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Background:Hepatocellular carcinoma (HCC) originates from Epithelial cells, and
epithelial lineage plasticity has become a promising research direction for
advancing HCC treatment. This study aims to focus on Epithelial cells to
provide target insights for detecting HCC prognosis and response to drug therapy.

Methods: Single-cell RNA sequencing (scRNA-seq) data from GSE149614 were
clustered using Seurat, and the differentiation and evolution of epithelial cells were
analyzed by Monocle 2. Scissor+ and Scissor− Epithelial cells associated with the
prognostic phenotypes of bulk RNA-seq of HCC were screened using the Scissor
algorithm for differential analysis to screen candidate genes. Candidate genes
were overlapped with prognostic related genes screened by univariate Cox
regression, and the Least Absolute Shrinkage and Selection Operator (LASSO)
sparse penalty was imposed on the intersection genes to construct a risk
assessment system.

Results: Eightmajor cell subpopulations of HCCwere identified, amongwhich the
proportion of epithelial cells in non-tumor liver tissues and HCC tissues was
significantly different, and its proportion increased with advanced clinical stage.
During the progression of HCC, the whole direction of epithelial cells
differentiation trajectory was towards enhanced cell proliferation. Differential
analysis between Scissor+ and Scissor− epithelial cells screened
1,265 upregulated and 191 downregulated prognostic candidate genes.
Wherein, the upregulated genes were enriched in Cell processes, Genetic
information processing, Metabolism and Human disease with Infection.
Nevertheless, immune system related pathways took the main proportions in
downregulated genes enriched pathways. Therewere 17 common genes between
upregulated candidate genes and prognostic risk genes, of which CDC20, G6PD
and PLOD2 were selected as components for constructing the risk assessment
system. Risk score showed a significant correlation with tumor stage, epithelial-
mesenchymal transition (EMT) related pathways and 22 therapeutic drugs, and
was an independent prognostic factor for HCC.
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Conclusion: This study revealed the cellular composition of HCC, the
differentiation evolution and functional landscape of epithelial cells in the
further deterioration of HCC, and established a 3-gene risk model, which was
closely related to clinical features, EMT, and drug sensitivity prediction. These
findings provided insights in patient prognosis and drug therapy detection for HCC.

KEYWORDS

hepatocellular carcinoma, epithelial cells, differentiation, scissor algorithm, risk
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Introduction

Hepatocellular carcinoma (HCC) is a major liver tumor that
threatens the lives of many people with poor prognosis around the
world, accounting for 5% of all incident cases and 8.4% of all deaths
due to cancer worldwide (Moon et al., 2020; Shu et al., 2022;
Alqurashi et al., 2023; Romualdo et al., 2023). The little
improvement in prognosis of HCC patients over the past
15 years is mainly attributed to inadequate monitoring of risk
individuals and advanced tumor manifestations, with no effective
treatment to achieve long-term survival of patients (Ogunwobi et al.,
2019; Ahn et al., 2021; Huang et al., 2023). New biomarkers are
needed to improve HCC detection, prognosis, treatment response
prediction, and disease monitoring during therapy.

A healthy liver is static on mitosis, but after toxic injury or
resection, cells can quickly enter the cell cycle to restore liver quality
and function (Campana et al., 2021). Indeed, there is a high degree of
plasticity among Epithelial cells, hepatocytes and biliary epithelial
cells in mammalian liver, which is related to the mechanism of tissue
repair mechanisms and liver lesions such as cancer (Johnson, 2019).
During HCC progression, the transition of epithelial cells to a
mesenchymal phenotype exacerbates the motility and
invasiveness of various epithelial cell types (Jayachandran et al.,
2016). In this context, the scientific community believes that
advances in the field of Epithelial cell plasticity may hold great
promise for the development of therapies for HCC patients (Ko
et al., 2020). It is also worth mentioning that the concept of
numerous markers of Epithelial cells as therapeutic targets for
liver cancer has been demonstrated in preclinical studies, such as
CXCL5 combing with CXCR2 promoted epithelial-mesenchymal
transition (EMT) via PI3K/Akt/GSK-3β/Snail signaling (Xia et al.,
2015; Zhou et al., 2015), Keratin 1 (Ogunnigbagbe et al., 2022), p63,
the isoforms of which were related to tumor recurrence and reduced
survival (Gonzalez et al., 2017), E-cadherin (Nakag et al., 2014),
EpCAM, a latent marker for cancer stem cells, was reported to be
intensely correlated with unfavorable clinical prognosis in HCC
(Gerlach et al., 2018; Park et al., 2020). However, the cellular and
molecular mechanisms of Epithelial involvement in HCC remain
unclear.

