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Lipid-lowering therapy is an important tool for the treatment of lipid metabolic
diseases, which are increasing in prevalence. However, the failure of conventional
lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-
effects of these drug regimens, highlight the urgent need for novel lipid-lowering
drugs. The liver and intestine are important in the production and removal of
endogenous and exogenous lipids, respectively, and have an important impact on
circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid
deposition in the vascular wall, affecting vascular function. Berberine (BBR)
modulates liver lipid production and clearance by regulating cellular targets
such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC),
microsomal triglyceride transfer protein (MTTP), scavenger receptor class B
type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding
cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and
metabolism by modulating gut microbiota composition and metabolism.
Finally, BBR maintains vascular function by targeting proteins such as
endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density
lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the
pharmacological mechanisms of berberine in lipid metabolic diseases from a
multi-organ (liver, intestine, and vascular system) and multi-target perspective.
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1 Introduction

In recent years, with economic development and changes in diet, the incidence of lipid
metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD), atherosclerosis (AS),
obesity, and hyperlipidemia, has increased, placing a significant burden on human health
and the health insurance system (Loomba et al., 2021; Fan and Watanabe, 2022). Elevated
lipid levels are a common feature of these diseases, and thus lipid-lowering therapies are
essential for their treatment. Commonly used lipid-lowering drugs such as statins, protein
convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and ezetimibe have been developed
based on critical targets of lipid metabolism. The widespread use of these drugs effectively
lowers lipid levels and reduces lipid deposition in tissues such as blood vessels. However,
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adverse effects of long-term treatment, such as liver damage and
rhabdomyolysis, have been widely documented, emphasizing the
need to develop new lipid-lowering therapies (Liu et al., 2019).

Berberine (BBR) is widely used in Asian countries because of its
good clinical efficacy and safety in reducing lipids (Song et al., 2020).
Importantly, in contrast to drugs developed for a single target of
lipid metabolism in a single organ, BBR can coordinate multiple key
targets of lipid metabolism and intestinal flora in the intestine and
liver to regulate lipid levels. It can also act directly on blood vessels to
ameliorate endothelial dysfunction, inhibit macrophage foam cell
formation, and regulate vascular smooth muscle cell (VSMC)
proliferation and migration to prevent and treat AS (Rui et al.,
2021) (Figure 1). The guidelines of the European Society of
Cardiology and the European Atherosclerosis Society recommend
BBR as a dietary supplement and functional food for treating
dyslipidemia (Members et al., 2016). This article provides an in-
depth review of recent advances in utilizing BBR to prevent and treat
lipid metabolic disorders. It examines the progress from the per-
spective of the liver, intestine, and blood vessels, and discusses how
BBR acts on cellular targets including cluster of differentiation 36
(CD36), microsomal triglyceride transfer protein (MTTP), low-
density lipoprotein receptor (LDLR), lectin-like oxidized low-
density lipoprotein receptor-1 (LOX-1), acyl-CoA-cholesterol

acyltransferase (ACAT), and adenosine monophosphate-activated
protein kinase (AMPK), as well as gut microbiota. The aim of this
review is to provide a modern scientific perspective for a holistic and
systematic understanding of the mechanisms by which BBR
regulates lipid lowering in multiple organs and to provide new
ideas for treating lipid metabolic diseases.

2 Pharmacokinetics of BBR

2.1 Absorption, distribution, and excretion
of BBR

Because intravenous BBR administration can cause serious
clinical side effects, oral administration is still the main route of
administration of BBR. In an animal study in rats, berberine
(400 mg/kg) was administered orally in rats, Cmax was 0.260 μg/
mL. AUC0-t was low for the oral route of administration (Yu et al.,
2022a). The poor absorption after BBR oral administration is caused
by poor permeability, P-glycoprotein mediated efflux, hepatobiliary
reexcretion, and self-aggregation. Absorbed BBR is rapidly and
widely distributed in a variety of tissues such as the brain,
intestine, stomach, pancreas, heart, kidney, and liver with the

FIGURE 1
The berberine (BBR) pathway in the prevention and treatment of lipid metabolic diseases. When oral BBR enters the gut, it interacts with intestinal
microorganisms. Intestinal flora convert BBR into BBR derivatives such as demethyleneberberine, jatrorrhizine, berberrubine, and thalifendine BBR can
also directly regulate intestinal branched-chain amino acid (BCAA), short-chain fatty acid (SCFA), and trimethylamine-N-oxide (TMAO) production. These
intestinal metabolites are absorbed into the liver through blood vessels, which reduce liver lipid production and increase circulating lipid removal by
inhibiting liver cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), and microsomal triglyceride transfer protein (MTTP) expression and
upregulating ATP-binding cassette transporter A1 (ABCA1), scavenger receptor class B type 1 (SR-BI), bile acid, and low-density lipoprotein receptor
(LDLR) expression. In addition, metabolites entering blood vessels also act directly on blood vessel walls to reduce vascular endothelial dysfunction,
reduce the formation of macrophage foam cells, inhibit vascular smooth muscle cell proliferation, and, thus, alleviate atherosclerosis (AS). Additional
figure abbreviations: apoA-1, apolipoprotein AI; HDL, high-density lipoprotein; LCFA, long-chain fatty acid; LDL, low-density lipoprotein; LOX-1, lectin-
like oxidized low-density lipoprotein receptor-1; VLDL, very low-density lipoprotein.
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highest concentration in the liver (Tan et al., 2013). The liver and
intestine, as the main sites of BBR metabolism, can metabolize BBR
into a variety of derivatives through a variety of mechanisms
(specifically, see section “2.2 Metabolism of BBR in the liver and
intestine”). BBR is mainly excreted fecally, followed by through the
urine and bile. When orally administered, BBR is majorly excreted
through the feces and primarily in the original form. In contrast,
BBR metabolites are mainly excreted through the urine and bile
(Feng et al., 2021). Bile, as one of the pathways of BBR excretion, is
also regulated by BBR-related signaling pathways. It has been found
that BBR affects bile excretion by regulating the gut microbiota and
acting on the farnesoid X receptor (FXR) -CYP7A1/
CYP8B1 pathway (Guo et al., 2016; Wolf et al., 2021). However,
due to the hepatoenteric circulation of bile acids (BAs), the amount
of BBR and its derivatives excreted through bile is small.

2.2 Metabolism of BBR in the liver and
intestine

2.2.1 Hepatic metabolism of BBR
In both rats and humans, the liver plays a significant role in

BBR metabolism (Kumar et al., 2015). BBR is mainly converted
into berberrubine, demethyleneberberine, jatrorrhizine, and
thalifendine via hepatic metabolism (Feng et al., 2021).
Following oral administration, BBR metabolite levels are
highest in the liver (Zhu et al., 2016). Moreover, the half-life
of BBR in hepatic tissue is longer than that in other tissues (Wei
et al., 2016b), suggesting that the liver may be the main site of
BBR metabolism.

Cytochrome P450 enzymes (CYPs) mediate the phase I
metabolic pathway of BBR in the liver (Guo et al., 2011a).
Clinical studies have shown that CYP2D6 is the primary
human CYP that produces BBR metabolites, followed by
CYP1A2, CYP3A4, CYP2E1, and CYP2C19 (Guo et al., 2011b).
Thus, quinidine and furafylline are important metabolic inhibitors
of BBR as they inhibit CYP2D6 and CYP1A2 (Khoshandam et al.,
2022), respectively. Li et al. showed that CYP2D6 and CYP1A2 can
convert BBR to the BBR metabolite thalifendine. Thalifendine
increases LDLR mRNA expression with an activity level of 26% of
that of BBR (Li et al., 2011a; Tan et al., 2013). CYP2D6, CYP1A2,
and CYP3A4 participate in demethyleneberberine production. In
the liver, intracellular demethyleneberberine is 25.14 times more
enriched than extracellular demethyleneberberine (Liu et al.,
2022). After the formation of phase I metabolites of BBR, phase
II metabolites of BBR may be formed by glucuronidation. UDP-
glucuronosyltransferases (UGTs), particularly UGT1 and UGT2,
are known to mediate glucuronidation. In a human study,
UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, and
UGT1A10 in the liver mediated jatrorrhizine glucuronidation
(Zhou et al., 2013). Berberrubine, demethyleneberberine, and
their corresponding glucuronides were also be produced via
incubation with the liver S9 fraction, but at a slower pace than
with liver microsomes (Liu et al., 2009).

Animal studies have shown that a large proportion of BBR
(200 mg/kg) is distributed in the liver after oral administration,
which may contribute to its low blood concentration. Among
BBR, berberrubine, demethyleneberberine, and jatrorrhizine,

demethyleneberberine has the highest distribution in the liver
and jatrorrhizine has the lowest (Liu et al., 2010). The liver also
affects BBR clearance. For example, liver tissue clearance of BBR
is higher in normal rats than in rats with acute hepatitis.
Therefore, clinical doses of BBR should be carefully controlled
when using it to treat acute hepatitis (Dai et al., 2018). In
addition, tandem mass spectrometry revealed that the content
of BBR metabolites in human liver microsomes is significantly
different from that in rat liver microsomes (Li et al., 2017).
Therefore, data related to the rat liver metabolism of BBR
should be carefully refer-enced when developing BBR drugs.

