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Heat stroke (HS) is a febrile illness characterized by an elevation in the core body
temperature to over 40°C, accompanied by central nervous system impairment
and subsequent multi-organ dysfunction syndrome. In recent years, themortality
rate from HS has been increasing as ambient temperatures continue to rise each
year. The cardiovascular system plays an important role in the pathogenesis
process of HS, as it functions as one of the key system for thermoregulation and
its stability is associated with the severity of HS. Systemic inflammatory response
and endothelial cell damage constitute pivotal attributes of HS, other factors such
as ferroptosis, disturbances in myocardial metabolism and heat shock protein
dysregulation are also involved in the damage to myocardial tissue in HS. In this
review, a comprehensively detailed description of the pathogenesis of HS-
induced myocardial injury is provided. The current treatment strategies and
the promising therapeutic targets for HS are also discussed.
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1 Introduction

Heat stroke (HS) is an illness characterized by a rapid rise of core temperature over 40°C
with the complication of systemic inflammatory responses and central nervous system
dysfunction (Bouchama and Knochel, 2002; Leon and Helwig, 2010; Peiris et al., 2017). In
recent years, heat-related deaths have increased significantly due to anthropogenic climate
change (Toutant et al., 2011). Frequency of severe heat waves is threatening human health
worldwide and poses huge challenges to public health, attracting widespread attention in
various research fields (M. Zheng et al., 2020). HS can be divided into classic heat stroke
(CHS) and exertional heat stroke (EHS) depending on the involvement of skeletal muscle
contraction (Bouchama et al., 2022). CHS often occurs in older people having pre-existing
illnesses, while EHS typically occurs in healthy younger individuals during strenuous
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exercise in hot environments (Peiris et al., 2017; Bouchama et al.,
2022). HS, regardless of the type, is associated with extensive multi-
organ tissue damage as a result of the interaction of cytotoxic,
inflammatory, and clotting reactions (Piver et al., 1999). The heart,
being a vulnerable organ in heat injury (Low et al., 2011; Lou et al.,
2019; Ko et al., 2020), is susceptible to arrhythmia, function failure
and focal myocardial necrosis (Argaud et al., 2007; Desai
et al., 2023).

Abnormalities in temperature regulation, cardiovascular
function and tissue perfusion are among the factors involved in
multiple organ dysfunction syndrome (Low et al., 2011; Cramer
et al., 2022). In an effort to dissipate heat, the body increases blood
flow to the skin, redistributes blood and eventually develops
hypotension and perfusion disorders (S. H. Chen et al., 2006).
Thus, the regulation of the cardiovascular system plays a key role
in the pathogenesis of HS. Elucidation of the mechanism of HS-
induced myocardial injury can help in establishing the treatment to
improve circulatory function and reduce mortality rates of HS.
However, the pathogenesis of HS is still to be known and
prevention strategies of myocardial injury during HS is lacking.
This article provides a systematic review to further the

understanding of HS-induced myocardial injury and to provide a
reference for future research (Figure 1).

2 Heat stroke and myocardial injury

Under normal conditions, a 0.3°C increase in core temperature
triggers a cardiovascular regulatory response to protect the body
from heat damage. This regulation increases heat dissipation by
speeding up the heart rate, enhancing cardiac contractility, raising
cardiac output and reducing blood flow and volume in non-skin
areas (Crandall et al., 2008; Crandall and González-Alonso, 2010).

During HS, when the surrounding hot environment persists, the
above regulation continues to function actively. A substantial
volume of blood is pumped from the heart towards the
peripheral blood vessels to dissipate heat through sweat, but this
also results in hyperthermic dehydration of the body, reduced
circulating blood volume, inadequate tissue perfusion, hypoxia
and necrosis of myocardial cells (Crandall and González-Alonso,
2010; G. D; Chen et al., 2019). At the same time, the loss of body
fluids disturbs electrolytes and interrupts the sodium-potassium

FIGURE 1
HS-inducedmyocardial injury is not only associatedwith an excessive inflammatory response, endothelial cell damage. Ferroptosis, downregulation
of HSP90 expression and disturbances in cardiomyocyte metabolism are also involved.
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pump, which alters the heart’s pacing rhythm, signal conduction and
systolic-diastolic functional state, ultimately leading to myocardial
ischemia, necrosis, arrhythmia and heart failure (Hausfater et al.,
2010; Chen, et al., 2019; Tseng et al., 2019; Wang et al., 2019).

