenbaum-Krumme et al., 2012).
Moreover, Tseng (2014a) showed a null association between
pioglitazone use and TC risk in patients with T2DM.

Finally, a comprehensive study on diagnosis, prognosis, and
potential drug screening for papillary thyroid carcinoma (PTC),
based on five hub lncRNAs, identified pioglitazone among the
potential drugs that could be effective for TC treatment (Li et al.,
2021).

Rosiglitazone
Rosiglitazone was marketed both alone (Avandia) (National

Center for Biotechnology Information, 2023b) and combined
with metformin (National Center for Biotechnology Information,
2023e) (Avandamet) or with glimepiride (National Center for
Biotechnology Information, 2023d) (Avandaryl). Like other
TZDs, activates PPARs and is a selective ligand of PPARγ with
no PPARα-binding action. Rosiglitazone display well known effect
on insulin resistance, but also shows anti-inflammatory effects
(Lombardi et al., 2008).

Several studies suggest that rosiglitazone could have an anti-
cancer effect on TC. Rosiglitazone inhibited anaplastic TC cell
proliferation in vitro and increased the effect of the
chemotherapy paclitaxel (Copland et al.). In the study by
Aiello et al. (2006) performed in vitro on anaplastic thyroid
cells, it was demonstrated that the treatment with rosiglitazone
reduced anchorage-dependent and -independent growth and
migration of TC cells, and increased apoptosis rate by
reducing Bcl-X(L) expression and caspase-3 and -7 activation.
The effect of rosiglitazone on cellular growth was associated with
cell cycle arrest and with an increase of cyclin-dependent kinase
inhibitors p21 (cip1) and cyclin-dependent kinase regulator p27
(kip1), a decrease of cyclin D1, and inactivation of Rb protein.
Finally, rosiglitazone increased the expression of thyroid-specific
differentiation markers (Aiello et al., 2006). In an in vitro study,
under normoxic or hypoxic conditions, it was reported that
rosiglitazone inhibited TC cell growth and increased NIS
protein expression. This data is of further support the ability
of rosiglitazone to induce re-differentiatio of TC cell (Chen et al.,
2020). Finally, a recent study showed that rosiglitazone
significantly inhibited transforming growth factor-beta1 (TGF-
β1)-induced EMT-associated processes such as fibroblast-like
morphological changes, EMT-related protein expression, and
increased cell migration and invasion in BCPAP and K1 TC
cells. Furthermore, rosiglitazone suppressed TGF-β1-induced
MMP-2 expression and phosphorylation of p38 MAPK, but
not ERK1/2 (Jin et al., 2021).

The possible role of rosiglitazone as anti-cancer agent in TC
was also investigated in the clinical setting. Philips et al. showed
an increase in RAI-uptake upon treatment with rosiglitazone
(Philips et al., 2004). The successful induction of RAI uptake
(decreased thyroglobulin levels and decreased in tumor size) after
treatment with rosiglitazone was showed in two studies
performed in metastatic DTC patients (Elias and Lizotte, 2006;
Elola et al., 2011). In addition an increased RAI-uptake in
therapeutic 131I scans (Kebebew et al., 2006; Tepmongkol
et al., 2008) was reported in a phase II clinical trial that on
the other hand concluded a not complete response of patients
(Eisenhauer et al., 2009; Kebebew et al., 2009). It should be
acknowledged that these studies had several limitations,
including the limited accuracy of the technique of 131I scans
and the unknown status of receptor expression of the treated TC.
The status of a currently ongoing trial (NCT 00098852) with
rosiglitazone is not known.

In 2013 Tseng et al. by using the National Health Insurance
(NHI) reimbursement databases of Taiwan showed that
rosiglitazone use may reduce the risk of TC in patients with
T2DM (Tseng, 2013).
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Ciglitazone
Ciglitazone born in 1980 and is considered to be the prototypical

of TZDs, indeed was never used as a medication. Several analogs
were later developed, including pioglitazone and troglitazone.
Ciglitazone also exerts anti-inflammatory activity through the
modulation of nuclear factor-kappaB-mediated pathways. In
addition, this agent inhibits angiogenesis by reducing vascular
endothelial growth factor (VEGF) production and inhibits the
growth of melanoma cells by inhibiting the expression of (C-X-C
motif) ligand 1 (CXCL1) (National Center for Biotechnology
Information, 2023c).