2.2.2 Intestinal metabolism of BBR
To evaluate its intestinal first-pass metabolism, BBR was

administered to rats via four distinct routes (intragastric,
intraduodenal, intraportal, and intravenous). Significant
differences are found in circulating BBR concentrations after
intraduodenal and intravenous administration compared to
intragastric administration, indicating that the intestinal first-pass
effect of BBR is substantial (Liu et al., 2010). Moreover, utilizing
intestinal post-mitochondrial (S9), cytosolic, and microsomal
fractions, researchers have examined the intestinal metabolism of
BBR (Ma et al., 2014). Five metabolites (berberrubine,
demethyleneberberine, jatrorrhizine, berberrubine glucuronide,
and demethyleneberberine glucuronide) were produced in the
enterocyte fraction S9 and intestinal perfusates in vitro studies.
Among them, berberrubine, demethyleneberberine glucuronide,
and jatrorrhizine were the major intestinal metabolites (Liu et al.,
2010).

Moreover, the intestinal flora is the largest microecosystem in
the body and significantly affects material and energy
metabolism. CYP51 in intestinal flora stably binds BBR and
facilitates its conversion into demethylated metabolites.
Adding a CYP51 inhibitor slows BBR metabolism, preventing
the production of demethylated metabolites, including
thalifendine and berberrubine (Zhang et al., 2021a).
Furthermore, the intestinal flora can also increase circulating
BBR levels by converting BBR to a more readily absorbed form,
dihydroberine (DHB), via nitroreductase. Additionally,
observations of the gut microbial modulation of
pharmacokinetics in beagle dogs after oral administration of
BBR (50 mg/kg/d) by single or multiple doses for 7 days
revealed that their fecal BBR excretion levels were higher on
days 3 and 7. Butyrate in the plasma and feces increased 3.1-fold
and 2.7-fold, respectively, after 1 day of BBR treatment, and the
number of bacteria that produce butyrate and nitroreductase was
elevated after 7 days of treatment. The plasma and feces were
found to contain eleven metabolites, including eight phase I and
three metabolites of phase II (Feng et al., 2018b). These studies
suggest that the gut and its flora are essential for BBR metabolism.

3 The role of BBR in regulating lipid
metabolism in the liver

The liver is an essential organ for endogenous lipid production,
and BBR can regulate hepatic lipid metabolism to prevent and treat
lipid metabolic diseases, such as and NAFLD. The mechanisms of
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action of BBR include inhibiting hepatic lipid production, increasing
hepatic lipid clearance, improving insulin resistance, promoting
AMPK phosphorylation (p-), influencing apoptosis and
autophagy in lipid cells, and regulating epigenetic modifications.

3.1 BBR regulates lipid production in the liver

CD36, acetyl-CoA carboxylase (ACC), and MTTP are essential
regulators of lipid uptake and synthesis in the liver. BBR reduces
circulating lipid levels and hepatic lipid accumulation by inhibiting
these regulators.

3.1.1 CD36
CD36 belongs to the scavenger receptor family, also known as

fatty acid translocases, which facilitates the uptake of long-chain
fatty acids (LCFAs) (Zhong et al., 2017). Hepatocyte CD36 is a
crucial regulator of de novo hepatic lipogenesis. High fat diet
(HFD)-induced liver steatosis and insulin resistance are
attenuated in CD36-knockout mice (Zeng et al., 2022).
Excessive accumulation of liver fat is a crucial factor in the
pathogenesis of NAFLD. Therefore, suppression of CD36 to
reduce liver fat uptake and synthesis may have a potential
effect in preventing and treating NAFLD. Berberrubine, a
main BBR metabolite, alleviates NAFLD by reducing
CD36 expression Moreover, berberine maintains glucose
homeostasis in HFD-fed mice by upregulating glucose
transporter 2 (GLUT-2) and glycogen synthase kinase 3β
(GSK3β) protein expression and inhibiting glucose
6 phosphatase (G6Pase) protein expression (Yang et al., 2022c).

Accumulating evidence has indicated that CD36 is an essential
regulator of intracellular fatty acid homeostasis (Samovski et al.,
2015). CD36 is involved in fatty acid oxidation (Samovski et al.,
2015) and lipophagy (Li et al., 2019a) by activating AMPK, thus
regulating the storage or use of fatty acids. These studies suggest that
promoting fatty acid oxidation and correcting lipophagy defects by
inhibiting CD36 expression in hepatocytes may be a novel strategy
for treating liver fat accumulation. BBR lowers cholesterol by
inhibiting bile salt hydrolase (BSH), increasing conjugated BA
levels, and activating the FXR signaling pathway, among other
mechanisms; this leads to reduced hepatic CD36 levels, thereby
reducing both hepatic LCFA absorption and lipid accumulation
(Sun et al., 2017). Therefore, BBR may play an important role in the
prevention and protection against NAFLD by regulating
CD36 expression.

3.1.2 ACC
ACC is a crucial enzyme involved in fatty acid biosynthesis

and metabolism. It has two tissue-specific isomers, ACC1 and
ACC2, which catalyze the conversion of acetyl coenzyme A to
malonyl coenzyme A and exhibit different distributions. A
cytosolic enzyme expressed mainly in adipose tissue such as
the liver, ACC1 is responsible for the rate-limiting step in
LCFA biosynthesis (Munday, 2002). The rate-limiting enzyme
ACC carboxylates acetyl coenzyme A into malonyl coenzyme A
during adipogenesis, subsequently converting this into LCFAs
and then into triglycerides (TGs) via a multi-step reaction with
fatty acid synthase (FAS) (Gathercole et al., 2011).

Over-synthesis of TG is a major pathogenic factor in NAFLD.
Indeed, several studies have shown that ACC1 inhibitors can
combat NAFLD (Wu and Huang, 2019). In HFD-induced
NAFLD rats, the protein expression levels of sirtuin 3
(SIRT3), p-AMPK, and p-ACC were significantly higher in the
livers of rats in the BBR treatment group, and the serum and liver
lipid profiles and liver injury status improved. These data suggest
that the mechanism by which BBR ameliorates HFD-induced
hepatic steatosis may be related to activation of the liver SIRT3/
AMPK/ACC pathway (Zhang et al., 2019b). In addition to
NAFLD, BBR improves hepatic lipid metabolism in rats with
alcohol-induced alcoholic fatty liver disease by reducing hepatic
lipid synthesis through the inhibition of ACC, which may be
related to the thyroid hormone responsive gene responsible for
fatty acid synthesis (Ke et al., 2022). Single-drug therapy for fatty
liver disease is typically ineffective, as it has a complex etiology
and affects multiple systems (Brown et al., 2021; Zhu et al., 2021).
Therefore, combining drugs with different mechanisms may
enhance overall efficacy (Dufour et al., 2020; Kessoku et al.,
2020). For example, the p62/nuclear factor erythroid 2-related
factor 2 (NRF2)/carboxylesterase 2 (CES2) and p62/NRF2/
PPARα signaling axes are restored by bicyclol, which enhances
lipolysis and β-oxidation, while BBR reduces de novo lipogenesis
by suppressing ACC and FAS expression; the combination of the
two drugs has already been demonstrated to enhance their overall
therapeutic effect in improving NAFLD (Li et al., 2022a).

3.1.3 MTTP
NAFLD is characterized by considerable accumulation of TGs

in the liver, which, under normal circumstances, are excreted from
the liver as very low-density lipoprotein (VLDL). Therefore, the
timely synthesis and secretion of VLDL are vital for mitigating
hepatic TG deposition. The assembly and maturation of VLDL are
closely related to MTTP activity (Anastasia et al., 2021). Lipids and
apolipoprotein B (ApoB) are essential components of VLDL, and
MTTP stabilizes ApoB expression to reduce ApoB degradation
and promote lipid transfer to VLDL particles to facilitate VLDL
maturation (Demignot et al., 2014). Wang et al. (Wang et al., 1999)
found that inhibition of MTTP activity impedes VLDL assembly,
leading to increased intrahepatic TG levels. Lomitapide is a drug
developed to target the downregulation of MTTP activity. It
reduces ApoB secretion but causes side effects such as increased
hepatic lipid compensation and exacerbated NAFLD, thus limiting
its range of application (Stefanutti, 2020). It is believed that
decreased MTTP expression in NAFLD rats may decrease
hepatic TG excretion in VLDL, favoring the accumulation of
hepatic fat. BBR treatment reverses the abnormal HFD-induced
expression of MTTP thus improving fatty liver (Chen et al., 2021).
DNA methylation is one of the pathways that leads to gene
expression dysregulation via interactions with environmental
factors. DNA methylation levels in the MTTP promoter of
NAFLD rats are elevated in the liver, and a strong negative
correlation has been observed between MTTP expression and
DNA methylation. BBR selectively inhibits HFD-induced MTTP
methylation to partially counteract HFD-induced MTTP
dysregulation, which promotes normal levels of VLDL secretion
in the liver, thereby reducing hepatic fat content and alleviating
NAFLD (Chang et al., 2010).
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3.2 BBR regulates lipid clearance in the liver

Circulating high-density lipoprotein cholesterol (HDL-C) and
low-density lipoprotein cholesterol (LDL-C) are taken up and
cleared by hepatocytes via hepatic scavenger receptor class B type
I (SR-BI) and LDLR, respectively. The liver transfers cholesterol to
apolipoprotein AI (ApoAI) via the ATP-binding cassette transporter
A1 (ABCA1) to form high-density lipoprotein (HDL), which is a
protective factor for blood lipids to a certain extent. BBR reduces
circulating and hepatic lipid levels by acting on these targets of lipid
metabolism.