3 The related mechanisms of HS-
induced myocardial injury

3.1 Dysregulation of the pro-inflammatory
and anti-inflammatory balance

In HS, the systemic pro- and anti-inflammatory balance is
disturbed, triggering a systemic inflammatory response syndrome
(SIRS) that is thought to be characteristic (Epstein and Yanovich,
2019). The pathogenesis of heat stroke is closely similar to that of
sepsis (Roberts et al., 2008). In a hot environment, the dilatation of
blood vessels on the body surface due to heat dissipation leads to
reduced blood flow to internal organs, especially intestinal mucosa,
which causes increased intestinal epithelial permeability and
bacterial translocation in the intestine, inducing leakage of
intestinal endotoxins through the intestine into the circulation
and triggering SIRS, ultimately leading to multi-organ
dysfunction and death (Yang et al., 2007; Lambert, 2008; Leon
and Helwig, 2010). The systemic inflammation associated with
heat stroke plays a key role in myocardial injury. Currently, it is
thought that the myocardial inflammatory response may be the
primary cause of progressive systolic dysfunction (Dörge et al., 2000;
Dörge et al., 2002). A large infiltration of inflammatory cells is
usually found within the foci of myocardial infarction. Previous
studies have shown that suppression of the inflammatory response is
an important tool in the treatment of HS-induced myocardial injury
(Lin et al., 2017; Lin et al., 2018; Lin et al., 2020).

During HS, the body undergoes a state of hypercytokinemia,
releasing many cytokines such as tumor necrosis factor-alpha (TNF-
α) and interleukin-1β (IL-1β) (Leon and Helwig, 2010; Z. T; Zhang
et al., 2021). TNF-α, a key factor in the inflammatory response, plays
an important role in neutrophil recruitment and the inflammatory
cascade reaction (Yu et al., 2010). In addition, TNF-α induces the
production of other inflammatory cytokines and also stimulates the
migration and adhesion of neutrophils, leading to dysregulation of
pro- and anti-inflammatory factors and inducing an inflammatory
cascade reaction, which results in tissue damage (Yu et al., 2010). At
the same time, the injured myocardial tissue also releases pro-
inflammatory cytokines, including TNF-α and IL-6, which
further exacerbate the systemic inflammatory response (Shen
et al., 2019).

The TLR4/NF-κB signaling pathway has a major contribution to
HS-induced inflammation. TLR4 is an essential member of the TLR
family and plays a central role in the recognition and response to
microbial pathogens and in maintaining the integrity of the
intestinal epithelial barrier (D. Yao et al., 2019). Rats subjected to
heat stress have significantly elevated levels of TLR4 (D. Chen et al.,
2023). When rats are affected by heat stress, NF-κB is activated by
the induced TLR4, leading to the release of pro-inflammatory
factors. The production and release of pro-inflammatory factors
further activates NF-κB, which induces the NLRP3 inflammasome,
leading to a sustained amplification of the initial inflammatory

signal, thus causing the so-called inflammatory cascade effect (Z.
Huang et al., 2016; X; Zhang et al., 2017). TLR4 exhibits its highest
expression in cardiac myocytes, and during HS, TLR4/NF-κB
signaling controls the production of pro-inflammatory factors to
induce myocardial tissue damage (X. Liu et al., 2016). Inhibition of
the TLR4 signaling pathway may reduce HS-induced inflammatory
responses and improve abnormal cardiac function in rats (Chen
et al., 2023).

3.2 Endothelial cell damage and dysfunction

Cardiac ultrastructure in HS patients exhibits severe endothelial
cell damage (Sohal et al., 1968). Vascular endothelial cells cover the
surface of the lumen and maintain the structural integrity and
microcirculatory function of the coronary microvasculature
(Chang et al., 2021). It also acts as a defensive barrier against the
penetration of microorganisms, immune cells and coagulation
components, which reduces the risk of thrombosis (Chang et al.,
2021). Activated in vivo crosstalk exists between vascular
endothelium, inflammation and coagulation during HS
(Bouchama et al., 1991; al-Mashhadani et al., 1994; Roberts et al.,
2008). Endothelial cell dysfunction plays a key role in the initiation
and progression of HS (W. Huang et al., 2022).