Single cell RNA sequencing (scRNA-seq) technology based on
high-throughput sequencing at a single-cell resolution has been
widely recognized as feasible and advantageous in dissecting tumor
heterogeneity and analyzing the cellular mechanism and
differentiation of important cell subsets (Ho et al., 2019). For
example, a recent study in bladder cancer correlated scRNA-seq
data disclosed the relationship between molecular and clinical
features, guiding molecular diagnosis and targeted therapy

(Robertson et al., 2017). In the meantime, scRNA-seq is also
applied to assess the effectiveness and safety of new drugs in
clinical trials (Srivatsan et al., 2020). In this study, we aimed to
explore the heterogeneity of HCC at the single-cell level, select
epithelial cells to explore their differentiation evolution, and
combine the analysis of bulk RNA-seq data of HCC to identify
novel biomarkers of HCC to predict prognosis and response to drug
therapy.

Materials and methods

Study omics of human liver cancer tissues

The omics data downloaded in this study included scRNA-seq
omics data and bulk RNA-seq omics data. ScRNA-seq omics data
were obtained from the Gene Expression Omnibus (GEO) database
under accession number GSE149614, which gives 70,000 single-cell
transcriptomes for 10 HCC patients from four relevant sites:
primary tumor, portal vein tumor thrombus (PVTT), metastatic
lymph node and non-tumor liver. The bulk RNA-seq omics data
were obtained from three different data sources, one was the TCGA-
LIHC dataset (n = 342) in The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/) (Yan et al., 2022), one was
the ICGC-LIRI-JP dataset (n = 212) from the Hepatocellular
Carcinoma Database (HCCDB) database (http://lifeome.net/
database/hccdb/), another one was the GSE14520 dataset (n =
221) from the GEO database.

Standard processing and clustering of
scRNA-seq

ScRNA-seq data were read with the use of the Seurat package
(Butler et al., 2018), and only cells with a gene number between
200 and 8,000 and a mitochondrial gene proportion of less than 10%
were retained. SCTransform function was utilized to normalize the
single-cell UMI count data based on a negative binomial regression
model with regular parameters to remove the influence of deep
sequencing. The RunHarmony function was used to set default
parameters to integrate the transformed data and correct for batch
effects. Then, with the aid of RunUMAP function, the dimension of
Uniform Manifold Approximation and Projection (UMAP) was
reduced, and FindClusters was used to perform graph-based
clustering on the neighbor graph constructed by the
FindNeighbors function call. The parameters of the two functions
were set to dims = 1:30 and resolution = 0.05, respectively. The cell
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identity of each cluster was obtained by referring to the cell marker
resources provided by the CellMarker database.

Construction of pseudotime trajectory

Monocle 2 applies recently developed machine learning strategy
that was described as reversed graph embedding (RGE) to accurately
reconstruct complex single-cell trajectories (Qiu et al., 2017). We
used monocle2 to read the count data of epithelial cells in the
expression matrix, merged the phenotype information of the cells,
used newCellDataSet function to construct cds objects, and filtered
out the genes expressed in less than 10 cells. Then, the
differentialGeneTest function (fullModelFormulaStr = "~ site")
was adopted to calculate the differentially expressed genes
(DEGs) between the primary tumor and metastatic samples of
HCC patients. Using the reduceDimension function and setting
the parameters max_components = 2, method = "DDRTree” to
reduce the dimension, and under the control of the orderCells
function, the cells were sorted and the trajectory was constructed.
In particular, the branch of the primary tumor was set here as the
starting point of the trajectory.

Differential expression analysis between
trajectories branches

Monocle 2 provides Branched Expression Analysis Modeling
(BEAM) method to analyze the branching of cell data and
designated nodes to identify DEGs related to branching, and
heatmap was generated using plot_genes_branched_heatmap to
identify DEGs associated with clades. The plot_genes_branched_
pseudotime function was also applied to visualize the expression of
the interested genes at the branch point.

