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Introduction: SARS-CoV-2 is a novel coronavirus with highly contagious and has
posed a significant threat to global public health. The main protease (Mpro) is a
promising target for antiviral drugs against SARS-CoV-2.

Methods: In this study, we have used pharmacophore-based drug design
technology to identify potential compounds from drug databases as Mpro

inhibitors.

Results: The procedure involves pharmacophore modeling, validation, and
pharmacophore-based virtual screening, which identifies 257 compounds with
promising inhibitory activity.

Discussion: Molecular docking and non-bonding interactions between the
targeted protein Mpro and compounds showed that ENA482732 was the best
compound. These results provided a theoretical foundation for future studies of
Mpro inhibitors against SARS-CoV-2.
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1 Introduction

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that
is highly contagious and poses a significant threat to global public health (Chan et al., 2020;
Scheen et al., 2020). In December 2019, this disease was initially started in the local seafood
market in Wuhan, China, and then spread across the globe rapidly in a catastrophic effect. The
disease is characterized by severe respiratory disorders having flu-like symptoms, such as sore
throat, fever, dry cough, shortness of breath, and severe pneumonia (CSGotICoTo, 2020; Dinda
et al., 2022). Existing data show that, in addition to the respiratory system, SARS-CoV-2 can also
cause disease symptoms in the cardiovascular system, nervous system, gastrointestinal tract, and
even eyes, and in critical cases, that lead to several organ failures and ultimately death (Hassan
et al., 2021). The possible main route of transmission is thought to be close contact and
respiratory droplets secreted by the patient during coughing, sneezing, breathing and even
normal speech and studies have shown that the virus may also be transmitted via the fecal-oral
route (Falahi and Kenarkoohi, 2020; Iwamoto et al., 2022; Targoński et al., 2022).

The COVID-19 pandemic is almost over. However, effective treatments and drugs for the
disease have yet to emerge. Although many countries have successfully developed new
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coronavirus vaccines, the number of new infections worldwide steadily
increases daily (Duan et al., 2022; Espeseth et al., 2022). At present,
active prevention and isolation works are the most basic ways and
means for people to deal with the epidemic. However, with the
continuous development of the epidemic, new pathogenic
characteristics have emerged one after another, and most patients
have no apparent symptoms at the initial stage of infection or are
even asymptomatic, which makes it more difficult to control the large-
scale outbreak of the epidemic by isolating patients (van der Toorn et al.,
2021). This situation has intensified the urgency of effective drug
research and development, and finding effective drugs is one of the
main focus points in the current pharmaceutical research and
development field.

The key to responding to this outbreak is to analyze SARS-CoV-
2 at the molecular level, to fundamentally elucidate the pathogenic
mechanism of the virus and the binding process of the virus and host
cells, and to take timely and effective preventive and therapeutic
countermeasures (Wang and Zhang, 2020). SARS-CoV-2 particles are
visibly round or oval, and their diameter is between 60–140 nm,
because their surface is uneven and their appearance is shaped like a
crown, so it is called coronavirus. As shown in Figure 1 (Chitranshi
et al., 2020), its surface is surrounded by lipid membranes, Spike
protein (S), Membrane protein (M), Envelope protein (E), and
Nucleocapsid protein (N). Some studies have shown that with the
exact infection mechanism as SARS-CoV, SARS-CoV-2 also uses the
spike glycoprotein on its surface to bind to receptors on the surface of
host cells and then enter cells through endocytosis (Imai et al., 2005;
Zhou et al., 2020). Therefore, the S protein somewhat determines the
host’s range. M proteins, E proteins and N proteins are attached to
host receptors, bind to host nucleocapsid proteins, and play roles in
multiple processes such as the assembly and release of viral genes,
which is the key for viruses to attach to host receptors and enter target
cells, that is, the key to the pathogenic mechanism of viruses After the
virus enters the cell, it immediately releases its protein coat and single-
stranded RNA encoding its genetic material. The released RNA is
immediately bound to the ribosome in the host cell and translated into
functional proteins necessary for its replication, and these proteins
include main protease (Mpro), 3-chymotrypsin-like protease (3CLpro),
Pain-like protease (PLpro) and RNA-dependent RNA polymerase

(RdRp) (Ibrahim et al., 2021). Among them, Mpro generates
proteases necessary for subsequent viral RNA replication by
promoting the cleavage of polyproteins to ensure the transcription
and replication of viral RNAs in host cells and finally release them
outside the host cells (Zhang et al., 2020; Das et al., 2021; Khan et al.,
2021). Through this pathogenic process, treating patients can be
achieved by inhibiting the production of proteases required for the
virus’s replication.

In general, all proteases that play a role in the viral life cycle can
serve as targeting proteins for antiviral drugs, but by contrast, the Mpro

plays an indispensable role (Mehmood et al., 2022). Among the many
coronaviruses studies, Mpro is currently the most studied protease target
(Adem et al., 2022). Mpro is fully conserved in all released SARS
coronavirus genome sequences, highly homologous to Mpro of other
coronaviruses, and has no human homolog (Amin et al., 2021; Pelly and
Liotta, 2021; Qiao et al., 2021). Many other Mpro inhibitors of
coronaviruses can be used to study Mpro inhibitory activity against
SARS-CoV-2, some of which are being tested clinically. If some show
activity against SARS-CoV-2, they could be rapidly developed against
SARS-CoV-2 drugs. The three-dimensional crystal structure ofMpro has
been analyzed. Based on its highly conserved three-dimensional
structure, compounds with potential inhibitory effects on Mpro can
be obtained by virtual screening of pharmaceutical databases (Li et al.,
2022). Therefore, SARS-CoV-2 Mpro is a crucial target for structure-
based anti-SARS-CoV-2 drug design.