Endothelial cells possess an anti-inflammatory effect under
normal physiological conditions, repelling circulating neutrophils
from adhesion (Chang et al., 2021). However, when rat myocardial
tissue is damaged by heat stress, endothelial cells upregulate a variety
of adhesion molecules that attract pro-inflammatory cells
(neutrophils and macrophages) to secrete pro-inflammatory
cytokines (Harlan et al., 1991; Wihastuti et al., 2018; Chang
et al., 2021). Large amounts of pro-inflammatory factors such as
IL-6 and TNF-α can trigger endothelial dysfunction and
microvascular damage (F. Chen et al., 2017). Damaged
endothelial cells express CD40, and in the presence of
CD40 interacting with CD40 ligand (CD40L), endothelial cells
actively secrete von Willebrand factor (vWF), which promotes
platelet adhesion to endothelial cells and contributes to
thrombosis (Keuren et al., 2004; Han et al., 2018). The
interaction between CD40 and CD40L also stimulates platelets
and endothelial cells to activate macrophages and T cells, which
further amplifies the inflammatory response (Urbich et al., 2002).
Damage to the endothelium, a natural barrier against thrombosis,
upregulates procoagulant factors and downregulates anticoagulant
factors, thereby disturbing the dynamic balance between pro- and
anti-thrombotic activities and inducing microthrombosis
(Koupenova et al., 2017). Obstruction of small vessels contributes
to infarction and necrosis of myocardial tissue. The damaged tissue
releases plasminogen activator which induces the development of
disseminated intravascular coagulation (DIC) (Sohal et al., 1968).
Hearts of patients with HS show evidence of extensive visual and
microscopic haemorrhage (Sohal et al., 1968).

Aspirin, a non-steroidal anti-inflammatory drug, that not only
inhibits platelet aggregation but also maintains the integrity of
endothelial gap junctions (Zhou et al., 2019). Animal study has
shown that the treatment with aspirin significantly improves the
morphological damage and related enzyme activity of chicken
cardiomyocytes induced by heat stress (Wu et al., 2016).
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3.3 Abnormal cardiomyocyte death

HS instigates multiple toxic effects on the cardiovascular system,
including abnormal cardiomyocyte death (Chen et al., 2017; Chen
et al., 2023). The damaged myocardial cells exhibit vacuolar changes
and partial necrosis (Fan et al., 2015; Chen et al., 2019). Ferroptosis
is an essential form of abnormal cardiomyocyte death caused by HS,
resulting from the excessive accumulation of iron-dependent lipid
reactive oxygen species (ROS) in cells, where lipid peroxidation is a
key component in triggering ferroptosis (Del Re et al., 2019;
Stockwell et al., 2020). HS disrupts the oxidation-antioxidant
balance, as evidenced by a decrease in glutathione (GSH) and
solute carrier family 7 member 11 (SLC7A11), an increase in
malondialdehyde (MDA), ROS, and Fe2+. HS also induces
shrinkage of mitochondria and an increase in the membrane
density, which are key features of ferroptosis (Jiang et al., 2021;
Chen et al., 2023). This suggests that ferroptosis is actively involved
in HS-induced myocardial injury and causes abnormal
cardiomyocyte death. Chen et al. further explored the mechanism
of ferroptosis in the HS myocardial injury model (D. Chen et al.,
2023). P53 expression levels were closely associated with the
triggering of ferroptosis (Lei et al., 2021), and its involvement as
a transcriptional repressor of SLC7A11 to ferroptosis significantly
reduced the expression of SLC7A11, which in turn inhibited the
activity of system Xc

−, a component of SLC7A11 (Koppula et al.,
2018), thereby inhibiting cysteine uptake and reducing
GPX4 activity leading to depletion of GSH biosynthesis (Xu
et al., 2021; Zhang et al., 2022). Consequently, lipid peroxide
accumulation ensued, ultimately culminating in cellular
ferroptosis (Ma et al., 2022). P53, one of the molecules
downstream of TLR4, is activated by the TLR4/NF-κB signaling
pathway, which plays an active role in the systemic inflammatory
response induced by HS (Zhu et al., 2011). In view of this, Chen et al.
suggested that HS may induce ferroptosis through the TLR4/NF-κB/
P53 signaling pathway (Chen et al., 2023). Inhibition of TLR4 and
NF-κB under HS conditions downregulated P53 expression,
upregulated SLC7A11 and GPX4 levels, improved ferroptosis-
related indicators and attenuated myocardial injury, respectively
(Chen et al., 2023).

