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Agents that stimulate the endoplasmic reticulum (ER) stress pathway are being
exploited pharmacologically to induce cancer cell death. Cytotoxic ER stress is
typically regulated by the transcription factor, C/EBP homologous protein 10
(CHOP10). Products of CHOP10 transcription include the pro-apoptotic proteins:
ER oxidoreductase 1α (ERO1α), death receptor-5 (DR5), and tribbles-related
protein 3 (TRB3). Our previous findings showed cell death induced by 15-
deoxy- Δ12,14 prostamide J2 (15d-PMJ2) occurred in an ER stress-dependent
manner. However, the pathway by which 15d-PMJ2 regulates ER stress-mediated
death downstream of CHOP10 has not been identified. Our results demonstrate
5 µM 15d-PMJ2 increased CHOP10 expression and apoptosis in HCT116 colon
cancer cells. In cells treated with pharmacological inhibitors of ER stress, 15d-
PMJ2-induced apoptosis was reliant upon the ER stress pathway. To investigate
the role of CHOP10 and its transcriptional products in apoptosis, genetic deletion
of CHOP10 (CHOP10-KO) was performed using the CRISPR/Cas9 system. The
apoptotic action of 15d-PMJ2 was blunted in cells lacking CHOP10 expression.
The deletion of CHOP10 reduced the expression of DR5, ERO1α, and
TRB3 although only the expression of TRB3 was significantly reduced.
Therefore, we overexpressed TRB3 in CHOP10-KO cells and observed that the
activation of Akt was inhibited and 15d-PMJ2-induced apoptosis was restored.
Thus, a mechanism of apoptosis elicited by 15d-PMJ2 includes the stimulation of
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CHOP10/TRB3/Akt inhibition. Given the important role these signaling molecules
play in cancer cell fate, 15d-PMJ2 may be an effective inducer of apoptosis in
cancer cells.
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Akt, apoptosis, cancer, CHOP10, drug development, endoplasmic reticulum stress,
prostaglandin J2, TRB3

Introduction

Cancer is the second most common cause of death in the
United States (Siegel et al., 2023). The use of cytotoxic, targeted,
and immunostimulatory agents has improved therapeutic outcomes
for cancer. In spite of this, novel agents are needed to provide cancer
patients with more treatment options and to increase survival rates.

Numerous preclinical and clinical studies have determined that
agents targeting the endoplasmic reticulum (ER) stress pathway
inhibit the growth and survival of cancer cells (Ladin et al., 2017;
Prabhu et al., 2020; Chang et al., 2021; Tian et al., 2021; Botrus et al.,
2022). The ER plays an essential role in folding and post-
translational modification of secretory and membrane proteins.
Disturbances in ER homeostasis compromise protein folding
and initiate ER stress (Boyce and Yuan, 2006; Yadav et al.,
2014). To alleviate ER stress, the highly conserved stress proteins,
inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like
endoplasmic reticulum kinase (PERK) and activating transcription
factor 6 (ATF6) are activated. Stimulation of these ER sensors
prevents protein synthesis, enhances ER chaperone activity, and
promotes degradation of misfolded or unfolded proteins to restore
ER homeostasis. However, when homeostasis cannot be restored
due to ER stress overload, apoptosis is initiated (Boyce and Yuan,
2006; Fu et al., 2021). The apoptotic ER stress pathway is primarily
regulated by ER stress sensor-induced expression of CCAAT/
enhancer-binding protein (C/EBP) homologous protein 10
(CHOP10) (Li et al., 2014; Yang et al., 2017; Hu et al., 2019).
The transcription factor, CHOP10, increases the synthesis of genes
that promote cell death including ER oxidoreductase 1α (ERO1α),
death receptor-5 (DR5), and tribbles-related protein 3 (TRB3) (Li
et al., 2014). ERO1α is an ER luminal molecule that facilitates
protein oxidation, a process that can produce cytotoxic levels of
reactive oxygen species (Marciniak et al., 2004; Chen et al., 2015;
Ramming et al., 2015). DR5, a member of the tumor necrosis factor
(TNF) receptor family, induces apoptosis upon engagement of TNF-
related apoptosis-inducing ligand (TRAIL) (MacFarlane et al., 1997;
Yamaguchi andWang, 2004). TRB3 is an intracellular pseudokinase
that was identified as a protein inhibitor of the anti-apoptotic
molecule, protein kinase B (PKB)/Akt (Ohoka et al., 2005; Li
et al., 2017).