Capture of prognostic associated cells

Scissor is amethod for quantifying the similarity between single-cell
and batch data by measures such as Pearson’s correlation for each pair
of cells and batch samples to identify cell subsets from single-cell data
associated with a given phenotype (Kearnes et al., 2014; Sun et al., 2022).
The novelty of Scissor lies in its use of phenotypic information from
bulk data to identify highly correlated cell subpopulations with diseases,
thereby revealing disease mechanisms and improving disease diagnosis
and treatment. The bulk expression matrix of TCGA-LIHC, ICGC and
GSE14520 and the single-cell expression matrix of GSE149614 were
input in Scissor to screen out the cell subsets related to prognostic
phenotypes in HCC patients, and further classified them into Scissor+
and Scissor-cell subgroups.

Differential expression analysis of Scissor
groups based on subgroups associated with
prognostic phenotypes

The FindMarkers function in Seurat was used to identify
DEGs between Scissor+ and Scissor− cell subgroups. The R

package RobustRankAggreg (Ogunwobi et al., 2019) then
integrated the rankings of logFC values to obtain a
comprehensive ranking list for each bulk RNA-seq cohort.
Genes that showed the same trend of differential expression in
the three cohorts and had an RRA score less than 0.05 were
considered as candidate genes.

Construction of regression model

Univariate Cox regression of clinical survival data was
performed in the three bulk RNA-seq cohorts to screen genes
with p < 0.05 as prognostic related genes for HCC. The common
prognostic risk genes (HR > 1) in the three bulk RNA-seq cohorts
were used for overlap analysis with the candidate genes. LASSO
sparse penalty was imposed on the overlapping genes, with high
confidence to select the most important genes for the prognosis of
HCC to build a risk regression model.

Drug sensitivity analysis of the risk
regression model

The expression matrix of HCC in the TCGA-LIHC cohort was
used as training data to predict drug response using the R package
oncoPredict. The correlation between the half maximal inhibitory
concentration (IC50) values of the resulting drugs and the risk
regression model was analyzed by Spearman correlation test, in
which the false discovery rate (FDR) was adjusted by Benjamini and
Hochberg, and FDR <0.05 and | cor | > 0.5 was defined as a
significant correlation.

Statistical analysis

All statistical analyses were processed using R software.
Functional enrichment analyses were processed in
clusterProfiler. The analysis to evaluate the regression model
included Kaplan-Meier survival analysis and Receiver Operating
Characteristic (ROC) analysis, which were performed by the
“survival” package and “pROC,” respectively. Differences
between two groups of continuous variables were assessed
using the Wilcoxon rank-sum test, and differences between
more than two groups of variables were compared using the
Kruskal–Wallis test. The p-value for significance in this study was
set at < 0.05.

Results

Single-cell landscape of human HCC

After the standard processing pipeline of scRNA-seq, cell
clustering and annotation, a total of eight types of cell clusters
were identified in the HCC of GSE149614. In terms of the
distribution of 8 types of cells in different tissues of different
origins, non-tumor liver distributed 27,510 cells, primary tumor
distributed 31,491 cells, portal vein tumor thrombus (PVTT)
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distributed 5,426 cells, and portal vein tumor thrombus (PVTT)
distributed 5,426 cells, the metastatic lymph nodes distributed
2,674 cells (Figure 1A). Each has its own specifically expressed
genes, shown in Figure 1B. After our statistical analysis, we found
that the proportion of NK/T cells in primary tumor, PVTT and
metastatic lymph node tissues was greatly reduced compared
with non-tumor liver tissues. However, the proportion of
hepatocyte cells and epithelial cells increased significantly
(Figures 1C, D, F). Differences in the distribution of cell types
were also observed among stages I-IV, and the proportion of
epithelial cells increased with the advance of clinical stage
(Figure 1E). Through the single-cell landscape analysis we
revealed epithelial cells seemed to occupy an important
position in the development of HCC.