Disruption of mitochondrial structure and function can lead to
severe cellular damage and death (Zamzami et al., 1997; D’Orsi et al.,
2017). Mitochondria plays a crucial role in maintaining intracellular
calcium homeostasis (D’Orsi et al., 2017). From rat cardiomyocytes,
we know that heat stress causes mitochondrial changes in cardiac
myocytes including mitochondrial swelling, rupture of cristae and
disruption of the surrounding membrane (Petit et al., 1998; Qian
et al., 2004). Ca2+-ATPase on the mitochondrial membrane serves as
critical factor in the regulation of calcium homeostasis. However,
disruption by heat stress leads to a decrease in Ca2+-ATPase activity,
which results in reduced mitochondrial uptake of calcium ions from
the cytoplasm and intracellular calcium overload (McCormack and
Denton, 1989; Walkon et al., 2022). Intracellular calcium overload
further activates calcium-dependent protein kinases, which promote
membrane phospholipid hydrolysis, disrupting the cytoskeleton and
damaging the integrity of the nucleus, causing severe damage
(Vassalle and Lin, 2004). HS directly induces the opening of
mitochondrial mPTP, a pivotal event in triggering the cell death

pathway (Halestrap, 2009; Bauer and Murphy, 2020). mPTP
opening results in a series of cytological effects that lead to the
release of cytochrome c, activation of caspase family proteases and
apoptosis of cardiomyocytes (H. Yao et al., 2022). The mechanism
by which HS induces mPTP opening is not yet clear, and the Fas
pathway is an important signaling pathway to consider. It induces
caspase-8 activation, which subsequently directly activates caspase-3
and leads to the opening of mPTP (Nakamura et al., 2000). However,
whether the Fas pathway is involved in HS-induced mPTP opening
remains to be explored.

3.4 Metabolic abnormalities

The link between metabolic dysregulation and cardiotoxicity has
been well established (Russo et al., 2021). Mitochondrial damage
caused by HS not only results in abnormal death of cardiomyocytes
but also leads to disturbances in energy metabolism (Azevedo et al.,
2013). Energy abnormalities in the heart are associated with the
development of many heart diseases (X. Wang et al., 2023). Heat
stress disrupts the integrity of the mitochondria, which is the basis
for normal mitochondrial function, resulting in a suppression of
energy production from the oxidative metabolism of
cardiomyocytes (Patra and Hay, 2014; Laitano et al., 2020; Deng
et al., 2022). However, in response to the high temperatures of the
external environment, the heart requires a greater supply of energy
to enhance cardiac function, which leads to a significant decrease in
the ATP content of the cardiomyocytes and eventual death due to
energy deficiency (Qian et al., 2004).

Glucose and fatty acids are essential substrates for oxidative
phosphorylation. Glucose and lipid metabolism plays an important
role in cardiac myocytes by providing energy and maintaining
cellular function (H. Tian et al., 2023). However, studies in
murine models of EHS have revealed that HS alters
cardiomyocyte metabolic pathways, disrupts the glycolytic and
oxidative phosphorylation pathways by upregulating glycolysis-
related enzymes, thereby enhancing lactate production to impair
cardiomyocyte function (Laitano et al., 2020). The perturbation of
glucose and lipid metabolism by HS may be related to the inhibition
of the AMPK signaling pathway (Rodríguez et al., 2021). AMPK
increases ATP production in cardiomyocytes through stimulation of
glucose metabolism and fatty acid oxidation. AMPK
phosphorylation at Thr172 induces acyl CoA-carboxylase (ACC)
phosphorylation to inhibit the conversion of acetyl-CoA to
malonyl-CoA during fatty acids (FAs) synthesis (Carling et al.,
2008). Beyond the inhibition of lipid anabolism, p-AMPK also
promotes FAs uptake by inducing the activity of the FAs
transporter CD36, enhancing β-oxidation (Habets et al., 2009).
Glucose metabolism is also regulated by AMPK. p-AMPK
increases glucose transporter 4 (GLUT4), which promotes
glucose uptake and thus provides a source of energy (D. Zheng
et al., 2001). Under HS conditions, phosphorylation of AMPK is
inhibited, leading to dysregulation of glucolipid metabolism and
disruption of energy metabolism (Roths et al., 2023). This ultimately
leads to cell death and impaired cardiac function. Therefore,
targeting glucose and lipid metabolism may be an effective way
to counteract HS-induced myocardial injury.
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3.5 Heat shock protein dysregulation