3.2.1 SR-BI
SR-BI is a hairpin-looped structure with two short

transmembrane domains, two cytoplasmic tails, and a large
extracellular loop. A large cavity traverses the entire length of the
SR-BI molecule, and mutagenesis of SR-BI showed that the cavity is
a lipophilic tunnel through which cholesterol ester is delivered from
the bound lipoprotein to the outer leaflet of the plasma membrane
(Neculai et al., 2013). SR-BI is highly expressed in human and
animal livers and can lower circulating cholesterol levels by taking
up cholesterol from circulating HDL, VLDL, and other lipoproteins
(Yang et al., 2013). In the SR-BI−/− mouse model, circulating total
cholesterol (TC) levels increase 2.5-fold (Cao et al., 2018a). While,
overexpression of SR-BI in mouse liver can reduce the level of
circulating lipid (Zhang et al., 2005). In addition, SR-BI variants in
humans can lead to increased circulating cholesterol levels and an
increased risk of cardiovascular disease (CVD) (May et al., 2021).
Thus, regulation of SR-BI expression can influence lipid levels and
AS progression.

In HFD-fed ApoE−/−mice, circulating lipid levels increased and
hepatic SR-BI expression decreased. After addition of BBR, SR-BI
expression was restored and the levels of circulating TC, TG, LDL-C
and HDL-C decreased, delaying the progression of AS plaques and
hepatic steatosis (Ma et al., 2021a). BBR may regulate SR-BI via
various mechanisms. Liver X receptors (LXRs) and peroxisome
proliferator-activated receptors (PPAR-α, PPAR-β/δ, and PPAR-
γ) regulate human SR-BI gene expression by forming a heterodimer
with the retinoid X receptor (RXR) and bind to the SR-BI promoter
(Shen et al., 2018). Mitogen-activated protein kinase (MAPK) affects
hepatic SR-BI expression by targeting PPAR, further altering the
ability of cells to export cholesterol (Wood et al., 2011).

The mechanisms related to the regulation of lipid metabolism by
BBR via hepatic SR-B1 have not been well studied. Considering that
LXR, PPAR, and MAPK are known targets of BBR (Han et al., 2015;
Bansod et al., 2021) and that LXR, PPAR, and MAPK have
regulatory effects on hepatic SR-B1, whether BBR can affect
circulating cholesterol levels by regulating hepatic SR-B1 via
LXR, PPAR, and MAPK deserves further exploration.

3.2.2 LDLR
Plasma LDL is mainly removed from circulation through LDLR,

and LDLR deficiency increases circulating cholesterol levels and
accelerates AS (Xu and Weng, 2020). Three proteins are known to
bind to AU-rich element (ARE): heterologous nuclear
ribonucleoprotein D (hnRNP D), hnRNP I, and KH-type splicing
regulatory protein (KSRP) (Li et al., 2009a; Pan et al., 2020). These
proteins interact with the LDLR 3′UTR, leading to a reduction in

LDLR mRNA levels. BBR stabilizes LDLR expression by reducing
the affinity between hnRNP I or KSRP and LDLR (Singh et al., 2014;
Momtazi et al., 2017). Poly A-binding protein (PABP) maintains
mRNA stability by protecting it against nucleophilic attack (Behm-
Ansmant et al., 2007). In vitro, BBR indirectly enhances LDLR
mRNA stability by promoting binding between PABP and the poly
adenine (polyA) tail of LDLR mRNA. BBR also improves LDLR
mRNA stability by targeting the polyA tail directly (Yuan et al.,
2015). BBR stabilizes LDLR mRNA and enhances plasma LDL-C
clearance by activating the AMPK/extracellular signal-regulated
kinase (ERK) signaling pathway (Abidi et al., 2005). BBR can
directly upregulate LDLR mRNA expression in hepatocytes by
activating the Jun N-terminal kinase (JNK)/c-Jun signaling
pathway (Fan et al., 2021), resulting in increased LDL uptake,
lower circulating LDL-C levels, and alleviation of AS. These
studies suggest that BBR plays a role in reducing circulating
cholesterol levels by stabilizing or increasing LDLR mRNA
expression.

LDLR levels are also regulated by PCSK9, which promotes LDLR
degradation and increases circulating LDL-C levels by binding to
LDLR (Ataei et al., 2022). BBR reduces serum LDL-C levels and
delays aortic plaque formation in ApoE−/− mice by activating
ERK1/2 to downregulate PCSK9 (Ma et al., 2021b). Sterol
regulatory element-binding protein (SREBP) and hepatocyte
nuclear factor 1α (HNF1α) control PCSK9 protein synthesis at
the transcriptional level. Through ubiquitin-proteasome
degradation, BBR inhibits SREBP2 and HNF1α expression. As a
result, blood PCSK9 levels could be lowered via decreased
transcription of its mRNA, resulting in increased LDLR mRNA
expression (Cao et al., 2018a; Shafabakhsh et al., 2021).
Furthermore, when added to hepatocytes with statins, BBR
counteracts the statin-inducted transcription of PCSK9 (Li et al.,
2009b) and is therefore a potential drug for lipid regulation in
combination with statins. In conclusion, BBR can not only increase
LDLR expression by stabilizing LDLRmRNA, but also reduce LDLR
degradation by down-regulating PCSK9, which indirectly improves
LDLR expression and increases circulating cholesterol clearance.

3.2.3 ABCA1
Human ABCA1 gene has been mapped to chromosome 9q31.1,

spans 149 kb, and comprises 50 exons and 49 introns (Santamarina-
Fojo et al., 2000). The study found that ABCA1 may transport
cellular cholesterol and phospholipids to extracellular ApoAI
through nine different models (Sun and Li, 2022) to generate
nascent HDL particles (Ogura, 2022). Upregulation of
ABCA1 promotes intracellular lipid efflux and increases
circulating HDL levels to alleviate lipid metabolic diseases
(Matsuo, 2022). Relative to wild-type mice, ApoE−/− mice fed an
HFD exhibit reduced hepatic ABCA1 expression, whereas BBR
treatment enhances the expression of ABCA1 and alleviates
atherosclerotic lesions and hepatic steatosis (Ma et al., 2021a).
Protein kinase Cδ (PKCδ) increases ABCA1 serine
phosphorylation and reduces the rate of ABCA1 protein
degradation (Weng et al., 2018). In vitro and in vivo studies
demonstrate that BBR decreases hepatic cholesterol and TG
levels by increasing ABCA1 protein levels through PKCδ,
whereas the PKCδ inhibitor rottlerin and PKCδ siRNA
completely abolish the effect of BBR on ABCA1. Furthermore,
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the inhibition of ABCA1 and its siRNA eliminate the ability of BBR
to lower cellular cholesterol levels. These results suggest that BBR
increases ABCA1 protein levels via PKCδ, thereby reducing hepatic
steatosis (Liang and Wang, 2018). Therefore, ABCA1 may be an
important target of BBR for the treatment of lipid metabolic
diseases.

3.3 BBR regulates lipid metabolism through
AMPK

AMPK, which plays a key role in energy metabolism, has been
the focus of research on lipid-relatedmetabolic diseases (Wang et al.,
2018). When AMPK is activated, genes linked to lipogenesis are
downregulated, and energy consumption is increased. As a result,
lipid buildup is reduced, and liver function is enhanced.

In HFD-fed rats, the BBR- and simvastatin-treated groups
showed similar decreases in LDL-C levels (−26.8% and −28.3%,
respectively), and the combination of the two drugs resulted in a
more pronounced decrease in LDL levels (−46.2%) (Kong et al.,
2008) and slowed AS progression, potentially via AMPK activation
by BBR (Cao et al., 2013), which inhibit 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR) and cholesterol
biosynthesis (Song et al., 2012). AMPK can modulate lipid
metabolism by acting on SREBP, a regulator of hepatic
lipogenesis (Ferré et al., 2021). p-AMPK inhibits the expression
of SREBP-1c via Ser372 phosphorylation and blocks SREBP-1c
nuclear translocation, thus inhibiting the transcription and
translation of SREBP-1c target genes such ACC1, FAS, and
stearoyl CoA desaturase 1 (SCD1) (Li et al., 2011b). The role
AMPK in lipid metabolism is further supported by the discovery
that BBR treatment promotes hepatic lipolysis (CPT and LPL) and
reduces hepatic lipid deposition in largemouth bass via AMPK/
SREBP1 (Gong, 2022). In addition, the mRNA levels of two crucial
cholesterol production enzymes, 3-Hydroxy-3-Methylglutaryl-CoA
Synthase (HMGCS) and HMGCR, are reduced by the activation of
AMPK, which is consistent with decreased levels of SREBP-2 (Li
et al., 2011a). Reduced TG and cholesterol biosynthesis, owing to
reduced expression of ACC1, FAS, SCD1, HMGCS, and HMGCR,
improves hepatic steatosis (Li et al., 2011b). Columbamine, a BBR
metabolite, also has the advantage on lowering TG levels via the
activation of AMPK (Cao et al., 2013).

BBR and its derivatives can block mitochondrial respiratory
chain complex I, thereby affecting levels of intracellular AMP and
ADP, and activating AMPK (Sanders et al., 2007; Turner et al.,
2008). Activated AMPK promotes the expression of uncoupling
protein-1 (UCP1) and −2 (UCP2) in adipose tissue and increases the
expression of other thermogenic genes. Fatty acids are burned off in
the form of heat (Wang et al., 2011; Zhang et al., 2011; Zhang et al.,
2014). At the same time, in HFD-induced NAFLD rats, BBR-
induced activation of SIRT3, a crucial gene for fatty acid
oxidation, alters the expression of ACC and carnitine
palmitoyltransferase-1A (CPT-1A), thereby reducing hepatic
steatosis (Zhang et al., 2019a). In AMPKα1−/− HepG2 cells, the
stimulating effects of BBR on the activity p-AMPKα1, p-AMPKα
and AMPK, and its effects on glucose and lipid metabolism, are
completely suppressed (Ren et al., 2020). These studies suggest that
BBR may reduce circulating fat levels by inhibiting adipogenesis and

promoting fat consumption through AMPK and may be used to
treat lipid metabolic diseases.