Computer-aided drug design (CADD) has been widely used in
predicting drug-target interactions and evaluating drug safety (Sabe
et al., 2021). By simulating the interaction between the compound
and the target protein by computer, the compound molecules that
have specific effects on the target protein can be screened from
thousands or even tens of thousands of drug molecules. On the one
hand, the fortuity in traditional experiments is excluded, and on the other
hand, the efficiency of the experiment is greatly improved. It is possible to
obtain results that cannot be obtained in traditional experimental
analysis, thereby improving clinical efficiency and production
efficiency for drug discovery and development, significantly saving
time, labor, and money. During epidemics, drug repurposing by
testing broad-spectrum drugs already used for other coronavirus
infections is a fast and feasible approach (Hung et al., 2020). The
research in this paper mainly uses CADD, combined with the
compounds that have been proven to be inhibitory to Mpro, based on
the three-dimensional structure of Mpro, to screen and design potential
compound molecules with inhibitory activity to SARS-CoV-2 Mpro. This
article targets SARS-CoV-2 Mpro and uses Discovery Studio 2020 (DS
2020) to achieve high-throughput molecular docking. Pharmacophore
models of compounds with inhibitory effects on major proteases were
constructed, and candidate compounds with inhibitory activity against
SARS-CoV-2Mpro were identified through virtual screening of databases
and molecular docking.

In conclusion, because of the current critical situation of the
COVID-19 epidemic, this study provides scientific theoretical
guidance for researching specific anti-SARS-CoV-2 drugs by
studying specific targeted inhibitors of the SARS-CoV-2, combined
with the CADDmethod. This paper closely combines the development
direction of the discipline, focuses on solving the problems that people
are urgently concerned about, and provides a theoretical basis for the
research and development of new coronavirus drugs, which are of great
significance to the healthy development of human beings.

FIGURE 1
The structural pattern diagram of SARS-CoV-2 (Chitranshi et al.,
2020).
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2 Materials and methods

2.1 Protein target preparation

First, the researchers prepared the X-ray crystal structure of the
Mpro (PDB ID: 7BE7) (Costanzi et al., 2021). We downloaded the

protein three-dimensional crystal structure with good resolution
(1.68 �Å) from the protein database (RCSB) (http://www.pdbus.org).
Target protein Mpro was pretreated with “Clean Protein” and “Prepare
Protein” in DS 2020. The protein structure’s water molecules and small
ligand molecules were removed, and a three-dimensional model of the
protein without redundant ligands was obtained.

TABLE 1 10 pharmacophore models generated by Mpro inhibitors through the. HypoGen module.

Hypo Total cost Cost differencea Error RMSb Correlation Features

No.

1 132.30 337.14 115.59 1.65 0.95 HBA,HR,HY

2 132.36 337.07 115.65 1.65 0.95 HBA,HR,HY

3 147.60 321.84 129.80 1.91 0.93 HBA,HR,HY

4 197.71 271.73 181.86 2.65 0.85 HBA,HR,HY

5 234.25 235.19 219.71 3.07 0.79 HBA,HBA,HR,HY

6 237.32 232.12 222.75 3.10 0.79 HBA,HR,HY,HY

7 238.31 231.13 222.96 3.11 0.79 HBA,HBA,HR,HY

8 240.22 229.22 225.72 3.14 0.78 HBA,HBA,HR,HY

9 240.48 228.96 225.99 3.14 0.78 HBA,HBA,HR,HY

10 240.56 228.88 222.07 3.14 0.78 HBA,HBA,HR,HY

aCost difference between the null and the total cost, null cost = 469.44, fixed cost = 87.85, for the Hypo6 weight = 1.87, configuration cost = 13.35.
bRMS, root mean square deviation.
cHBA, hydrogen bond acceptor; HY, hydrophobic.

FIGURE 2
Fischer validation: the total cost of the initial hypothesis (Hypo5) and the 19 random spreadsheets on the 95% confidence level.
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2.2 Quantitative structure-activity
relationship (QSAR) analyses

2.2.1 Data collection and arrangement
After reviewing the literature and sorting the database,

48 known Mpro inhibitors were collected in this study.
According to these compounds’ structure and inhibitory
activity values, these compounds are divided into two sets: the
training set and the test set. The training set contains
30 compounds, and the test set contains 18 compounds, the

training set is shown in Supplementary Figures S2–S4, and the
test set is shown in Supplementary Figures S5, S6. In order to
produce an excellent quantitative pharmacophore model, the
training set and test set compounds must adhere to the
following rules (Golbraikh et al., 2003): 1) Compounds should
be distributed across different orders of magnitude. Moreover,
the compounds of each order magnitude were for at least 3; 2)
Compounds in the same order of magnitude should be
structurally diverse; 3) The activities of molecules in similar
structures should differ by at least an order of magnitude; 4)

TABLE 2 Experimental and estimate activity [IC50 (µM)] evaluation of the training sets based on the pharmacophore model Hypo5.