Differentiations of epithelial cell subsets in
the progression of hepatocellular carcinoma

Given the difference in the proportion of epithelial cells
between non-tumor liver tissues and HCC tissues, and the
tendency for the proportion to increase with clinical stage, ee
extracted epithelial cells from the two HCC samples with the
highest percentage of epithelial cells, primary tumor of HCC08,
primary tumor and metastatic lymph nodes of PVTT and
HCC10 were included. Monocle2 was used to explore the
dynamic changes of gene expression in epithelial cells during
the development and progression of HCC, it was found that
there were two different fates of epithelial cells in the evolution
from primary tumor to PVTT (Figures 2A–C): One of them

FIGURE 1
Single-cell profiles of human HCC (A) Visualization of UMAP plot of 8 types of cells in non-tumor liver, primary tumor, PVTT, and metastatic lymph
node tissue. (B) Bubble plot of marker gene expression of cells with different identities. (C) The proportion of cells with eight identities in each tissue. (D)
Proportional distribution of cells with eight identities in different HCC tissue types. (E) The percentage of cells with 8 identities was judged according to
clinical stage grouping. (F) Statistical table of the proportion of cells with 8 identities in different HCC tissue types.
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showed a gradual weakening of inflammatory response, T cell
activation and proliferation, and the other showed a gradual
strengthening of cell proliferation and metabolism (Figure 2G).
Epithelial cells in the process of developing from primary tumor
to metastatic lymph nod also had two differentiation
trajectories (Figures 2D–F): one was the gradual
improvement of RNA catabolic, protein localization and
protein translation ability, the other one was a tendency to
weaken the strength of the immune response and the cellular
response to hypoxia (Figure 2H). We also found that the

expression of IFI27, a differential gene between branches,
was significantly higher in the differentiation pathway along
cell fate 2 than in the differentiation pathway along cell fate 1.
Two others branched DEGs, MMP1 and MMP10, were also
presented during the differentiation of epithelial cells from
primary tumor to metastatic lymph nod (Figure 2I). These
findings confirmed the action of Epithelial cells on cell
proliferation, and forced us to propose a hypothesis that
Epithelial cells may have an inhibitory effect on
inflammatory response targeting HCC.

FIGURE 2
Differentiation of epithelial cell subsets in the progression of hepatocellular carcinoma (A–C) Epithelial differentiation trajectories during the
evolution from primary tumor to PVTT, colored according to site, cell state, and pseudotime, respectively. (D–F) Epithelial differentiation trajectories
during progression from primary tumor to metastatic lymph nod, colored according to site, cell state, and pseudotime, respectively. (G) The expression
trend and enriched biological processes of DEGs between the branches of epithelial cells produced in the evolution from primary tumor to PVTT. (H)
Changes in the expression and enriched biological processes of DEGs between the branches of epithelial cells produced during the development from
primary tumor to metastatic lymph nod. (I) Expression profile of DEGs between branches along epithelial differentiation trajectories.

Frontiers in Pharmacology frontiersin.org05

Qi and Zhang 10.3389/fphar.2023.1292831

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1292831


Identification of prognostic associated
epithelial cell populations and genes

The epithelial cells in each primary tumor were selected and labeled
according to their stage, and we found that the samples in stage Ⅰmainly

included HCC01, HCC02 and HCC03. HCC04 was at stage Ⅱ, HCC05,
HCC06, HCC07 and HCC08 were at stage Ⅲ, and HCC09 and
HCC10 were at stage Ⅳ (Figures 3A, B). Using the Scissor
algorithm, we identified prognostic phenotypes-related Scissor+ and
Scissor-epithelial cells, including 447 Scissor + cells and 184 Scissor-cells

FIGURE 3
Identification of prognostic associated epithelial cell populations and genes (A) The UMAP plot of the epithelial cells stained according to the origin
of sample. (B) UMAP plot of epithelial cells colored according to sample stage. (C) Functional enrichment analysis of 1,265 upregulated prognostic
candidate genes. (D) Functional enrichment analysis of 191 downregulated prognostic candidate genes.
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associated with the prognostic phenotypes of TCGA-LIHC, 673 Scissor
+ cells and 131 Scissor-cells associated with prognostic phenotypes of
ICGC, 877 Scissor + cells and 10 Scissor-cells associated with prognostic
phenotypes of GSE14520. Differential analysis between Scissor+ and
Scissor− epithelial cells screened 1,456 DEGs, including
1,265 upregulated prognostic candidates and 191 downregulated
prognostic candidates. We found that the upregulated genes were
mainly enriched in Cell processes (cell cycle), Genetic information
processing (RNA transport, Ribosome, etc.), Metabolism (Biosynthesis
of amino acids) and Human disease with Infection (Herpes simplex
virus 1 infection). As for enriched pathways with downregulated genes,
immune system related pathways (Cytokine-cytokine receptor