3.4 BBR affects hepatic lipid metabolism
through other pathways

3.4.1 Mitochondria
The mitochondria are an important location for energy

(including lipid) metabolism in cells, and are composed of an
outer membrane, intermembrane space, inner membrane, and
matrix. Studies have shown that excessive lipid accumulation in
hepatocytes during NAFLD leads to abnormal fatty acid oxidation,
increased mitochondrial reactive oxygen species production, and
abnormal mitochondrial membrane lipids and proteins (Prasun
et al., 2021). Mitochondria-associated ER membranes (MAMs)
are lipid raft-like domains closely associated with mitochondria,
which are located between mitochondria and the endoplasmic
reticulum. MAMs not only structurally connect the endoplasmic
reticulum and mitochondria, but are also rich in a variety of
functional proteins related to lipid metabolism such as acyl-coA:
cholesterol acyltransferase-1 (ACAT1/SOAT1), acyl-CoA:
diacylglycerol acyltransferase 2 (DGAT2) (Ma et al., 2021b), and
phosphatidylethanolamine N-methyltransferase (PEMT) (Zhao
et al., 2009). Administration of BBR to rats fed a high-fat diet
reduced the expression of DGAT in liver tissues and the level of
circulating blood lipids (Zhu et al., 2017). In vitro experiments have
shown that BBR can inhibit ATP synthesis, enhance glycolysis, and
promote glucose metabolism by inhibiting the mitochondrial
respiratory chain complex I (Xu et al., 2014). Animal
experiments have shown that BBR upregulates the mitochondrial
content in brown and white adipocytes in diabetic mice, stimulates
UCP1 -mediated thermogenesis, and accelerates fat catabolism.
These mechanisms may be related to AMPK signaling (Zhang
et al., 2014). In addition, Sirtuin 3 (SIRT3), a deacetylase mainly
located in mitochondria, is a key regulator of mitochondrial
function. SIRT3 is highly expressed in metabolically active tissues
(such as the liver). Mice fed a high-fat diet for sustained periods
exhibit decreased Sirt3 expression, resulting in mitochondrial
dysfunction and over-acetylation of proteins in the liver. These
changes can increase the risk of aging-related diseases such as
NAFLD and obesity (Choudhury et al., 2011). Potential
mechanisms underlying these findings include the
downregulation of ERK-CREB-Bnip3 and inhibition of the
mitochondrial autophagy pathway (Li et al., 2018a). BBR also
promotes fatty acid β oxidation through SIRT3-LCAD, thereby
slowing the progression of NAFLD (Xu et al., 2019). By
activating SIRT3, BBR can also improve adipose tissue
remodeling, downregulate the expression of TNF-α and NF-kB,
which play an anti-hyperlipidemic and anti-hyperglycemic role (Li
et al., 2022b). Therefore, by regulating mitochondria, MAMs, and
their related proteins is one of the important ways for BBR to exert
lipid-lowering effects.

3.4.2 Autophagy
Lipid droplets are separated by autophagy and sent to

hepatocyte lysosomes for degradation, enabling the breakdown
and excretion of lipids such as TG and cholesterol (Zhang et al.,
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2018). The Akt/mammalian target of rapamycin (mTOR) axis is the
main signaling pathway that regulates autophagy (Jung et al., 2010).
Autophagy activation by mTOR inhibitors promotes lipid
degradation (Lin et al., 2013). BBR slows NAFLD progression by
inhibiting ERK/mTOR-induced autophagy, thereby improving
hepatic lipid accumulation in vitro and in vivo (He et al., 2017).
BBR enhances autophagy by preventing cyclooxygenase-2 (COX-2)-
mediated prostaglandin formation, thereby reducing p-AKT and
p-mTOR levels (Sun et al., 2018a; Gendy et al., 2022). In ApoE−/−
mice fed a high-fat diet, BBR regulates autophagy, reduces lipid
levels, and antagonizes carotid lipid accumulation bymodulating the
phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling
pathway (Song and Chen, 2021). Moreover, SIRT1 is essential for
BBR to potentiate autophagy and inhibit lipid storage in the mouse
liver in response to fasting. BBR stimulates SIRT1 deacetylation and
induces autophagy in an autophagy-related protein 5 (ATG5)-
dependent manner (Sun et al., 2018b). Therefore, promoting
autophagy is a key method by which BBR reduces circulating
lipid levels.

3.4.3 Insulin resistance
Increasing evidence suggests that insulin resistance and lipid

metabolism are tightly connected as tissue lipid accumulation could
lead to severe insulin resistance (Yang et al., 2018). In addition, the
elevation of insulin levels after a meal signal the liver to adjust lipid
metabolism (Titchenell et al., 2017). Moreover, lipid metabolic
diseases, such as obesity, hyperlipidemia, and AS, are often
associated with insulin resistance (Lee et al., 2022). BBR can
improve insulin resistance (Yan et al., 2015) by upregulating
insulin receptor substrate-2 (IRS-2) (Xing et al., 2011) and down
regulating UCP2 at the mRNA and protein levels along with a
decrease in TC, TG, and LDL-C and an increase in HDL-C in HFD-
induced NAFLD model rats (Zhao et al., 2017).

3.4.4 Epigenetic modification
Long noncoding RNA (lncRNA) and microRNA (miRNA) are

important regulators of lipid homeostasis. BBR therapy reverses the
expression of numerous genes, including 881 mRNAs and
538 lncRNAs, in steatotic liver (Yuan et al., 2015). In BBR-
treated immortalized hepatocyte cell lines MIHA and HepG2,
upregulation of miR-373 levels is observed, which in turn inhibits
the AKT/mTOR/ribosomal S6 kinase (S6K) signaling pathway
associated with steatosis in hepatocytes, thereby reducing
abnormal lipid deposition in the liver (Li et al., 2018b). In
addition, BBR therapy prevents type 2 diabetic mice from
developing hepatic gluconeogenesis and lipid metabolism
abnormalities, by lowering miR122 (Wei et al., 2016a). Moreover,
BBR affects the expression of lncRNAs associated with the
rapamycin, MAPK, and apoptosis pathways in the plasma of
patients with stable coronary artery disease, which may be
involved in coronary heart disease prognosis (Han et al., 2022).
DNA demethylation and histone acetylation are also involved in
BBR-mediated lipid regulation. L-type pyruvate kinase (L-PK) is the
third rate-limiting enzyme in glycolysis and is closely associated with
NAFLD and diabetes. BBR treatment restores the expression of
L-PK by demethylating the L-PK promoter and increasing the
acetylation levels of histones H3 and H4 around L-PK and could
therefore be used to treat NAFLD (Zhang et al., 2015). BBR

treatment reduces hepatic lipid deposition by reversing abnormal
epigenetic modifications, such as DNA modification, histone
modification, and noncoding RNA regulation, thereby
maintaining normal hepatic lipid metabolism.

4 The role of BBR in regulating lipid
metabolism in the intestine

Like the endogenous lipid-producing organ, the liver, the
intestine is an important organ for exogenous lipid production
and makes an important contribution to the body’s lipid levels
(Figures 2, 3). BBR can prevent and treat lipid metabolic diseases by
directly regulating intestinal lipid metabolism and interacting with
intestinal flora.

4.1 BBR affects lipid production in the gut

Compared to the many adverse effects of ACAT1 deficiency,
such as cholesterol accumulation, macrophage death, and
destabilization of cell membrane function, ACAT2 deficiency
protects against AS (Rudel et al., 2005). ACAT2 promotes the
conversion of cholesterol into cholesteryl esters (CEs), which in
turn synthesize lipoproteins and affect lipid levels. Furthermore,
ACAT2 affects intestinal cholesterol absorption, which is
significantly reduced in mice lacking ACAT2 (Temel et al., 2005).

Free cholesterol is incorporated into mixed micelles in the
intestinal lumen after fat digestion and de-esterification, before
being delivered to the small intestine’s absorptive epithelium.
This step determines the amount of cholesterol available for
uptake on the apical side of the enterocytes. ACAT2 converts
free cholesterol taken up by intestinal cells into CEs in the
intestine and further assembles CEs into chylomicrons (CMs). In
HFD-fed rats, BBR treatment reduces the level of circulating total
and non-HDL cholesterol. In vitro studies reveal that BBR treatment
reduces the monolayer permeability of Caco-2 cells and their uptake
and esterification of cholesterol, the mechanism of which might be
related to the inhibition of ACAT2 gene and protein expression in
Caco-2 cells by BBR (Wang et al., 2014). This study suggests that
BBR may affect blood lipid levels by inhibiting intestinal
ACAT2 and may be used to combat lipid metabolic disorders.
Studies on the relevant targets of BBR in regulating intestinal
lipid metabolism are currently scarce and need to be conducted
in the future.