Compound no. Fit valuea Exp.IC50 µM Estimate Error Experimental scaleb Estimated scaleb

1 6.12 0.01 0.14 2.16 +++ +++

2 4.43 0.06 0.95 3.12 +++ +++

3 5.38 0.07 0.78 −1.26 +++ +++

4 5.32 0.20 0.88 −1.07 +++ +++

5 6.64 0.31 0.04 3.14 +++ +++

6 6.04 0.95 0.17 −1.18 +++ +++

7 6.52 0.98 0.06 −1.14 +++ +++

8 4.47 4.82 6.35 −6.30 ++ +++

9 4.48 5.00 6.20 −6.29 ++ +++

10 4.48 6.80 6.19 −5.98 ++ +++

11 4.41 7.20 6.34 −3.81 ++ +++

12 4.48 8.30 6.19 −4.04 ++ +++

13 4.41 9.10 7.34 −2.04 ++ +++

14 4.46 9.40 6.44 −2.33 ++ +++

15 4.48 10.00 6.21 −2.09 ++ +++

16 4.48 10.00 6.25 −1.70 ++ +++

17 4.46 10.00 6.52 −1.99 ++ +++

18 4.41 10.00 7.25 −1.38 ++ +++

19 4.53 13.00 5.54 −1.80 ++ +++

20 4.47 13.00 6.26 −1.60 ++ +++

21 4.48 15.00 6.25 −1.46 ++ +++

22 4.41 15.00 7.19 −1.31 ++ +++

23 4.87 21.70 6.25 4.23 ++ +++

24 4.48 25.00 6.21 −1.34 ++ +++

25 4.43 28.00 6.87 −1.05 ++ +++

26 4.45 37.00 6.60 −1.03 ++ +++

27 5.14 39.00 7.35 −3.70 ++ +++

28 4.65 50.00 7.17 1.10 ++ +++

29 4.23 23.80 11.05 −4.53 ++ ++

30 4.37 30.60 8.06 −1.24 ++ ++

aFit value represents the degree of overlap between the features in Hypo1 and the chemical features in the molecule.
bActivity scale: IC50 < 1 μM = +++ (highly active); 1 μM ≤ IC50 < 100 μM = ++ (moderately active); IC50 ≥ 100 μM = + (low active).
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Compounds contained “Activ” and “Uncert” values, with the
structures and active values in the training and testing sets being
very similar to one another (Sakkiah et al., 2012).

In this study, the active range of the training set compounds was
between 0.0138 μM and 53.00 μM (0.0138 μM < IC50 < 53.00 μM),
spanning four orders of magnitude; the active range of the test set
was between 0.20 μM and 28.10 μM (0.20 μM < IC50 < 28.10 μM),
spanning three orders of magnitude, and the number of compounds

on each order of magnitude of both sets was more than three, strictly
adhering to the above rules.

2.2.2 Data preprocessing
The experimenter uses the software BIOVIA Draw 2020 to map

the 2D structure of the compounds in the training and test sets as
preparation files for calculations. The prepared files are then
imported into the software Discovery Studio 2020 (DS 2020) to

TABLE 3 Experimental and estimate activity [IC50 (µM)] evaluation of the test sets based on the pharmacophore model Hypo5.

Compound no. Fit valuea Exp.IC50 µM Estimate Error Experimental scaleb Estimated scaleb

−1 6.04 0.20 0.17 1.18 +++ +++

−2 6.40 0.23 0.07 1.13 +++ +++

−3 5.40 0.98 0.75 −1.31 +++ +++

−4 4.58 6.20 4.92 −1.26 ++ ++

−5 4.58 6.90 4.97 −1.39 ++ ++

−6 4.48 9.19 6.20 −1.48 ++ ++

−7 4.78 10.00 5.07 −0.26 ++ ++

−8 4.48 10.00 6.23 −1.61 ++ ++

−9 4.47 10.00 6.30 −1.59 ++ ++

−10 4.48 11.00 6.19 −1.78 ++ ++

−11 4.44 12.00 6.78 −1.77 ++ ++

−12 4.46 13.00 6.52 −1.99 ++ ++

−13 4.47 14.00 6.26 −2.23 ++ ++

−14 4.48 15.00 6.24 −2.40 ++ ++

−15 4.48 20.00 6.19 −3.23 ++ ++

−16 4.47 24.14 6.32 −3.82 ++ ++

−17 4.48 28.00 6.19 −4.52 ++ ++

−18 4.48 28.10 6.21 −4.52 ++ ++

aFit value represents the degree of overlap between the features in Hypo1 and the chemical features in the molecule.
bActivity scale: +++ highly active (<1 μM), ++ moderately active (1–100 μM) and + weakly active (>100 μM).

TABLE 4 Results from molecular docking of Mpro inhibitors.

Compound CDOCKER_ENERGY CDOCKER_INTERACTION_ENERGY

ENA482732 32.98 41.69

CAP01299691 29.88 35.96

5487.cdx 27.07 36.75

MWP 00830 25.90 30.77

GK 01147 25.86 31.58

CBG579003 24.10 35.90

5 22.41 32.96

CBG270219 21.28 30.57

UKR672055 20.68 30.01

8 20.52 31.40
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convert the 2D structure of the compound into a 3D structure. Insert
the attributes “Activ” and “Uncert” in the table browser. “Activ” is
the active value of the compound, which can be an IC50 value or a Ki
value, and in this experiment the IC50 value of the compound is used.
The “Uncert” value is set uniformly to 1.5 for all compounds. After
the above preparations, perform the following operations on the
compound: 1) Prepare ligand molecules using the “Prepare or Filter
Ligands” module in the DS software: Small Molecules→Prepare or
Filter ligands→Prepare ligands. The parameters are set as follows,
Change Ionization: False; Generate Tautomers: False; Generate
Isomers: False; Fix Bad Valencies: True; 2) Small molecule
structure optimization: Small Molecules→Minimize
Ligands→Full minimization. In this study, the PDB database was
used to find the best inhibitor MG-132 (28) currently bound to Mpro,
and used this as a control to find key amino acid residues.