interaction, Leukocyte transendothelial migration) and Human
disease with Infection (Human cytomegalovirus infection and
Human immunodeficiency virus 1 infection, etc.) took the main
proportions. Collectively, the most significantly correlated pathways
were those favoring cancer progression (Figures 3C, D).

Derivation and validation of a prognostic
assessment formula

Using univariate Cox regression analysis, we obtained
prognostic risk genes in the TCGA-LIHC, ICGC and

FIGURE 4
Derivation and validation of a prognostic assessment formula (A,B) LASSO sparse penalty was imposed on 17 gene. (C) The LASSOCox coefficients of
3 genes selected by stepwisemultifactor regression analysis. (D)ROC analysis and Kaplan-Meier survival analysis of the prognosis evaluation system in the
TCGA-LIHC cohort. (E) ROC analysis and Kaplan-Meier survival analysis of the prognostic evaluation system in the ICGC cohort. (F) ROC curve and
Kaplan-Meier curve of the prognostic evaluation system for the prognosis of patients in the GSE14520 cohort.
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GSE14520 cohorts, which were overlapped with 1,265 upregulated
prognostic candidate genes, and 17 genes were found in the
overlapping part, including NCAPG, NCL, DBF4, ENO1,

KIF20A, RAN, MRTO4, CDC20, CDK1, UBE2C, CCNB1,
STMN1, CCT6A, DLGAP5, G6PD, SSB, PLOD2. LASSO sparse
penalty was imposed on them, and eight genes had nonzero

FIGURE 5
Risk score and clinical characteristics in predicting the prognosis of HCC and the relationship between them (A–C) Univariate and multivariate Cox
regression analyses of clinical characteristics and risk scores in the TCGA-LIHC dataset, ICGA and GSE14520 cohorts. (D) Bar and violin plots to explore
the association of risk score with stage and grade in TCGA-LIHC. (E) Stage distribution of high-risk and low-risk groups in the ICGC dataset and risk scores
of samples in each stage. (F) Stage of samples grouped by risk score and risk score of samples grouped by stage in the GSE14520 dataset.
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coefficients (Figures 4A, B). In order to obtain the most
parsimonious model with adequate fitting degree, stepwise
multivariate regression analysis was performed, and three genes
(CDC20, G6PD and PLOD2) were selected as components for the
construction of risk assessment formula (Figure 4C). LASSO gave
the coefficient for each gene, and the risk formula was: Risk Score =
+0.1424668*CDC20 + 0.1886310*G6PD+0.2367155 *PLOD2. The
risk score was calculated in the bulk RNA-seq cohort of each HCC
and prognosis was predicted. The risk score showed a significant
inverse correlation with overall survival (OS). The accuracy of risk
score in predicting prognosis was also tested by ROC curve. For 3-
year OS, the area under the ROC curve (AUC) of the TCGA-LIHC,
ICGC, and GSE14520 cohorts were 0.71, 0.75, and 0.7, respectively,
indicating high prognostic accuracy of the model (Figures 4D–F).

Risk score and clinical characteristics in
predicting the prognosis of HCC and the
relationship between them