4.2 BBR affects lipid metabolism by affecting
intestinal flora composition

Because of the low oral bioavailability of BBR and its direct
antibacterial effect (Huang et al., 2020), it can alter intestinal flora
composition (Hu et al., 2022b). In HFD-induced atherosclerotic
mice, BBR treatment exerts a beneficial effect on reducing
circulating lipid levels (Wu et al., 2020) by increasing the
abundance of Akkermansia, Firmicutes, and Verrucomicrobia
(Zhu et al., 2018) and decreasing the abundance of Bacteroidetes
and Proteobacteria in the mouse intestinal flora (Shi et al., 2018). In
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HFD-induced NAFLD rats, BBR reduces body weight and TC, TG,
and LDL-C levels. This improved phenotype is associated with an
increase in intestinal Bacteroidetes and Proteobacteria and a decrease
in Firmicutes and Cyanobacteria in rats treated with BBR (Wang
et al., 2020b).

A clinical study found that circulating cholesterol levels
decrease significantly after BBR treatment, with little change in
TG levels. Simultaneously, suppression of Blautia in the gut flora
eliminates the cholesterol-lowering effect of BBR, suggesting that
the lipid-lowering effect of BBR is closely related to its modulation
of the gut microbiota. Interestingly, baseline levels of Blautia
accurately predict the anti-hypercholesterolemic efficiency of
BBR in subsequent treatments (Wu et al., 2022). Microbiome
analysis indicates that Blautia is closely associated with BBR
lipid-modulating activities and that BBR selectively promotes
Blautia producta (Wu et al., 2022). Further studies found that
B. producta significantly increases LDLR expression in the liver
and contributes to the role of BBR in the production of butyrate
and the inhibition of BSH, thereby reducing obesity and alleviating
hyperlipidemia in mice (Yang et al., 2022a). The intestinal
microbiota, especially B. producta, may contribute to the BBR-
directed prevention and treatment of lipid metabolic diseases
(Yang et al., 2022b).

In addition to intestinal bacteria, intestinal fungi play an
essential role in BBR-mediated regulation of lipid metabolism.
Tilletia bornmuelleri and Tilletia bromi content increase after
BBR treatment, reducing serum lipids and inhibiting hepatic lipid
accumulation in HFD-fed mice (Yang et al., 2022). In addition,
intestinal BBR levels are higher in hyperlipidemic rats than in
normal rats, and BBR bioavailability is reduced after the
administration of antibiotics. This suggests that the higher
circulating BBR levels in hyperlipidemic rats may be related to
their higher intestinal microbial population (Zhang et al., 2021a).
However, another human study found a negative correlation
between circulating BBR and gut microbial counts (Alolga et al.,
2016). This discrepancy between studies may be due to differences in
the study subjects; therefore, more research and clinical trials are
needed.

In conclusion, BBR can alleviate HFD-induced lipid metabolic
disorders by modulating intestinal flora composition.

4.3 BBR affects lipid metabolism by affecting
intestinal flora metabolism

BBR interacts with intestinal microorganisms to derive a
variety of metabolites, such as short-chain fatty acids (SCFAs),
trimethylamine-N-oxide (TMAO), and branched-chain amino
acids (BCAAs) (Fang et al., 2022). These derivatives and the
signaling pathways they influence have a large impact on
lipid levels and, as such, may be used to treat lipid metabolic
diseases.

4.3.1 SCFAs
SCFAs are carboxylic acids with two to six carbon atoms (Ohira

et al., 2017). The intestinal flora syn-thesizes SCFAs, such as butyric,
acetic, and propionic acids, by fermenting undigested dietary fiber
(Li et al., 2022). Many studies have suggested that these SCFAs delay
AS progression (Hu et al., 2022a). In HFD-fed ApoE−/− mice, the
addition of propionic acid increases circulating interleukin (IL)-
10 and inhibits the expression of the intestinal cholesterol
transporter Niemann-Pick C1-like 1 (NPC1L1), reducing
circulating cholesterol levels and alleviating AS (Haghikia et al.,
2022). The addition of butyric acid downregulates the expression of
Npc1l1 in intestinal cells and upregulates the mRNA levels of ATP-
binding cassette transporters G5 and G8 (ABCG5 and ABCG8),
thereby reducing lipid intake, increasing lipid efflux in intestinal
cells, and protecting ApoE−/− mice from HFD-induced AS (Chen
et al., 2018).

Both in vitro and in vivo experiments have shown that BBR
increases intestinal butyrate production, thereby reducing
circulating lipid levels. Moreover, intraperitoneal BBR
administration does not increase butyrate levels but reduces
lipid and glucose levels. This suggests that BBR reduces
hyperlipidemia in two ways, through the direct effect of
circulating BBR and its indirect action through intestinal

FIGURE 2
Mechanisms of BBR prevention and treatment of lipid metabolic diseases.

Frontiers in Pharmacology frontiersin.org08

Cai et al. 10.3389/fphar.2023.1283784

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1283784


microbiota (Wang et al., 2017b). BBR modifies the SCFA
biosynthesis-related enzymes to control SCFA expression.
(Yue et al., 2019a). found that BBR treatment significantly
increased intestinal butyric acid levels by promoting the
expression and activity of butyryl-CoA:acetate-CoA transferase
(BUT). When BBR is present, the expression of BUT and two
butyrate synthesis precursors (crotonyl-CoA and butyryl-CoA) is
elevated, thereby reducing blood lipid levels (Wang et al., 2017c).
BBR also regulates SCFA levels by regulating the abundance of
SCFA-producing bacteria (Zhang et al., 2019a). The proportions
of SCFA-producing bacteria in the gut microbiota, including of
Blautia, Bacteroidales, and Roseburia, are elevated following BBR
treatment (Jia et al., 2019b). Another study revealed that the
SCFA producers Butyricimonas, Eubacterium, and Clostridium
were significantly enriched with BBR treatment, indicating that
SCFA-producing bacteria probably play a key role in the
effectiveness of BBR (Mukherjee et al., 2020).

4.3.2 TMAO
Trimethylamine (TMA) is synthesized from undigested choline,

carnitine, and betaine obtained from food by enzymes produced by
the gut bacteria (Velasquez et al., 2016). Intestinal TMA absorbed
into the blood is further transformed into its pro-atherogenic form,
TMAO, by flavin monooxygenase family members, such as flavin-
containing monooxygenases (FMO3), in the liver. TMAO can
promote AS by interfering with reverse cholesterol transport and
promoting inflammation and thrombosis, among other mechanisms
(Poli, 2020).

Several in vitro and ex vivo experiments have suggested that BBR
may act, at least in part, by reducing TMAO during AS treatment.
Decreased serum inflammatory factor expression in HFD-induced
mouse models after BBR treatment might be related to the
downregulation of the FMO3-TMAO pathway (Shi et al., 2018).
BBR can also reduce circulating TMA and TMAO levels by
downregulating enzymes associated with TMA production

FIGURE 3
Efficacy and underlying mechanisms of berberine against lipid metabolic diseases. The liver and intestine are important organs for endogenous and
exogenous lipid production, respectively, and regulate the body’s lipid levels. Cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), and
microsomal triglyceride transfer protein (MTTP) are the liver targets for lipid production. At the same time, ATP-binding cassette transporter A1 (ABCA1),
scavenger receptor class B type 1 (SR-BI), and low-density lipoprotein receptor (LDLR) are the liver targets for lipid clearance. Risk factors such as
irrational diet and disease promote lipogenesis and inhibit lipid clearance by up-regulating CD36, ACC, and MTTP and down-regulating SR-BI, LDLR, and
ABCA1, elevating circulating lipid levels and exacerbating hepatic fat accumulation. Intestinal flora is an important micro-ecosystem of the intestine,
which is greatly influenced by diet. High-fat diet aggravates the body’s lipid burden by altering the intestinal flora’s composition and its metabolites’
production. Elevated circulating lipid levels lead to vascular endothelial dysfunction, macrophage foam cell formation, and vascular smooth muscle cell
hyperproliferation, accelerating the formation of atherosclerosis. Berberine works against lipid metabolic diseases by synergistically regulating multiple
lipid metabolism-related targets in the liver, gut, and blood vessels.
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(Wu et al., 2020) and genes associated with TMA production (Li
et al., 2021a). BBR treatment reduces intestinal TMAO biosynthesis
and interrupts hamster vascular plaque formation by interacting
with the choline-trimethylamine lyase (CutC) and FMO in the gut
microbiota of HFD-fed hamsters. In a subsequent clinical study,
patients in the BBR group were observed to have lower plaque scores
and reduced circulating and fecal TMA and TMAO levels than those
in the rosuvastatin plus aspirin group, suggesting that BBR might
treat AS through the choline-TMA-TMAO production pathway
(Ma et al., 2022). Furthermore, BBR administration reshapes the
structure of rat intestinal microbiota, increasing the levels of
Lactobacillus spp. and decreasing the levels of CutC and TMAO,
leading to the attenuation of the TMAO-induced phosphorylation of
ERK1/2 and JNK in platelets and reduced platelet reactivity to
collagen and risk of atherothrombosis (Xie et al., 2021). Wang
et al. (Wang et al., 2022) reported that BBR alleviates Ang II-
induced vascular dysfunction and pathological remodeling in
hypertensive mice by inhibiting FMO3 expression and TMA/
TMAO production. In summary, the vasoprotective effect of BBR
treatment through the inhibition of TMAO may delay AS
progression.