2.2.3 Pharmacophore model establishment
The “3D Quantitative Structure-Activity Relationship

(QSAR)” module in the software DS2020 can build a
pharmacophore model with activity prediction based on the
structure of the reported compounds with clear activity values.
The algorithm first constructs an initial pharmacophore model
that can share active molecules and cannot share inactive
molecules and then further optimizes the model by simulated
annealing. The resulting model can predict the activity of
compounds and guide the optimization of compounds to
improve their activity. The training set was selected to
construct the pharmacophore model, and the compounds in
the training set had a clear activity value (IC50) for Mpro, and
the following operations were performed.

According to the pharmacophore construction algorithm, the
top two compounds with the highest activity ranking are defined as
the active compounds, and the algorithm is “MA × UncMA - A/
UncA > 0.0,” and the two rows represented by them are displayed in
light green. The lowest compound is defined as an inactive

compound, and the algorithm is “log(A)—log(MA) > 3.5,” and
the rows it represents are shown in light pink. The “A” represents the
active value of the compound, and the “MA” represents the activity
value of the most active compound.

The characteristic elements of the pharmacophore are then
determined according to the “Feature mapping” module,
targeting the light green compound, which is the top two
compounds in this experiment. This calculation process can
identify the possible location of the characteristic element in
the two compounds. The results showed that both compounds
contained five characteristic elements: Hydrophobe, Donor,
Acceptor, Ionizable Positive and Ring Aromatic. Hydrophobic
Aromatic was used instead of Ring Aromatic when building
pharmacophore models because the former has fewer
restrictions, only defines one site, and does not have the plane
and vector limitations of the latter. In the 3D QSAR module, the
pharmacophore model is constructed, the parameters of
Maximum Conformations are set to 255 and the parameters of
Energy Threshold are set to 10. The above parameters represent a
conformational space in which up to 255 conformations are
generated for each small molecule to characterize small
molecules, where only conformations with energy values
within the energy threshold of 10 kcal/mol are retained. Select
Hydrophobe, Donor, Acceptor, Ionizable Positive, and
Hydrophobic Aromatic in the Select Features column.

2.2.4 Pharmacophore model selection and
validation

After constructing the pharmacophore, the researchers
obtained a total of 10 models. DS2020 will give these 10 models
a ranking. Usually, the first place in the overall ranking of
pharmacophores is also the best. However, rankings are only
determined by cost value, so the top-ranked pharmacophore
model is not the best in some exceptional cases. This requires a
comprehensive analysis of parameters such as “Features,” “Total
cost” and “Correlation”. The most important thing is to use the test
set molecules with known activity values to verify whether the
predictive ability of this pharmacophore model for the activity
values of molecules other than the training set meets the expected
requirements. Therefore we performed a quadruple validation
method in this experiment to find the best pharmacophore
model. The first validation is Root mean square deviation
(RMS), Correlation coefficient and cost difference (△cost); The
second validation is Fischer’s randomization test; The third
validation is the activity verification of the test set; The fourth
validation is the Heat map of Ligand profiler.

2.3 Establishment of database and virtual
database screening

Virtual database screening can be used to effectively
discover potential small molecule compounds with higher
activity, which may have significant inhibitory activity on the
target protein, and these compounds are all validated drug small
molecules (Rohilla et al., 2017; Zhang et al., 2017; Kaushik et al.,
2018). After full validation, researchers will obtain the best
pharmacophore model. The researchers performed a virtual

TABLE 5 The interaction amino acid in the ligand-protein for the top
10 docking compounds including the control compound.

Compound Interaction acids

ENA482732 HIS41, MET49, TYR54,PHE140, LEU141, SER144, CYS145,
HIS163, HIS164, MET165, GLU166, LEU167, ARG188,

GLN189, THR190, ALA191, GLN192

CAP01299691 LEU27, HIS41, CYS145, MET165, GLU166, GLN189

5487.cdx MET49, ASN142, GLY143, HIS163, MET165, HIS172, GLN189

MWP 00830 HIS41, MET49, TYR54, HIS164, MET165, ASP187

GK 01147 HIS41, CYS145, MET165, GLU166

CBG579003 HIS41, MET49, MET165, GLU166, GLN189

5 MET49, GLN189

CBG270219 LEU27, HIS41, MET49, CYS145

UKR672055 MET49, ASP187

8 LEU27, HIS41, MET49, TYR54, CYS145, MET165, ASP187

MG-132 ASN28, HIS41, GLY143, CYS145, SER147, HIS164, GLU166,
PRO168, GLN189
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database screening based on the pharmacodynamic profile,
active site, and various parameters of the best
pharmacophore model. In this study, we selected the
Traditional Chinese Medicine, Druglike, and MiniMaybridge
databases, which included 51,564, 5,384, and 2,000 compounds,
respectively.