In the in vitro study byMartelli et al. (2002), it was demonstrated
that the treatment with ciglitazone inhibited the growth of several
types of thyroid carcinoma cell lines in vitro in a time-dependent
manner. Moving to anaplastic TC, an in vitro study demonstrated
that in a panel of six anaplastic thyroid cancer (ATC) cell lines, the
treatment with ciglitazone reduced anchorage-dependent and
-independent growth and migration, and increased the apoptosis
rate of TC cells (Aiello et al., 2006). Another in vitro study showed
that ciglitazone induced apoptosis of TC cells by affecting the
cytochrome-c caspase 3 and PTEN-Akt pathways, in addition the
necrosis was obtained by affecting the PARP pathway (Chen et al.,
2006).

Lobeglitazone
Lobeglitazone activates PPAR-γ and promotes the binding of

insulin at fat cells, reduces blood sugar levels, lowers hemoglobin
A1C (HbA1C) levels, and improves lipid and liver profiles (National
Center for Biotechnology Information, 2023i).

Only one study showed that TC cell lines treated with
lobeglitazone in vitro showed a significant reduction of TGF-β1-
induced EMT-associated processes and EMT markers expression
reducing also cell migration and invasion. Moreover, the treatment
with lobeglitazone restored TGF-β1-induced loss of E-cadherin, as
observed using immunocytochemistry, and suppressed TGF-β1-
induced MMP-2 expression and phosphorylation of p38 MAPK,
but not ERK1/2 (Jin et al., 2021).

Anti-diabetic drugs repositioning for
tumor treatment: the other face of the
coin

The previous chapter is suggestive of a collective practicable
repositioning of most of the anti-diabetic drugs, in particular for the
treatment of TC. On the other hand, not all anti-diabetic drugs are
free from potential side effects, which makes them not suitable for
repositioning therapy of TC. In particular, a specific class, GLP-1
analogs deserves to be discussed given their potential pro-
tumorigenic effects in TC.

GLP-1 analogues

Glucagon-like peptide-1 (GLP-1) receptor agonists are effective
treatments for T2DM which lower glucose concentrations without
weight gain (often with weight loss) and with low risk for
hypoglycemia (Hinnen, 2017).

GLP-1-based therapies represent a significant advance in the
treatment of T2D. One of these medications is liraglutide. FDA in
2014 approved the higher dose version of this compound (known as
Saxenda) for chronic weight-management treatment. Oher GLP-1
like lixsenatide (Sanofi Aventis, trade name Lyxumia) and
albiglutide (GlaxoSmithKline, trade names Epezan and Tanseum)
are currently approved or are under consideration for diabetes
treatment (Ladenheim, 2015). About the prescription of
exenatide and liraglutide, both compounds are contraindicated in
MTC patients or multiple endocrine neoplasia syndrome 2 (MEN 2)
patients due to the increased incidence of C-cell hyperplasia and
tumors combined with elevated calcitonin levels in preclinical
studies in rodents. However, these observations have not been
replicated in nonhuman primates or humans and are believed to
be a rodent phenomenon due to the higher density of GLP-1R on
rodent C cells, so the responses obtained on rodents may not be
relevant to primates (Bjerre Knudsen et al., 2010; Samson and
Garber, 2013; Drab, 2016).

On the other hand, no case report describing medullary
thyroid carcinoma has been published in a patient being treated
with a GLP-1 receptor agonist who had a morphologically normal
thyroid and low calcitonin concentrations before such treatment.
Efficient surveillance of an extremely large number of patients
would be required to confirm or reject such a report (Nauck, 2013).
Regarding this class of molecules, studies in rats have led to mixed
results. Some studies conducted in rodents, with exanatide and
liraglutide, showed an association regarding the development of
thyroid C-cell tumors after long exposures to overtherapeutic
doses (Bjerre Knudsen et al., 2010). Liraglutide-induced C-cell
hyperplasia and C-cell adenomas in mice and rats, and was also
associated with a significant increase in C-cell carcinomas in rats
and female mice administered the highest liraglutide dose tested
(Aroda and Ratner, 2011). Studies with exenatide showed an
increase in the incidence of C-cell adenomas in rats (female),
exposed to 130-fold higher than the clinical dose of exenatide. Of
note, no effect on C-cell was observed in mice similarly treated
(Bethel et al., 2019). In contrast to results obtained in rodents, in
vivo studies in cynomolgus monkeys administering liraglutide
showed no effect on the relative fraction of C cells in the
thyroid gland after 87 weeks. The risk of TC associated with
liraglutide has been examined in rodent and non-human
primate animal model studies. Indeed the liraglutide long-term
treatment has been associated with thyroid C-cell hyperplasia and
tumors in rodents, but not in monkeys.