4.3.3 BCAAs
BCAAs are essential amino acids mainly obtained from food.

Elevated BCAA levels are strongly connected with lipid metabolic
disorders such as hyperlipidemia, obesity, and NAFLD (Cuomo
et al., 2022). A case-control study found that dietary BCAAs are
positively associated with circulating TC and LDL-C levels, thereby
increasing the risk of dyslipidemia (Yu et al., 2022). Numerous
bacterial taxa, including Bacteroides vulgatus, the Bacil-
lus–Lactobacillus–Streptococcus group, Prevotella copri, and
Proteobacteria, participate in BCAA synthesis (Pedersen et al.,
2016). BBR regulates BCAA synthesis, probably by inhibiting
microbial BCAA production. For example, treatment with BBR
reduces serum TC, HDL, TG, fasting plasma glucose (FPG), and
insulin resistance levels in obese mice, which may be associated with
a reduction in the relative abundance of BCAA-producing bacteria,
such as Clostridiaceae and Prevotellaceae, in the gut of these mice
(Yue et al., 2019b). Abnormal mTOR activation is linked to a
number of illnesses, including ischemic diseases (Hua et al.,
2019); BCAAs, particularly leucine, activate the mTOR pathway
(Yoon, 2016). The inhibitory effect of BBR on BCAAs may therefore
play a role in reducing the risk of developing ischemic diseases via
mTOR. In summary, in treating lipid metabolic disorders, it is
crucial to restrict the proliferation of BCAA-producing bacteria and
lower BCAA levels.

4.3.4 BA
Intestinal flora can convert primary BAs to secondary BAs

through decoupling and dehydroxylation reactions (Long et al.,
2017). It was found that after the addition of BBR, the
abundances of Akkermansia spp., Verrucomicrobia, and
Firmicutes increased, while those of Proteobacteria and
Bacteroidetes decreased (Tian et al., 2019). Furthermore, the
proportion of total BAs and primary BAs (such as cholic acid
(CA) and chenodeoxycholic acid (CDCA)) in serum increased,
while the proportion of secondary BAs (such as deoxycholic acid
(DCA) and lithocholic acid (LCA)) was reduced. These findings

were associated with increasing BBR concentrations in a dose-
dependent manner (Guo et al., 2016). These changes in the BA
pool can affect body function by regulating BA receptors in the gut
(Martinot et al., 2017). The BA receptors mainly consist of G
protein-coupled BA receptor 1 (TGR5) and nuclear receptors
such as FXR (Fiorucci et al., 2018). Various BA receptors bind to
different types of BAs with different affinities. For example, DCA
and LCA have a high affinity for TGR5, while CDCA and CA have a
high affinity for FXR. Upon BBR treatment, increased CA and
CDCA activate FXR (Wolf et al., 2021). FXR plays a central role in
regulating BA synthesis. FXR regulates the expression of rate-
limiting enzymes (such as CYP7A1 and CYP8B1) in BA
synthesis by inducing negative nuclear receptor small
heterodimer partner (SHP) (Gómez-Ambrosi et al., 2017). At the
same time, BBR can increase the excretion of BA and decrease the
level of circulating and liver cholesterol by directly up-regulating the
expression of CYP7A1 and CYP8B1 in mice (Guo et al., 2016). In
addition, activated FXR can downregulate the expression of
adipogenic genes, including SREGBP-1C, FAS, and acetyl-CoA
carboxylase through the FXR/SHP pathway in mice, thus playing
a role in the prevention and treatment of lipid metabolic diseases
(Watanabe et al., 2004).

4.4 Intestinal flora regulate the production
of BBR metabolites to affect lipid
metabolism

Food and medication can be biotransformed by the gut
microbiota into secondary metabolites (Wang et al., 2017a).
Modern technologies show that the gut bacteria can convert BBR
into DHB, berberrubine, demethyleneberberine, jatrorrhizine, and
thalifendine (Habtemariam, 2020). In addition to having
pharmacological effects similar to those of BBR, these metabolites
also have their own characteristics and advantages and contribute
significantly to the hypolipidemic effect.

4.4.1 Dihydroberberine
The intestinal absorption of BBR is aided by the nitroreductase

(NR) activity of the intestinal bacteria (Wang et al., 2017b).
Intestinal NR catalyzes the conversion of BBR to DHB (Tan
et al., 2019). Compared to BBR, DHB has a higher rate of
intestinal absorption (Feng et al., 2015; Pan et al., 2019). The gut
microbial metabolite DHB, which is produced from BBR, may be
critical for explaining the absorption of BBR in the gut. Two
procedures are involved in the circulatory sys-tem’s uptake of
DHB from the intestine: first, the conversion of BBR to DHB,
catalyzed by the enzymes of the intestinal microbiota, is uptaked
by the intestinal epithelial cells, and second, the subsequent
absorption of DHB by the intestinal epithelial cells is further
oxidized to BBR, which is absorbed into the circulatory system
(Feng et al., 2015). DHB is converted to BBR via a nonenzymatic
process. NR plays an important role in the BBR-DHB-BBR
conversion process, with enhanced BBR uptake being the basis
for promoting subsequent lipid-regulating effects. In a
randomized controlled crossover trial, after oral administration of
500 mg of BBR or 100 and 200 mg DHB to study subjects, the peak
concentration was found to be higher in the DHB group than in the
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oral-administration BBR group (Moon et al., 2021). Liu et al. found
that DHB improves the lipid profile of hyperlipidemic rats by
increasing LDL-R expression and decreasing PCSK-9 expression
in liver tissues (Liu et al., 2015b). Given its good intestinal
absorption rate and lipid-lowering efficacy, DHB can potentially
be used to treat lipid metabolic diseases.

4.4.2 Jatrorrhizine
The gut microbiota can break down the five-membered

dioxymethylene ring in BBR to create jatrorrhizine (Wang et al.,
2017c). Jatrorrhizine is safer than BBR as a microbial reduction
product. The lethal dose 50 (LD50) of jatrorrhizine in mice is
approximately 5,500 mg/kg, whereas the LD50 of BBR is
763 mg/kg. Additionally, jatrorrhizine reduces circulating
cholesterol levels by upregulating LDLR and CYP7A1 mRNA
and protein expression (Wu et al., 2014). Yang et al. found that
jatrorrhizine downregulates mRNA expression of SREBP-1c and
FAS in the liver of hyperlipidemic mice to inhibit adipogenesis and
upregulates PPAR-α and CPT1AmRNA expression to enhance lipid
oxidation and improve hyperlipidemia (Yang et al., 2016). In obese
mice, jatrorrhizine treatment reduces body weight and serum lipid
levels and improves hepatic lipid metabolism via the IRS1/PI3K/
AKT signaling pathway (He et al., 2022). In addition, jatrorrhizine
treatment increases endothelial nitric oxide (NO) release;
normalizes plasma lipid levels in diabetic and obese mice; and
improves glucose sensitivity, fatty liver, and morphological
changes, possibly related to its ability to inhibit ER and oxidative
stress by enhancing the Akt/endothelial nitric oxide synthase
(eNOS) pathway and NO bioavailability (Zhou et al., 2022).
These studies suggest that jatrorrhizine, an intestinal microbial
metabolite of BBR, may improve circulatory and hepatic lipid
levels through multiple pathways.

4.4.3 Berberrubine
The CYP51 enzyme in the intestinal microbiota converts BBR

into demethylated metabolites such as berberrubine (Zhang et al.,
2021b). Both BBR and berberrubine treatments significantly
upregulate the expression of proteins associated with lipolysis
(ALGL) and fatty acid β-oxidation (CPT-1 and PPAR-α) while
significantly decreasing the expression of proteins associated with de
novo adipogenesis (ACC1 and FAS) and fatty acid translation
(CD36). In addition, compared with BBR, berberrubine
maintains glucose homeostasis in HFD-fed mice via glucose
transporter 2 (GLUT2), glycogen synthase kinase 3 (GSK3), and
glucose-6-phosphatase (G6Pase) via a mechanism that may be
related to the FXR signaling pathway (Sun et al., 2021).
Berberrubine also acts as a cholesterol-lowering agent in human
hepatoma HepG2 cells by inhibiting PCSK9 expression and
upregulating LDLR expression via the ERK signaling pathway
(Cao et al., 2018b). Additionally, berberrubine outperforms BBR
in terms of absolute bioavailability and fat solubility (Liu et al.,
2016). In summary, berberrubine, a demethylated metabolite of
BBR, offers more benefits than BBR, which may explain the lipid-
regulating activity of BBR.

4.4.4 Oxyberberine
The gut microbiota can convert BBR to oxyberberine (OBB)

through oxidation, and this transformation is significantly inhibited

after oral antibiotics (Li et al., 2020). When BBR was metabolized to
its oxidized derivative OBB, the structure of C-8 quaternary
ammonium turned to more active lactam ring, and the
lipophilicity would be enhanced and easier to be absorbed
through biofilm, which was beneficial to enhance its biological
activity (Singh et al., 2016). In addition, OBB exhibits more
favorable safety profile as compared to BBR, with LD50 value
above 5,000 mg/kg in mice (the LD50 value of BBR was
713.57 mg/kg) (Li et al., 2019b). OBB can inhibit inflammation
and maintain normal intestinal barrier function by inhibiting TLR4-
MyD88-NF-κB signaling (Li et al., 2020). In the streptozotocin
(STZ)-induced diabetic rat model, the addition of OBB
significantly upregulated the expression of the Nrf2 and PI3K/
Akt signaling pathways in the model group. OBB also had good
hypoglycemic and protective effects on pancreatic β cells, which was
superior to that of BBR at an equivalent dose (Dou et al., 2021).
Another study found that OBB significantly inhibited abnormal
phosphorylation of IRS in rat models of NAFLD (induced via high-
fat diets), and improved hepatic insulin signaling. OBB can also
reduce chronic adipose tissue inflammation by inhibiting WAT
expansion, reducing macrophage migration, and promoting M2-
macrophage phenotypic transformation, thus playing an anti-
NAFLD role. These findings may be related to AMPK activation
(Li et al., 2021b). In view of the superior effect of OBB in improving
glucose and lipid metabolism, it may be a potential therapeutic
option for the treatment of lipid metabolic diseases in the future.