In order to make the resulting compound more likely to
become a drug, the researchers also test the properties of the
compound according to the Lipinski’s “rule of 5” principle,
removing those molecules that are not suitable for becoming
drugs, thereby narrowing the scope of the screening (Valko and
Reynolds, 2005; Tang et al., 2012). Compounds that comply with

FIGURE 3
The structure of the top 10 compounds.
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the Lipinski’s “rule of 5” principle have better pharmacokinetic
properties, and they will exert higher bioavailability in the
organism’s metabolism process. Hence, they are also more
likely to be oral drugs and worthy of structural modification
and other more in-depth studies.

2.4 Molecular docking

Molecular docking analysis can predict the affinity of small
molecule compounds to target proteins by using a series of
biological, mathematical and computer-based models, allowing

TABLE 6 The ADMET property of 7 compounds.

Compound ADMET-absorption-levela ADMET-solubility ADMET-solubility-levelb ADMET-BBB ADMET-BBB-levelc

ENA482732 0 −3.926 3 0.031 1

CAP01299691 0 −4.752 2 −0.051 2

5487.cdx 0 −3.808 3 −0.13 2

MWP 00830 0 −3.308 3 −0.126 2

GK 01147 0 −4.329 2 −0.703 3

CBG579003 0 −4.317 2 0.094 1

5 0 −4.782 2 0.053 1

CBG270219 0 −4.808 2 0.504 1

UKR672055 0 −3.411 3 −0.397 2

8 0 −3.283 3 −0.426 2

aWhen ADMET_Absorption_T2_2D < 6.1261 (inside 95%), the Level is 0, which has good absorption. ADMET_Absorption_T2_2D is the Mahalanobis distance for the compound in the

ADMET_PSA_2D, ADMET_AlogP98 plane. It is referenced from the center of the region of chemical space defined by well absorbed-compounds.
bWhen −6.0 <ADMET-Solubility < −4.1, the Level is 2, which has lower water solubility. When −4.1 <ADMET-Solubility < −2.0, the Level is 3, which has good water solubility.
cWhen Level 1, the Brain-Blood ratio between 1:1 and 5:1 indicates the high probability of the drug passing through the blood-brain barrier. The larger the level, the lower the probability of

crossing the blood-brain barrier.

FIGURE 4
The docking interactions of compound ENA482732 with Mpro.
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researchers to evaluate the interaction between compound molecules
(drug molecules) and proteases through specific binding sites mutual
lease (Gupta et al., 2018). Zev et al. (2021) evaluated several leading
docking programs in a study: Glide, DOCK, AutoDock, AutoDock
Vina, FRED, and EnzyDock. In this study, Dev rated the molecular
docking ability of these programs. The criteria are whether the docking
procedure can correctly identify the binding pattern of ligands andMpro,
and whether it can accurately and objectively score the docking results.
In the overall success of all projects, the top three are as follows, Glide
and EnzyDock reproduce the correct crystal structure pose (rmsd<2 Å)
for over 50% of the structures, with success rates of 64% and 70%,
respectively, while for AutoDock, this rate falls to 40%. After a
comprehensive analysis, we completed the molecular docking of
compounds with Mpro through CDOCKER and verified the docking
results through AutoDock (G et al., 1990; Morris et al., 1996; Morris
et al., 2009).

We first adopted the CDOCKER molecular docking strategy.
CDOCKER is a molecular docking method based on the CHARMm
force field, which can produce high-precision docking results. The
selected compounds were pretreated with “prepare or Filter
Ligands” and “Minimization of Ligands,” and the processed
compounds were directly docked with the target proteins. We
used the crystal structure of Mpro obtained in the RCSB Protein
database with a resolution of 2.16 �Å, pre-processed the target
protease through the “Protein Prepare,” defined the receptor
binding site and prepared the docking system. Firstly, the From
Receptor chamber function in the Definie Site toolbar was used to
search for the cavity in the receptor as a possible binding site. Based
on Grid Search and the “eraser” algorithm, we define possible

binding sites in the receptor by looking for cavities. A total of
nine possible binding sites were found. This was followed by
searching the PDB database for small molecules bound to Mpro

conformations. The two were analyzed comprehensively and finally
identified possible binding sites. Molecular docking of small
molecules with proteins is carried out at this site. After selecting
the appropriate binding site, the pretreated small molecule ligand
and receptor introduction procedure are performed for molecular
docking.

The researchers analyzed the molecular docking results of the
CDOCKER and screened out the 10 most suitable compounds. The
researchers used AutoDock to reconnect 10 compounds to ensure
the study’s rigor.

AutoDock is a free and widely used molecular docking software.
AutoDock uses “rapid grid-based energy evaluation” and “efficient
search of torsional freedom”methods to make the calculation results
as accurate as possible while reasonably balancing the use of
computing resources. Import the selected optimal compounds
and Mpro into AutoDock software to complete the preparation of
the world file. AutoGrid budgets the affinity for each atomic type in
the ligand molecule. AutoDock then completes molecular docking
between the compound and the acceptor. Finally, AutoDockTools
was used to analyze the molecular docking results.