Semaglutide has received an official box warning for thyroid
C-cell tumors in the United States. This caution is based only on data
from rodent studies and is not unique for semaglutide amongst the
GLP-1RA (Bjerre Knudsen et al., 2010; Pyke and Knudsen, 2013). In
contrast to liraglutide (Bjerre Knudsen et al., 2010) and lixisenatide
(EuropeanMedicines Agency, 2012) in rats, the drug dulaglutide did
not show an increase in thyroid C-cell tumors in rats. However
dulaglutide doses greater than 0.5 mg/kg were demonstrated to
increase hyperplasia of thyroid C cells (Byrd et al., 2015).

These data suggest that rodents are particularly sensitive to the
effects of GLP-1 agonists on thyroid C cells but these foindings could
not be considered as predictive of an increased risk of thyroid C-cell
tumors in patients under GLP-1 receptor agonist therapy (Byrd
et al., 2015).
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Insulin

Insulin is a widely prescribed glucose-lowering agent (Sims
et al., 2021) especially in patients affected by type 1 diabetes
mellitus (T1DM) as well as in some patients with Type 2 diabetes
mellitus. The potential cancerogenic property of insulin is among
the safety concerns related with long-term insulin therapy.
Indeed, insulin is a growth factor, and the administration of
exogenous insulin could, at least theoretically, stimulate tumour
growth (Karlstad et al., 2013). The oncogenic effect of insulin
could be due to the overexpression of insulin receptor by cancer
cells, but also to its ability to interact with the IGF1 receptor,
especially at supraphysiologic doses (Baricevic et al., 2015; Gallo
et al., 2018) and with the use of long-acting analogues (Sciacca
et al., 2010). Indeed, several studies have demonstrated that
aberrant IGF signaling plays a critical role in the pathogenesis
and progression of several types of cancer, including lung, breast,
colon, prostate, ovary, pancreas, and thyroid (Bowers et al.,
2015).

Nevertheless, data coming from observational studies are still
conflicting and inconclusive, since some authors observe an
association between insulin therapy and increased cancer risk
(Currie et al., 2009; Tseng, 2019; Vicentini et al., 2022), while
others failed to register any association (Pocock and Smeeth,
2009; But et al., 2017; Tan et al., 2017).

The possible effect of insulin therapy as a risk factor for thyroid
cancer comes from pre-clinical data suggesting that insulin signaling
is a key mediator in thyroid cancer cell growth. Indeed, early in vitro
studies on rat thyroid follicular cells showed that concurrent
treatment with insulin and TSH significantly increased the cell
number compared to treatment with TSH alone (Tramontano
et al., 1986).

Moreover the IGF1 axis, which can be stimulated by excessive
levels of circulating insulin, is one of the key pathways involved in
proliferative responses in both normal and neoplastic thyroid cells
(Vella et al., 2001; Malaguarnera et al., 2012; Vella and
Malaguarnera, 2018; Manzella et al., 2019). Thyroid cancer cells
also over-express the insulin receptor (IR), especially isoform IR-A.
IR/IGF-1 receptor hybrids and IR-A lead to an over-activation of the
IGF pathway, causing an enhanced mitogenic signaling and cancer
development (Malaguarnera et al., 2011).

Only few clinical studies up to now evaluated the relationship
between insulin therapy and thyroid cancer risk (Kushchayeva et al.,
2022). A 2014 studies based on data from the reimbursement
databases of all Taiwanese diabetic patients from 1996 to
2009 evaluated the incidence of thyroid cancer according to the
use, duration and dosage of therapy with human insulin. The results
failed to show any significant association between human insulin use
and risk of developing thyroid cancer, even at higher doses (Tseng,
2014b). Similarly, the study by Luo et al. (2016), did not show any
association between insulin use and incidence of thyroid cancer.

Most clinical data on insulin signaling in thyroid cancer derive
from the hypothesis that insulin-resistance, typical of obesity,
metabolic syndrome and T2DM, could be a risk factor for
thyroid cancer development (Malaguarnera et al., 2017). The
only evidence of a possible positive correlation between insulin
use and thyroid cancer comes from a 2011 study analyzing data from
the Danish National Diabetes Register and Cancer Registry. The aim

of the study was to evaluate if diabetes status, duration of diabetes
and insulin use could be risk factors for the development of several
types of cancer. The results showed that cancer incidence was higher
among diabetic patients using insulin versus non-users. When
specifically evaluating thyroid cancer, a significant difference
between insulin users versus non-users was observed only in
female patients. The risk also increased in relation to disease and
therapy duration (Carstensen et al., 2012).