5 Effect of BBR on blood vessels

Elevated lipid levels can cause endothelial cell (EC) dysfunction,
foam cell formation, and VSMC proliferation, ultimately inducing
the development of AS. In contrast, BBR alleviates endothelial
dysfunction and inhibits macrophage foam cell formation and
VSMC over-proliferation by reducing dyslipidemia (Figure 1).

5.1 BBR alleviates endothelial dysfunction

Cardiovascular events can be predicted based on endothelial
dysfunction, which also causes AS (Xu et al., 2021). NO is a key
regulator of endothelial function (Cyr et al., 2020), and
hyperlipidemia not only reduces circulating NO levels by
downregulating eNOS expression but also affects related
pathways through LOX-1 entry into ECs, leading to endothelial
dysfunction. In contrast, BBR improves endothelial function by
promoting eNOS and inhibiting LOX-1 expression.

5.1.1 eNOS
eNOS is the main weapon of ECs against vascular diseases, and the

production of NO is essential for maintaining normal endothelial
function (Benincasa et al., 2022). Hyperlipidemia can reduce NO
production and exacerbate endothelial damage by downregulating
eNOS through signaling pathways, such as HMGB1/TLR4/Caveolin-
1 (Gliozzi et al., 2019), NRF2 (Abu-Saleh et al., 2021), andAMPK/PI3K/
AkteNOS (García-Prieto et al., 2015). In turn, the damaged vascular
endothelium reduces NO production and exacerbates endothelial
dysfunction (Wu et al., 2019).
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A previous study showed that BBR treatment reduces plasma
TG levels, increases eNOSmRNA and protein expression and serum
NO levels, improves endothelium-dependent vasorelaxation in the
aorta, and restores endothelial dysfunction in diabetic rats (Wang
et al., 2009b). In a palmitate-induced dysfunction model of human
umbilical vein endothelial cells (HUVECs), the addition of BBR
raised eNOS and NO levels, ameliorating palmitate-induced
endothelial dysfunction, and further experiments revealed that
this modulatory effect of BBR might be due to AMPK activation
(Zhang et al., 2013). In addition, endothelial dysfunction is a key
event linking obesity, diabetes, and CVDs. In a model of
hyperglycemia-induced endothelial injury, BBR concentration-
dependently enhanced eNOS phosphorylation and promoted
eNOS binding to heat shock protein 90 (HSP90). This led to
increased NO production, which in turn caused endothelium-
dependent vasodilation and alleviated high glucose-mediated
endothelial dysfunction (Wang et al., 2009a). Despite current
controversies, innovative findings have shown that endothelial
progenitor cells (EPCs) may be used in cell therapy for
cardiovascular repair (Bianconi et al., 2018). BBR mobilizes EPCs
by increasing plasma NO concentrations (Xu et al., 2009), increasing
the engagement of EPCs and, consequently, the elasticity of small
arteries (Xu et al., 2008). These findings suggest that BBR improves
endothelial function by increasing NO production through the
upregulation of eNOS expression.

5.1.2 LOX-1
Circulating ox-LDL enters the vascular endothelium via LOX-1.

This leads to increased intracellular reactive oxygen species (ROS)
production and induces mitochondrial dysfunction by increasing
NADPH oxidase (Liang et al., 2018) and myeloperoxidase (Liu et al.,
2015a), and decreasing NRF2 (Huang et al., 2013). This promotes
EC senescence (Bian et al., 2020) and accelerates AS progression
(Jiang et al., 2020). As such, LOX-1−/− mice exhibit slow AS
progression (Mehta et al., 2007).

Induction of HUVECs with ox-LDL upregulates LOX-1
expression and thus increases the uptake of ox-LDL by Ecs (Guo
et al., 2022), resulting in abnormal proliferation and dysfunction of
vascular ECs, possibly associated with the activation of the PI3K/
Akt, ERK1/2, and MAPK signaling pathways. The subsequent
addition of BBR reduces the expression of pAkt, pERK1/2, and
p38MAPK, downregulates LOX-1 expression, and significantly
inhibits the excessive proliferation of HUVECs, indicating that
BBR is a protective agent against vascular endothelial dysfunction
(Xu et al., 2017). BBR has also been shown to improve endothelial
function in ApoE−/− mice by modulating mitochondrial
dysfunction and targeting ApoAI to reduce plasma ox-LDL (Tan
et al., 2020) levels. Further exposure of HUVEC to ox-LDL or tumor
necrosis factor-alpha (TNFα) for 24 h signifi-cantly increases LOX-1
expression, which is downregulated by the addition of BBR or
lovastatin. However, only treatment with BBR reduces TNFα-
induced expression of vascular cell adhesion molecule-1 (VCAM-
1) and intercellular adhesion molecule-1 (ICAM-1) associated with
endothelial dysfunction, possibly through phosphorylation of
MAPK/ERK1/2, compared to treatment with lovastatin (Caliceti
et al., 2017). Therefore, it has been suggested that BBR can improve
endothelial dysfunction in a multifaceted manner compared with
lovastatin.

5.2 BBR inhibits lipid inflow and promotes
lipid outflow in macrophages

Macrophage foam cells are abundant in AS plaques. BBR
inhibits lipid uptake by macrophages through the downregulation
of LOX-1 and promotes intracellular lipid efflux through the
upregulation of ABCA1/G1, thereby reducing intracellular lipid
deposition and macrophage foam cell formation and slowing AS
progression.

5.2.1 LOX-1
LOX-1 is also expressed in macrophages and promotes their

conversion into foam cells, thereby accelerating macrophage
senescence and AS progression (Akhmedov et al., 2021). Ox-LDL
induces macrophage senescence by increasing lipid accumulation in
macrophages and upregulating senescence-associated proteins, such
as p53, p21, and p16 (Ahmad and Leake, 2019; Jia et al., 2019a). The
use of an anti-LOX-1 antibody significantly reduces the uptake of
ox-LDL by macro-phages and slows AS progression (Dandapat
et al., 2007). In ox-LDL-induced human-derived macrophages,
ox-LDL significantly increases LOX-1 expression; in contrast,
BBR treatment reduces foam cell formation in a dose- and time-
dependent manner and inhibits LOX-1 expression by activating the
AMPK/SIRT1/PPARγ pathway (Guan et al., 2010). Chi et al.
exposed monocyte-derived macrophages to a combination of
BBR and atorvastatin and found that LOX-1 expression
decreased progressively with increasing doses of BBR, provided
that the atorvastatin dosage was fixed. Furthermore, knockdown
of the endothelin-1 (ET-1) receptor prevented the inhibitory effect
of the combination of BBR and atorvastatin on LOX-1 expression.
Berberine combined with atorvastatin has been suggested to
downregulate LOX-1 expression via ET-1 receptors in mono-
cytes/macrophages (Chi et al., 2014). In clinical practice, BBR
may be therefore combined with statins to enhance their lipid-
lowering efficacy.

5.2.2 ABCA1/G1
ABCA1/G1 is an important macrophage receptor that promotes

intracellular cholesterol efflux and reduces the formation of
macrophage foam cells. The promotion of ABCA1/G1 expression
is a promising strategy for AS treatment. BBR increases ABCA1/
G1 expression by decreasing the degradation rate of ABCG1mRNA,
whereas the effects of BBR on increasing ABCA1/G1 protein levels
and promoting cholesterol efflux are blocked whenNRF2 is silenced,
suggesting that BBR might exert a protective effect by inhibiting
foam formation through the NRF2-mediated ABCA1/G1 signaling
pathway (Yang et al., 2020). The regulatory role of LXR in ABCA1/
G1 has been reported in many papers (Morin et al., 2020).
Knockdown of LXRα mRNA expression by siRNAs abrogates
BBR-mediated ABCA1 protein expression and affects
macrophage cholesterol efflux. These data suggest that BBR
reduces macrophage foam cell formation by enhancing LXRα-
ABCA1-dependent cholesterol efflux (Lee et al., 2010). In
contrast, another study found that in ox-LDL-induced human
macrophage-derived foam cells, BBR treatment has no effect on
ABCA1 expression, but rather reduces foam cell formation by
inhibiting LOX-1 uptake of ox-LDL (Guan et al., 2010), possibly
because of the different culture conditions of the model cells. Further
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studies are needed to elucidate the effect of BBR on the macrophage
cholesterol efflux regulator ABCA1.