2.5 Molecular dynamic simulation

Molecular dynamics (MD) simulation is a rapid development
of molecular simulation methods in recent years. It is based on

FIGURE 5
2D analysis of non-bonded interaction between compound ENA482732 and Mpro.
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classical mechanics, quantum mechanics, and statistical
mechanics. It uses computer numerical methods to solve the
equations of motion of molecular systems to simulate and study
the structure and properties of molecular systems (Wu et al.,

2022). This technique can obtain the motion trajectory of atoms
and observe various microscopic details in the process of atomic
motion (Childers and Daggett, 2023). It is a powerful
complement to theoretical calculations and experiments. This

FIGURE 6
The result of molecular docking of compound ENA482732 and Mpro by AutoDock.

FIGURE 7
The RMSD and RMSF results of compound ENA482732. (A) RMSD. (B) RMSF.
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study subjected the best-selected compound to MD simulations
to simulate the interaction between the ligand and Mpro. MD
simulations were performed with AMBER18 using the ff14SB
force field. The force field parameters of inhibitors were built by
the Antechamber module of AMBER18 (Wang et al., 2006; Lu
et al., 2023). In the initial system, remove non-inhibitor
molecules and water molecules outside the 5 Å range and add
missing hydrogen atoms through the Leap module (Yamashita,
2023). Three chloride ions were added using the leap module in
AMBER based on a coulomb potential grid to keep the system
electrically neutral. TIP3P explicit water boxes with an 8.0 Å
distance around the solute were added to these complexes. The
system’s energy is minimized, and the process is divided into two
parts: the steepest descent method and the conjugate gradient
method. The solvent and ions were subjected to 12,000 steps of
steepest decent minimization followed by 8,000 steps of
conjugate gradient minimization with the protein and small
molecules fixed with a 500 kcal mol−1 Å−2 constraint. Then,
each system was totally minimized for another 20,000 steps
with no restraint (12,000 steps of steepest decent
minimization and 8,000 steps of conjugate gradient
minimization). After minimization, the three systems were
heated up gradually from 0 to 310 K in the NVT ensemble,
applying harmonic restraints with a force constant of 10.0 kcal
mol−1 Å−2 on the protein and small molecules. A Langevin
thermostat was adopted. NPT constant voltage operating
balance with 500 ps at 310 K constant voltage balance. Then
these systems went through 500 ps equilibrium MD
simulations. Finally, a total of 200 ns was simulated for each
system under NPT ensemble conditions with the cut-off at 10 Å.
The time step was set to 2 fs. The researchers then conducted
Root-mean-square deviation (RMSD) and Root-mean-square
fluctuation (RMSF) studies and performed energy calculations.

3 Results

3.1 Analysis and validation of
pharmacophore models

The 3DQSAR module in DS software generates
10 pharmacophore models by analyzing and calculating the
characteristics of 30 training set compounds (Table 1). There
are three characteristic elements in these 10 pharmacophore
models, namely, hydrogen bond acceptor (HBA), hydrophobic
aromatic (HR) and hydrophobic (HY). The Cost attribute is
considered the most efficient way to select the best
pharmacophore model, with△Cost (Null cost—Total cost)
representing the probability of true correlation of the data. At
the same time, parameters such as Features, RMS and Correlation
also have a certain degree of reference value. After
comprehensively analyzing various parameters, the researchers
assumed that the fifth pharmacophore model was the best model.
Because the fifth pharmacophore has the most features element
sites (HBA, HBA, HR, HY), the RMS (3.07) and Correlation
(0.79) are excellent, and the gap between the △Cost (235.19) and
the first-ranked pharmacophore is also within the acceptable
range.

The researchers then validated the optimal pharmacophore
model selected. Fischer’s randomization test is a way to verify
statistical confidence in pharmacophore models through a
Catscramble module inside Catalyst. This method aims to
randomly scramble the activity values of all training sets and
achieve a 95% confidence level to generate 19 random
pharmacophore models. The results of Fischer verification are
shown in Figure 2. As the figure shows, our hypothetical
pharmacophore Hypo5 performs best compared to the
generated 19 pharmacophore models, and the total cost value
of the original hypothesis is significantly lower than the randomly
generated 19 pharmacophores. This also shows that the cost
difference of the original hypothesis is higher than that of the
randomly generated 19 pharmacophore models, thus proving
that our hypothesis that the proposed model 5 is the best
pharmacophore model is correct.

The training set contains 30 Mpro inhibitors and the test set
contains 18 Mpro inhibitors, which are analyzed to test the predictive
power of the best pharmacophore model Hypo5. Tables 2, 3 show
the experimental and predicted activity values of the training and
test set compounds based on the pharmacophore model 5,
respectively. Supplementary Figures S6, S7 show the correlation
between the experimental (logIC50) and predictive activity
(logEstimate) of the pharmacophore model 5 for training and
test set compounds.

In Tables 2, 3, we are divided into three levels according to the
activity values (IC50) of the training and test sets: IC50 < 1 µM =
+++ (high activity); 1 µM ≤ IC50 < 100 µM = ++ (moderate
activity); IC50 ≥ 100 µM = + (low effective or ineffective activity).
In the prediction of the activity values of compounds in Table 2, it
can be seen that the experimental and predicted activities of
compounds 1–7 are both shown as high activity, the experimental
activity of compounds 8–30 is moderate, while the predicted
activity of compounds 8–28 is still showing high activity, and
only the predicted activity of compound 29–30 is moderate. In
Table 3, both the experimental and predicted activities of
compounds 1–3 showed high activity, and compounds
4–18 showed moderate activity, which was completely
consistent with the predicted results. Although the predictive
activity of the training set compounds 8–28 is higher than the
experimental activity, it is still in line with our predicted results,
which shows that our prediction results are correct. In addition,
the experimental and predictive activity regression analysis of the
training and test set compounds gave excellent correlation
coefficients (R2) of 0.841 and 0.754, respectively, as shown in
Supplementary Figures S8, S9.