In conclusion, although pre-clinical data would support a role of
insulin therapy as a risk factor for thyroid cancer, clinical data are
still inconclusive.

Insulin secretagogues

The primary action of secretagogues is to increase the release
of insulin by inhibiting ATP-sensitive potassium channels in the
pancreatic β-cell membrane. These compounds are classified as
sulfonylureas or non-sulfonylureas (glinides) (Davies, 2002). The
sulfonylureas have been extensively used to treat type 2 diabetes
for nearly 50 years, representing the second and most used oral
hypoglycemic drugs after metformin. A first-generation
including Tolbutamide, Acetohexamide, Carbutamide,
Chlopropamide, and Tolazamide, was introduced in Germany
since the 1950s. In the 1980s more potent second-generation
sulfonylureas became available (glibenclamide, glibornuride,
gliclazide, glipizide, and gliquidone). Lastly, glimepiride, a
third-generation sulfonylurea, was introduced in 1995 in the
United States (Tan and Nelson, 1996).

Glinides are insulin secretagogues that lack the sulfamide group
of the sulfonylureas and differ from sulfonylureas in receptor
affinity, binding sites, duration of action and mechanism of
absorption and elimination (Culy and Jarvis, 2001). Three
glinides have been approved for use: repaglinide, nateglinide, and
mitiglinide.

According to data from several meta-analyses, an overall
increased cancer risk was reported in patient using sulfonylureas
compared with those treated with metformin or other diabetes
medications (Wu et al., 2015; Sacks et al., 2018; Mekuria et al.,
2019; Chen Y. et al., 2023b). A meta-analysis of 8 studies (3 cohort
studies, 3 case-control studies and 2 clinical trials) failed to
demonstrate any association between glinides and risk of cancer
(Wu et al., 2015).

As concern TC, a recent study by Tseng et al. suggest that among
the anti-diabetic agents, only sulfonylurea, and not insulin, was
significantly associated with higher risk of TC (Tse and ng, 2012).
Hyperinsulinemia or insulin resistance alone might not be
responsible for thyroid cell proliferation in patients with type
2 diabetes. A possible explanation could be related to the
different effects of insulin on the thyroid gland. Insulin may
increase thyroid hormone transcriptional action and reduce TSH
level probably through the effect of hypoglycemia on pituitary-
thyroid secretory activity (Hu et al., 1994; Schultes et al., 2002). On
the other hand, first-generation sulfonylureas have been well known
to exert anti-thyroidal effects and may be goitrogenic in animals or
human (Hershman and Konerding, 1968; NIKKILA et al., 1960). It
is possible that higher level of TSH, even within the normal range,
may increase the risk of TC (Kim et al., 2013).
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Conclusion

The present review encompassed a roundup of studies on the
anti-cancer effects of several anti-diabetic compounds in TC. Some
of these compounds not only directly affect TC cells by reducing
their viability, proliferation, or their ability to migrate to the
metastatic side, but also indirectly affect cancer progression by
regulating the secretion of pro-tumorigenic chemokines in the
TC microenvironment. The reduction of pro-tumorigenic
chemokines within and surrounding the thyroid tumor
microenvironment is of benefit for counteracting cancer
progression. Among the here reported anti-diabetic compounds,
it looks like metformin, given its numerous anti-cancer effects which
include reduction of cell growth, promotion of cell death, and
reduction of cell migration as well as modulation of TC
microenvironment component could be of interest for a potential
repositioning. Indeed, metformin shows few side effects and
encouraging data observed in vitro and in vivo on TC models. In
addition to metformin, other anti-diabetic drugs belonging to other
classes, like TZDs and DPP-4 inhibitors showed encouraging results.
In this view, it would be of interest to investigate the potential
combinatory anti-cancer effects of these compounds. It is important
to highlight that not all anti-diabetic drugs appear suitable for
repositioning given their potential pro-tumorigenic effects.The
effects of anti-diabetica drugs in thyroid cancer are summarized
in Figure 1. The example of GLP-1 and medullary TC, although not
definitely proven in humans, highlights that anti-diabetic drug
repositioning needs to be evaluated specifically for each molecule.

In this view, trials aimed at testing the potential repositioning of
these compounds should be designed by also taking into account the
mechanism of action of single drugs and potential combination with
other drugs or molecules.
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