5.3 BBR inhibits vascular smooth muscle
excessive proliferation

The contractile VSMC phenotype is typically observed in
healthy vessels. When the vessel is injured, VSMCs are converted
to a highly proliferative synthetic phenotype, accelerating VSMC
migration and proliferation and the secretion of extracellular matrix
molecules, thereby accelerating AS progression (Basatemur et al.,
2019). Recent studies have shown that hypercholesterolemia can
induce VSMC proliferation through the ERK1/2 (Verdeguer et al.,
2007) and Wnt signaling pathways (Zhuang et al., 2016). The role of
BBR in preventing VSMC proliferation by reducing circulating lipid
levels has been demonstrated in many studies and is closely related
to the Wnt (Dong et al., 2022) and ERK1/2 (Qu et al., 2020)
pathways. In a murine model of diabetic AS, VSMC proliferation
could be induced by hypertension-induced mechanical stretch stress
and advanced glycosylation end products (AGEs) alone or in
combination. BBR inhibits this progression by decreasing protein
disulfide isomerase (PDI) expression to prevent vein graft stenosis
(Ping et al., 2017). Endoplasmic reticulum stress (ERS) is essential
for VSMC proliferation in CVD (Hetz, 2012). BBR attenuates
VSMC proliferation by inhibiting the PDI-ERS system (Wang
et al., 2020a). Also, PPARα and NO are involved in the
proliferation of VSMCs, and BBR was found to upregulate the
PPARα-NO signaling pathway and increase vascular NO
production, thereby inhibiting the proliferation of Ang IV-
stimulated VSMCs (Qiu et al., 2017). In summary, BBR inhibits
the excessive proliferation of VSMC through multiple pathways,
thereby maintaining normal vascular function.

6 Safety and tolerability of BBR in lipid
metabolic diseases

In addition to drug efficacy, drug safety is important for patient
health (Tan et al., 2016). There have been reports of adverse effects,
such as cardiac discomfort, in some individuals after the use of BBR
(Feng et al., 2018a). However, the safety of BBR, a drug that has been
used for thousands of years, is well established in clinical practice. In
a meta-analysis of the efficacy and safety of BBR in the treatment of
dyslipidemia, 16 randomized controlled trials (RCTs) were included,
of which 11 reported 164 adverse events (45 in the berberine group
and 119 in the control group). Further combined analysis of the
incidence of adverse events in each group showed no significant
differences (Ju et al., 2018). In addition, non-oral formulations
developed to improve the bioavailability of BBR, such as
transdermal formulations of BBR and dihydroberberine, showed
no changes in renal and hepatic biomarkers during treatment,
supporting the safe use of transdermal compositions (Buchanan
et al., 2018). Meanwhile, the use of nutraceuticals containing BBR
has gradually expanded owing to their better lipid-lowering effects,
and no adverse events have been reported during their
administration (Riccioni et al., 2018). Statins are routinely used
in the treatment of hyperlipidemia, and the incidence of adverse

events is not statistically significant when comparing BBR treatment
to treatment with statin (Yang et al., 2023).

In addition to adverse drug reactions, tolerability is another
concern in clinical practice. Statins are first-line drugs for the
treatment of hyperlipidemia. However, even with lower statin
doses, intolerance still occurs in about 10%–15% of patients
(Banach et al., 2015). Nutritional preparations containing BBR
have recently been recommended as alternative lipid-lowering
strategies for statin-intolerant patients (Banach et al., 2018). For
example, the nutritional combination of red yeast rice, lipotriol, and
BBR is effective and well tolerated for lipid management in patients
with a low to moderate risk of hypercholesterolemia (Gonnelli et al.,
2015). In addition, several clinical trials have comprehensively
studied the commercially available nutritional drug Armolipid
Plus, which contains red yeast rice, cholesterol, BBR, folic acid,
astaxanthin, and coenzyme Q10. Armolipid Plus has been shown to
reduce TC and LDL-C levels in patients with mild to moderate
dyslipidemia, particularly in those intolerant to statins (Barrios et al.,
2017). Therefore, this evidence suggests that berberine-containing
nutraceuticals may be a reasonable option for patients with mild to
moderate dyslipidemia, particularly those who are intolerant to
statins.

7 Discussion

Lipid metabolic diseases, such as obesity, hyperlipidemia,
NAFLD, and AS, are chronic diseases that require long-term
management. Many challenges such as drug resistance and
adverse drug reactions occur during drug treatment. BBR is a
safe and effective natural product and a potential option for
long-term treatment and management of lipid metabolic diseases.
Emerging research over the past decade has suggested that BBR may
synergistically regulate lipid metabolism in the liver, gut, and blood
vessels to combat lipid metabolic diseases, with specific targets
involving CD36, MTTP, SR-BI, ACAT, LOX-1, ABCA1, and
intestinal flora (Figure 3). Many studies have been conducted on
CD36, ACAT, ABCA1, and LOX-1 targets, and there is a clear
understanding of the role of these targets and the potential
regulatory mechanisms of BBR on them, and thus further high-
quality and large-scale studies should be conducted on these targets
to facilitate clinical drug development.

However, earlier MTTP-targeting drugs caused side effects.
Furthermore, the impact of SR-BI expresson on blood lipids
varies between tissues. It is therefore crucial to conduct further
research to investigate whether the regulatory effects of BBR on these
two targets can effectively reduce blood lipids, while minimizing
potential drug side effects. MTTP promotes lipid binding to ApoB
and stabilizes ApoB expression, and a lack of MTTP decreases the
secretion of ApoB-containing lipoproteins in the gut and liver
(Takahashi et al., 2021). Meanwhile, an article published in
JAMA on lipids and lipoproteins indicated that lowering ApoB
levels was key to successful lipid-lowering therapies compared to
LDL-C or TG (Ference et al., 2020); therefore, lowering ApoB levels
through the downregulation of MTTP may be a promising lipid-
lowering strategy. Lomitapide, a drug that targets the
downregulation of MTTP, reduces ApoB secretion but causes
hepatic side effects, such as increased liver fat accumulation,
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which limits its clinical application (Stefanutti, 2020). In contrast,
BBR can reverse the abnormal expression of MTTP to alleviate
hepatic lipid accumulation (Chen et al., 2021) andmay be a potential
drug for further lipid lowering in synergy with lomitapide.

SR-BI is expressed in the liver, intestines, and vascular
macrophages. However, its function is tissue-specific, with SR-BI
on vascular macrophages being responsible for transferring
intracellular cholesterol to circulating HDL, thereby reducing
macrophage foam cell formation (Yan et al., 2022). Circulating
HDL-CE is further taken up by liver SR-BI and converted into BA
for excretion into the intestine. When this reverse cholesterol
transport functions properly, circulating cholesterol levels are
reduced. Although the function of intestinal SR-BI is
controversial, one study found that it is present in the intestinal
parietal membrane and acts as a high-affinity receptor for intestinal
cholesterol (Labonté et al., 2007). However, mice lacking SR-BI
exhibit normal or enhanced intestinal cho-lesterol absorption
(Mardones et al., 2001). Another study showed that circulating
triglyceride-rich lipoproteins (TRL) levels and that of their
remnants, cholesterol and ApoB48, were lower in SR-BI−/− mice
than in wild-type mice, suggesting that SR-BI may be a novel
regulator of CM production (Lino et al., 2015). In Caco-2 cells,
ApoB48, a component of AS plaques, is secreted more often when
SR-B1 is overexpressed (Fuentes et al., 2019). In rats and Caco-2/
TC7 cell lines, LXR reduces CM secretion and alleviates postprandial
triglyceridemia by inhibiting SR-B1 via a miRNA post-
transcriptional mechanism (Briand et al., 2016). BBR is a known
LXR agonist that can improve lipid levels by activating SR-BI in
hepatocytes and macrophages, suggesting that BBR may reduce
circulating TRL and its remnant levels through intestinal SR-BI (Ma
et al., 2021b). Meanwhile, the European Atherosclerosis Society
consensus states that TRL and its remnants may contribute
significantly to residual cardiovascular risk in patients on
optimized LDL-lowering therapy (Ginsberg et al., 2021),
suggesting that BBR may be a promising target for the further
reduction of residual cardiovascular risk. In addition, activation of
LXR in the intestine reduces cholesterol absorption by upregulating
intestinal ABCG5/G8 and increases cholesterol efflux by
upregulating ABCA1, thus delaying AS progression (Sasso et al.,
2010). The modulatory effect of BBR on LXR has been demonstrated
in many studies, and BBR may act on intestinal ABCG5/8 to
promote intestinal lipid excretion and improve blood lipid levels.
Few studies have examined how BBR affects intestinal lipid
metabolism targets, and further research in this area should be
pursued.

Furthermore, the low solubility and bioavailability of BBR limits its
clinical use. However, this is also one of its advantages, as safety is
relatively assured, even with rapidly increasing oral doses. Even so,
numerous studies have focused on improving the structure of BBR
drugs or enhancing their penetration with additives to improve its
bioavailability (Imenshahidi and Hosseinzadeh, 2019). Various
nanocarriers for encapsulating BBR have small particles, high surface
reactivity, and high adsorption capacity, which improve its efficacy and
bioavailability (Hori et al., 2023). Mixedmicelles loaded with BBR using
Pluronic P85 and Tween 80 enhance intestinal absorption and plasma
concentrations of BBR by inhibiting P-gp- andCYP450-mediated efflux
andmetabolism of BBR in the intestine (Kwon et al., 2020). In addition,
transdermal formulations of BBR may be more effective in treating

dyslipidemia or hypercholesterolemia because of the higher
concentration of circulating BBR compared with oral administration
(Buchanan et al., 2018).

Thus, BBR is a potential natural compound for use in treating lipid
metabolic disorders. Considering the important role of TRL and its
remnants in dyslipidemia and atherosclerotic cardiovascular disease
processes, and the relatively few studies on the modulation of intestinal
lipid metabolic targets by BBR, future in-depth studies in this area may
be an important direction for further lipid reduction. Further structural
modifications to BBR may improve its oral bioavailability and efficacy.
Blends of BBR with other nutraceuticals should also be carefully
analyzed, as pure BBR was not used in these studies. Moreover,
large-scale, high-quality, and multicenter clinical trials must be
carefully designed to assess the safety, toxicological profile, and
clinical utility of BBR in patients with lipid metabolism disorders.
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