The validation of the best pharmacophore 5 is based on the
“Ligand Profiler” module, which superimposes compound
molecules in the training set with the key chemical characteristics
of the pharmacophore. By executing the “Ligand Profiler,” the
results will be displayed as a heat map. As shown in
Supplementary Figures S6, S7, the abscissa represents the
10 validated pharmacophore models, and the ordinate represents
the compounds in the training or test set. The overlapping matching
of the pharmacodynamic characteristics and key chemical bonds of
the compound and the pharmacophore is represented by the color of
different cells, and when the color of the lattice is closer to red, the
better the match between the compound and the pharmacophore.
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As can be seen from the figure, the seventh pharmacophore in the
training and test sets matches the compound well, and the fifth
pharmacophore is not the best performer. However, all things
considered, it is still considered that the fifth pharmacophore still
meets our original hypothesis.

By performing quadruple validation of the best pharmacophore
model 5, we find that the pharmacophore model 5 is consistent with
the predicted results in these quadruple validations. This thoroughly
verifies the rationality of the best pharmacophore of the original
hypothesis as model 5, thus laying a foundation for the scientific
nature of subsequent theoretical research.

3.2 Virtual screening results

The verified optimal pharmacophore model was successfully
used for virtual screening of the Traditional Chinese Medicine,
Druglike Diverse, and MiniMaybridge databases. These
compounds are then subjected to Lipiniski’s “rule of five” and
less active compounds are removed, leaving compounds with
IC50 values below 1 μM. Up to now, 257 compounds with good
activity have been obtained for follow-up work.

3.3 Molecular docking analysis

The researchers carried out molecular docking with Mpro on
the final 257 compounds screened. The researchers selected the
top 10 compounds for comparative analysis with MG-132, and
the docking results are shown in Tables 4, 5. The structure of the
top 10 compounds is shown in Figure 3. We conducted ADMET
studies on the best ten compounds; the results are presented in
Table 6. Table 6 shows that the top 10 compounds have good
intestinal absorption, water solubility, and blood-brain barrier
penetration. In Table 4, the CDOCKER_INTERACTION_
ENERGY (CIE) represents an estimate of ligand-receptor
interaction energy, and CDOCKER_ENERGY (CE) considers
the ligand’s strain the ligand when placed within the active
site of the same compound. We can see that whether it is CE
ranking or CIE ranking, compound ENA482732 ranks first. So we
assume that the compound ENA482732 is the best candidate
compound. Table 5 shows the interacting amino acids in which
the top ten ligands dock with the molecule of interest,
highlighting the amino acids consistent with MG-132 in bold.
After analyzing the interacting amino acids of the top ten
compounds and the control MG-132, HIS41, CYS145, and
GLN189 were important residues for Mpro inhibition activity.
At the same time, in Table 5, the researchers can also clearly
observe that the compound ENA482732 interacts with Mpro in
much more amounts of amino acids than other compounds. The
researchers then focused on the molecular docking results of the
compound ENA482732 and Mpro. The non-bonding interaction
between the acceptor and ligand is represented using different
color scales during docking. Figures 4, 5 show four types of
interactions between compound ENA482732 and the target
protein Mpro, including Van der Waals, Pi-Sulfur, Carbon
Hydrogen Bond, and Pi-Pi Stacked. The Pi-Sulfur interaction
occurs between the phenyl of compound ENA482732 and

methionine 165 (MET: 165) of Mpro. The indole group of the
compound also has a Pi-Sulfur interaction with cysteine at 145
(CYS: 145). There was a Pi-Pi Stacked interaction between the
phenyl group of the compound and histidine at site 41 (HIS: 41)
of the receptor. The Carbon Hydrogen Bond occurs between the
hydrogen atoms of the compound and glutamate at site 189
(GLN: 189). The compound also forms hydrophobic interactions
with the remaining adjacent amino acids. This further proves our
hypothesis that the compound ENA482732 is the best candidate
and has great potential to be developed as a highly effective
inhibitor.

The accuracy of the above results was verified by the molecular
docking of the compound ENA482732 to Mpro by AutoDock, and
the results are shown in Figure 6. The binding energy of the
compound ENA to the receptor is −6.15 kcal, and the efficiency
of the ligand is −0.25. The phenyl group of compound
ENA482732 interacts with cysteine at site 145 (CYS: 145) of the
receptor protein. The indole group of the compound has a Pi-Cation
interaction with histidine at site 41 (HIS: 41) and Pi-Sulfur
interaction with cysteine at site 44 (CYS: 44). In addition, the
indole group also has an Alkyl interaction with methionine at the
site 49 (MET: 49) and site 165 (MET: 165), and it forms a
conventional hydrogen bond with arginine at site 188 (ARG:
188). From this result, the indole group of the compound
ENA482732 plays a vital role in improving the inhibitory
activity, providing a theoretical basis for modifying subsequent
compounds. The AutoDock results are similar to CDOCKER,
and both demonstrate that ENA482732 can stably bind to Mpro

receptors.
In this study, CDOCKER was first used for molecular docking

to screen out the best compound ENA482732. The researchers
then used AutoDock to verify the binding stability of the
compound ENA482732 to Mpro. Both docking methods clearly
show that the ENA482731 screened by the compound can be
stably bound to Mpro.