Cells from a murine model of myocardial tissue turn on their
intrinsic defense mechanisms in the face of heat injury, with
a dramatic increase in heat shock protein (HSP) expression
being a key part of the heat shock response (Tang et al., 2013;
Tang et al., 2016). It can interlock with apoptosis, inflammation
and autophagy to regulate cellular homeostasis and prevent
tissue damage (Hsu et al., 2013; Shen et al., 2019). It was
mentioned earlier that patients with HS can develop severe
vascular endothelial cell damage. After heat exposure, strong
positive signals for HSP90 and HSP70 are detected in rat
cardiac microvascular endothelial cells, helping the vascular
endothelium to resist heat injury (X. Zhang et al., 2020). An
increase in HSP90 activates the PI3K/Akt signaling pathway.
Phosphorylated Akt negatively regulates the expression of pro-
apoptotic proteins and contributes to cell survival (Zhang et al.,
2020). It is known from rat-related experiments that HSP levels
vary with the duration of heat stress. In the early stages of
HS, HSP rises sharply, and as time progresses, HSP is heavily
depleted, resulting in abnormally low HSP levels in the later
stages (H. B. Chen et al., 2015; Lin et al., 2020). When
HSP90 is crushed, the interaction of HSP90 with Akt is
reduced, weakening the protective effect. This results in the
vascular endothelium exhibiting a more sensitive state to heat
stress and more severe damage (Zhang et al., 2020).

4 The treatment strategy for HS

The prognosis of patients with heat stroke is directly related to
the degree and duration of the increase in core temperature
(Hadad et al., 2004). Therefore, whole-body cooling is the
current treatment of choice for HS. Following the onset of HS,
hypotension and altered cardiac protein profiles are demonstrated,
which can be reversed by whole-body cooling (Ko et al., 2020).
Temperature reduction is achieved mainly by conduction,
evaporation and convection (Hadad et al., 2004). In addition,
symptomatic support therapy is an integral part of the treatment.
When hypotension occurs in patients, aggressive fluid resuscitation
and vasoactive medication should be administered with the
avoidance of alpha-adrenergic drugs as they exacerbate peripheral
vasoconstriction and inhibit core body temperature reduction
(Atha, 2013; Asmara, 2020). Excessive inflammation and
coagulation disorders are important pathogenic mechanisms of
HS, therefore anti-inflammatory and anticoagulant therapies are
also available as treatment options (Y. F. Tian et al., 2013;
Kobayashi et al., 2018). For patients who progress to multi-
organ dysfunction despite hypothermia treatment, continuous
blood purification and plasma exchange are often selected,
aiming not only to alleviate the body’s catabolic state but also
to eliminate inflammatory mediators from the bloodstream to
facilitate the recovery of HS patients (Wakino et al., 2005; K. J;
Chen et al., 2014). Given the danger and intractability of HS,
prevention strategies are far more beneficial than any present
treatment strategies. People at risk of heat exposure should be
thermally acclimatized in advance, with consumption of sufficient
fluids and adequate nutrition (Asmara, 2020).

5 Discussion

HS involves a complex biochemical cascade of reactions and is
caused by a combination of factors. The cardiovascular system is
considered to be the first system affected by HS. Circulatory shock
occurs in approximately 20%–65% of patients, and an even higher
85% of patients will develop ECG abnormalities (Austin and Berry,
1956; Asmara, 2020). However, a dearth of clinical directives exists
regarding the efficacious management of cardiovascular ailments
amidst elevated temperatures. A precise comprehension of the
fundamental mechanisms whereby heightened temperatures
inflict harm upon myocardial tissue is imperative to judiciously
formulate preventative and therapeutic strategies. This review
summarizes the possible pathogenesis of HS-induced myocardial
injury, which can help provide new targets for the treatment of HS.