Univariate and multivariate Cox regression analyses of risk score
and clinical factors were performed in 3 bulk RNA-seq cohorts of HCC
to determine independent variables predicting HCC prognosis. Among
the four clinical variables and risk scores provided by the TCGA-LIHC
dataset, stage and risk score were independent variables that could
independently predict HCC prognosis (Figure 5A). Univariate and
multivariate Cox regression analysis based on clinical data and risk
score in ICGA identified stage, gender and risk score as independent
prognostic factors for HCC (Figure 5B). The conclusion obtained in the
GSE14520 cohort was the same as that in the TCGA-LIHC dataset, that
stage and risk score were independent prognostic predictors of HCC
(Figure 5C). By correlating these independent prognostic variables, risk
score and stage in TCGA-LIHC were found influence each other, and
the proportion of stage Ⅲ samples in the high-risk group was
significantly higher than that in the low-risk group. The risk score
of samples in stageⅢwas significantly higher than that in stage Ⅰ. Grade
also showed a significant correlation with risk score. The proportion of
G3-G3 patients composing the high-risk group was significantly higher
than that of G3-G4 patients composing the low-risk group. Risk score
were analyzed in each grade, and it was found that the risk scores of
samples in G3 and G4 groups were significantly higher than those in
G1 and G2 groups (Figure 5D). The high-risk and low-risk groups in
the ICGC dataset did not show significant differences in stage
distribution. However, the risk score of stage Ⅳ samples was
significantly higher than that of stage Ⅰ-stage Ⅱ samples (Figure 5E).
In the verification set GSE14520, stage was very significantly associated
with risk score. Specifically, the proportion of stage Ⅲ in the high-risk
group was significantly higher than that in the low-risk group, and the
risk score increased with the increase of risk score (Figure 5F).

Association of risk score with key biological
processes occurring in cancer progression

The association between the risk score and pathophysiological
events or carcinogenic factors occurring during cancer progression,
including epithelial-mesenchymal transition (EMT), vascular
stability, and hypoxia, was investigated. We found that EMT

related VEGF signaling pathway displayed significant enrichment
score between high and low risk groups (Figure 6A). Then, the
expression levels of VEGF-related genes were compared between
high-risk and low-risk samples in the three datasets. VEGFA and
VEGFB were more expressed in high-risk samples, and FLT4 was
more expressed in low-risk samples (Figure 6C). CLDN5, JAM2 and
TIE1 in vascular stability-related genes also showed significant
negative correlation with risk score in TCGA-LIHC and
GSE14520 datasets. Paradoxically, PCDH12 showed opposite
trends in ICGC datasets and GSE14520 datasets, positively
correlated with risk score in the former dataset, and negatively
correlated with risk score in the latter dataset (Figure 6B). As a close
connection between VEGF signaling pathway and Hypoxia in
cancer development (Florentin et al., 2022), Hypoxia-related
genes were also compared between high-risk and low-risk
samples, and it is certain that HIF1A expression was significantly
higher in high-risk samples than in low-risk samples (Figure 6D).
Based on the above results, it was speculated that the risk score may
partly affect the cancer progression.

The relationship between risk score and
drug therapy

The IC50 value of each drug in the samples in TCGA-LIHC was
calculated, and a total of 22 drugs were found to be significantly
correlated with risk score. The IC50 values of 21 drugs were
significantly negatively correlated with risk score, which may be
more suitable for the treatment of HCC patients with high-risk score
such as Vincristine, Vinblastine, Paclitaxel, Daporinad, Bortezomib
and Axitinib, which are commonly used chemotherapy drugs for
HCC. The IC50 value ofSB505124, an inhibitor for TGFβ receptor
was more suitable for the treatment of patients with low-risk score
(Figure 7).

Discussion

HCC originates from Epithelial cell population and consists of
tumor cells, basement membrane, and surrounding stroma
(Holczbauer et al., 2022; Yao et al., 2023). The phenotype
appears to be closely associated with specific gene mutations,
tumor subsets, and/or oncogenic pathways (Calderaro et al.,
2019). In this study, we first focused on the composition
landscape of cells in HCC under its tissue background, and
emphasized the differentiation trajectory and functional influence
of Epithelial cells, which was driven by the great regenerative
potential of the liver, and its repair ability was mainly attributed
to the ability of differentiated Epithelial cells, hepatocytes and biliary
Epithelial cells to proliferate after injury (Ko et al., 2020).