3.4 Analysis of molecular dynamics results

The best-selected compound, ENA482732, was subjected to
molecular dynamics simulations. RMSD is a detection method
that can provide a sketch of the conformational changes by
comparing changes in the positions of the atoms with a
reference structure. In Figure 7A, it can be seen that the
fluctuation range of the compound ENA482732 is within 2 Å,
the fluctuation amplitude is weak, and the linear relationship
tends to converge, which indicates that the complex remains
stable throughout the simulation time. RMSF is a curve that can
offer details on fluctuations of each residue over the simulation
time. A high RMSF value represents that the certain residue has a
large flexibility, while a low one manifests large stability. The
RMSF values are displayed in Figure 7B. The residues with a high
value were checked, only to find that most of these residues are
located on the edge of the complex and far away from the
inhibitor binding pocket. The residues by ligand to Mpro are
HIS41, MET49, TYR54, PHE140, LEU141, SER144, CYS145,
HIS163, HIS164, MET165, GLU166, LEU167, ARG188,
GLN189, THR190, ALA191, GLN192, which have very low
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RMSF values and strong stability. Combined with the calculation
of binding free energy, Binding Energy is −15.2 kcal/mol, and
Entropic Energy is 20.0 kcal/mol. The above data indicate that
the compound ENA482732 can bind stably to Mpro. Compound
ENA482732 has great potential to be developed as a potent
inhibitor.

4 Discussion

Since the outbreak of the COVID-19, anti-SARS-CoV-2 drugs
targeting Mpro have been continuously reported and many have
entered clinical studies. However, only Paxlovid developed by Pfizer
and Xocova of Shionogi Pharmaceutical Company has been
approved for marketing. Therefore, safe, reliable and broad-
spectrum novel Mpro inhibitors are still an urgent clinical need at
present and in the future.

During this outbreak, researchers have realized the analysis of
the virus sequence quickly and further functional and structural
studies, which have provided a powerful scientific and
technological force for controlling COVID-19. The study of
virus-related biology, especially the crystal analysis of the
structure, has promoted the research of Mpro as a therapeutic
strategy and the development of targeted inhibitors. In this
study, we explored the structural characteristics of Mpro, whose
gene sequence set is completely conserved and has no human
homologous genes, which is well suited as a target for drug
treatment. Pharmacophore design and virtual screening were
used to find compounds that have inhibitory activity against
Mpro and have the potential to be developed as drugs. In order
to ensure that we screen out compounds with inhibitory activity
against Mpro in the small molecule database, firstly, based on the
efficacy fragments or pharmacodynamic characteristics of the
active compounds we have, the existing pharmacophore
integration methods are used to retain the effective
pharmacodynamic characteristics, remove the
pharmacodynamic characteristics and ineffective characteristics
that cause adverse reactions to design the pharmacophore model
for Mpro. In order to ensure the rationality of the pharmacophore
model, we conducted four verifications, and the results showed
that the designed pharmacophore model could accurately screen
out compounds with inhibitory activity against Mpro. The activity
of the screened compounds was tested by molecular docking of the
CDOCKER program, and the results were verified with AutoDock.
This ensures this study’s rigor and scientific nature and that the
screened compounds have inhibitory solid activity against Mpro

and good pharmacokinetic properties.
After analyzing the selected compounds, it was found that the

first compound, ENA482732, was very much in line with our
expectations. Many binding sites and various intermolecular
interaction forces ensure the stable binding of compound
ENA482732 to acceptors. At the same time, we found that in the
structure of Mpro, the cavity formed by HIS41, CYS145, and
GLN189 as the main sites is very suitable for binding small
molecule inhibitors. The structure of the compound
ENA482732 is simple and clear, and it is convenient for
subsequent structural optimization to improve its inhibitory
activity further. Studies of its structure also tell us that the indole

group can interact with Mpro in various ways. This suggests that
known small molecule inhibitors can be modified to add indole
groups in appropriate locations to improve their stability in binding
to Mpro.

This study only provides theoretical research for the
development of Mpro inhibitors. Molecular dynamics
confirmed that the screened compounds had inhibitory solid
activity against Mpro, but it was still theoretical. The development
of formal inhibitors is still some way off. In future studies, the
theory will be extended to experiments through enzyme activity
experiments to verify further whether the compound has
inhibitory activity. Preclinical safety, pharmacodynamics, and
pharmacy studies are conducted after ENA482732 or modified
compounds are identified as drug candidates. This is used to
observe the biological activity of the compound against the target
disease and evaluate the compound’s safety to support the
initiation of clinical trials.

5 Conclusion

Although the large-scale outbreak has ended, there are still
variants of SARS-CoV-2 that cause small-scale infections.
Mutated strains are characterized by increased transmission,
infectivity, and reduced virulence. Mpro is an indispensable
functional protein for viral replication and is highly conserved
compared to other proteases. Therefore, the compounds screened
in this study have therapeutic effects on subsequent infections of
SARS-CoV-2 variants. This article will increase people’s
understanding of COVID-19, provide a new perspective for the
research of anti-SARS-CoV-2 drugs, and promote the development
of new SARS-CoV-2 inhibitors.
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