The predominant body of research scrutinizing myocardial
impairment due to hyperthermia predominantly comprises
animal studies, with a paucity of involvement from clinical
cohorts. The acquisition of clinical data assumes heightened
significance. A comprehensive database analysis encompassing
27 countries spanning the years 1979–2019 revealed a 7%
escalation in mortality among patients with ischemic heart
disease during episodes of soaring temperatures (Alahmad et al.,
2023). Moreover, a meta-analysis delineated a 2.8% augmentation in
the risk of developing coronary heart disease for each 1°C ascent in
temperature (J. Liu et al., 2022). Endothelial cell damage within
cardiac vasculature due to pyrexia precipitates thrombosis,
culminating in acute coronary incidents. Clinical investigations
have documented a substantial surge in hospitalizations linked to
coronary artery disease following exposure to elevated temperatures
(Fuhrmann et al., 2016). Long-term monitoring of hyperthermia-
stricken patients corroborates the critical role of intact myocardial
tissue, with a meager 1-year survival rate of merely 24% observed in
cases with markedly elevated troponin levels (Marchand and Gin,
2022). This underscores the profound impact of myocardial
impairment on the prognosis of hyperthermia-afflicted
individuals. Consequently, the primary focus of research should
pivot towards averting myocardial damage induced by HS.

The incomplete comprehension of HS pathogenesis, coupled
with the absence of evidence-based medical guidance for clinical
interventions, has resulted in the inadequacies of current treatment
modalities. Predominantly, supportive therapies such as whole-body
cooling and fluid resuscitation constitute the primary approach.
Regrettably, a lack of standardized endpoint objectives for whole-
body cooling persists to date. Furthermore, despite numerous
animal studies affirming the favorable efficacy of anti-
inflammatory and anti-endotoxic agents for HS, their translation
into clinical success remains limited. Aspirin, despite demonstrating
effectiveness against heat-induced injury in avian cardiac tissues,
fails to manifest any clinical benefit and may potentially exacerbate
coagulation disorders and hepatic dysfunction (Tek and Olshaker,
1992). Individuals with cardiovascular ailments not only contend
with the vulnerability of their cardiac systems in the face of HS but
also grapple with an elevated risk due to commonly prescribed
cardiac medications. β-blockers impede the capacity to augment
cardiac output in response to HS, while diuretics exacerbate
hypovolemia and elevate the risk of electrolyte imbalances
(Marchand and Gin, 2022). This begs the question of which
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medications can be initiated or stopped during extreme heat
conditions.

In cases where the heart receives heat damage, significant
changes in cardiac metabolism occur. These changes are not only
passive bystanders, but are actual participants in causing heat stress
damage to the myocardium. Targeting myocardial metabolism
could be the tool for our effective treatment. Interventions in
cardiac metabolic processes have been successfully used to reduce
infarct size in animal models of myocardial ischaemia-reperfusion
injury (Valls-Lacalle et al., 2018; Zuurbier et al., 2020). However,
suitable drug targets for conversion in patients with acute
myocardial infarction are still awaited. Cardiometabolic therapies
are challenging, but fortunately, recent methodological advances in
detecting metabolic changes within the heart will make our efforts
more achievable.

In conclusion, HS-induced myocardial injury arises from a
combination of excessive inflammation, endothelial cell damage,
abnormal cardiac metabolism, and heat shock protein dysregulation.
In the treatment, in addition to systemic supportive therapy it
should also focus on precise targeting of myocardial tissue. Only
with a deeper and clearer understanding of the mechanisms
underlying the development of HS will there be an opportunity
to establish more effective treatment.

6 Future perspective

Given the increasing mortality rate associated with HS, extensive
research has been conducted to explore this condition. A meticulous
examination of the literature has revealed potential molecular
targets for HS treatment, encompassing TLR4, P53, AMPK, and
HSP. Additionally, the Fas signaling pathway presents a novel
avenue for HS management. However, the majority of these
investigations have been confined to the realm of animal studies,
and the therapeutic strategies delineated await clinical validation.
Consequently, we should focus more on clinical trials to find
relevant drug targets that can serve clinical HS patients.
Furthermore, the absence of targeted therapy for HS-induced
myocardial injury underscores the need for advancements in this

area. Fortunately, the rapid development of modern bioinformatics
technologies offers us valuable tools to deepen our understanding of
the pathogenesis of HS-induced myocardial injury and implement
precise treatments.
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