The discovery of the hepatocyte profile will help decipher the
molecular and cellular mechanisms that drive the healthy liver into
disease states, provide insights into the detection of novel
therapeutic targets, and pave the way for effective disease
interventions (Ma et al., 2021). We deciphered the heterogeneity
of HCC at the single cell level and identified 8 cell types. The
proportion of Epithelial cells in HCC tissues increased with the
increase of clinical stage. We also detected two distinct fates of
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epithelial cells during the evolution from primary tumor to PVTT,
one showing a trend toward progressively diminished immune
activity and the other showing a trend toward increased

proliferative and metabolic capacity of the cells similar to
Heparanase/Syndecan-1 Axis (Yu et al., 2022). Epithelial cells
during the progression from primary tumor to metastatic lymph

FIGURE 6
Association of risk score with key biological processes occurring in cancer progression (A) Relationship between EMT-related pathways and risk
score in TCGA-LIHC, ICGC and GSE14520 datasets. (B) Relationship between vascular stability-related genes and risk score in TCGA-LIHC, ICGC and
GSE14520 datasets. (C) Differential expression of VEGF-related genes between high-risk and low-risk samples in the three datasets. (D) Differential
expression analysis of Hypoxia-related genes between high-risk and low-risk samples in the three datasets. * and ns denote p-value, * <0.05, * *p <
0.001, *p < 0.0001, the ns was no significant difference.
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nod also had two differentiation trajectories, one phenomenon was the
gradual improvement of RNA catabolic, protein localization, and
protein translation, the other was the attenuation of immune
response and cellular response to hypoxia, which reflects the
dynamic pathophysiological regulation of Epithelial differentiation in
the deterioration of HCC.

Techniques such as single-cell omics in combination with molecular
and functional studies will help reveal the remaining unknowns in this
field (Gadd et al., 2020). This study linked scRNA-seq analysis with the
molecular and functional studies of bulk RNA-seq to exploremore effects
of epithelial cells onHCCusing an algorithm called Scissor, which has not
beenwidely used in combined scRNA-seq and bulk RNA-seq studies.We

FIGURE 7
Correlation between risk score and IC50 value of drugs.
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found the prognostic candidate genes in each bulk RNA-seq dataset, and
finally screened 3 upregulated prognostic candidate genes to develop the
risk assessment system. Cell division cycle 20 homologue (CDC20) is a
cell cycle regulator that controls the correct segregation of chromosomes
during mitosis (Bruno et al., 2022). CDC2 has oncogenic properties and
also regulates anticancer drug responses, and is considered an emerging
target for cancer therapeutic intervention (Jeong et al., 2022; Wavelet-
Vermuse et al., 2022) Additionally, CDC20 was reported to be related to
immune infiltration in cancer. For example, a positive relationship of
CDC20 with the infiltration of CD8+ T cells, CD4+ T cells, as well as
natural killer cells in HCC was observed (Lai et al., 2021; Xiong et al.,
2021). These findings indicated that CDC20 could be a promising target
for HCC therapy in terms of cell cycle inhibition or studying tumor
immune vaccine (Wang et al., 2022). Glucose-6-phosphate
dehydrogenase (G6PD) is a rate-limiting enzyme in pentose
phosphate pathway (PPP), which induces EMT by activating signal
transducer and activator of transcription 3 (STAT3) pathway, thus
promoting the metastasis of HCC cells (Lu et al., 2018). G6PD also
has the properties of vascular regulation and participates in the metabolic
adaptation of hypoxia (Baptista et al., 2022). More importantly, G6PD
related inhibitors are being studied for cancer treatment.We believed that
this newly found gene in HCC may also expand the treating method for
HCC. PLOD2 expression was identified as a significant, independent
factor of poor prognosis by the study of Noda et al. (2012). PLOD2 is
induced by hypoxia and affects chemotherapy resistance in biliary tract
cancer patients through EMT (Okumura et al., 2018). Moreover, several
pharmacological inhibitors of PLOD2 have been proved to have anti-
metastatic effects (Du et al., 2017). Collectively, these three genes are
prospective drug research targets for HCC treatment. In the future, the
expression levels of these three genes on mRNA and protein should be
validated first combined with exploring their functions on cell cycle,
metastasis or metabolism under hypoxia environment. In the present
study, the risk assessment system considering these 3 genes
simultaneously also did show significant correlations with VEGFA
and VEGFB, some vascular stability-related genes, and hypoxia-related
genes. The risk assessment system also coordinates the treatment
response of the 22 drugs, which may also aid in the screening of
patient treatments.

Conclusion

In conclusion, this study used the analysis strategy of scRNA-seq
and bulk RNA-seq data to reveal the cellular composition of HCC,
differentiation, evolution and functional landscape of epithelial cells

in HCC, provide a prognostic model of HCC, and give our insights
in the detection of drug therapy for patients.
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