ER stress-dependent death is induced by cannabinoids in
different cancer cell types (Salazar et al., 2009; Almada et al.,
2017). The cannabinoid chemical class is composed of
phytocannabinoids (plant-derived), synthetic cannabinoids, and
endocannabinoids (endogenously synthesized cannabinoids), all
of which bind to and initiate many of their effects through cell
surface cannabinoid receptors (CBR) (Soderstrom et al., 2017; Lu
and Mackie, 2021). Cannabinoids and CBRs are components of the
endocannabinoid system (ECS) which also includes the proteins

involved in cannabinoid synthesis, degradation, and uptake. The
ECS is being investigated to uncover its role in physiological
processes including cardiovascular and central nervous system
homeostasis (Soderstrom et al., 2017; Sierra et al., 2018; Zou and
Kumar, 2018). Other research has examined whether components of
the ECS can serve as drug targets or pharmacological agents that
modulate conditions including pain, inflammation, and cancer
(Nagarkatti et al., 2009; Rahn and Hohmann, 2009; Ladin et al.,
2016). Significant anti-tumor activity has been observed in cancer
cells exposed to phytocannabinoids, synthetic cannabinoids, and
endocannabinoids (Ladin et al., 2016; Hinz and Ramer, 2022).
Arachidonoyl-ethanolamide (AEA) is an endocannabinoid that
causes death of neoplastic cells including breast, endometrial, and
skin cancer (De Petrocellis et al., 1998; Soliman et al., 2016; Fonseca
et al., 2018). It has been determined that AEA is metabolized by the
enzyme, cyclooxygenase-2 (COX-2), to the prostaglandin-
ethanolamides, PGE2-EA, PGD2-EA and PGF2alpha-EA (Yu
et al., 1997; Kozak et al., 2002). Our group identified a novel
molecule produced from the metabolism of AEA by COX-2
named 15-deoxy-Δ12,14 prostamide J2 (15d-PMJ2) (Soliman et al.,
2016; Ladin et al., 2017). 15d-PMJ2 activates apoptotic ER stress and
ER stress-dependent exposure of damage associated molecular
patterns (DAMPs) (Ladin et al., 2022; 2017; Elhassanny et al.,
2020). The induction of ER stress by 15d-PMJ2 is primarily
mediated by PERK signaling which causes the release of ER-
resident Ca2+ and Ca2+ overload in the mitochondria leading to
ER-stress dependent apoptosis (Ladin et al., 2022). 15d-PMJ2-
induced PERK activation also increases the expression of pro-
apoptotic CHOP10 (Ladin et al., 2017). However, the molecular
mechanisms by which CHOP10 stimulates apoptosis in 15d-PMJ2
treated cells are unclear. The current work aims to identify signaling
pathways downstream of CHOP10 that are responsible for the
apoptotic effect of 15d-PMJ2. By identifying signaling pathways
of 15d-PMJ2-induced cell death, we will obtain a better understanding
of its mechanism of action. This information can be used to increase
the probability of achieving positive outcomes in future clinical studies
(Editorial, 2010; Lin et al., 2019; Jang et al., 2021).

Materials and methods

Antibodies and reagents

Thapsigargin was purchased from AdipoGen (San Diego, CA),
while tert-butyl hydroperoxide (tBHP) was obtained from Sigma-
Aldrich (St. Louis, MO). Antibodies directed toward P-PERK, total-
PERK, P-eIF2α, total-eIF2α, P-Akt, and total-Akt were obtained
from Cell Signaling Technologies (Beverley, MA). Cleaved caspase-8
and anti-mouse HRP antibodies were acquired from Invitrogen
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(Grand Island, NY). Anti-CHOP10 and anti-rabbit HRP antibodies
were procured from Santa Cruz Biotechnology (Santa Cruz, CA).
Anti-GAPDHwas obtained fromMillipore (Billerica, MA) and anti-
ERO1α was purchased from Novus Biologicals (Littleton, CO).

Cell culture

HCT116 human colon cancer cells were purchased from the
American Type Culture Collection (ATCC, Manassas, VA).
HCT116 cells were maintained in McCoy’s medium [containing
10% of heat-inactivated fetal bovine serum (FBS), penicillin
(100 mg/mL), and streptomycin (100 mg/mL)] as recommended
by the manufacturer (Sigma Aldrich, St. Louis, MO).

Apoptosis detection

Caspase 3/7 activity was detected in cultured cells plated in
white-walled 96-well plates and incubated for 48 h. Culture medium
containing the appropriate concentrations of 15d-PMJ2 was added
to the cells for 16 h, the time point of peak caspase 3/7 activity.
Caspase-Glo 3/7 reagent (Promega, Madison,WI) was added to each
well as directed by the manufacturer and luminescence was detected
using the Infinite® M200 PRO multimode reader (Tecan,
Switzerland). The percent from untreated was calculated for each
well using the formula, [(sample–untreated) ÷ untreated] x 100 and
then the average value of triplicate wells was determined. The data
from three independent experiments were analyzed.

Apoptotic cells were also detected using the Apoptotic, Necrotic,
and Healthy Cells Quantification Kit (Biotium, Hayward, CA).
Briefly, HCT116 cells were treated with 15d-PMJ2 for 16 h, the
time point of maximal Annexin V signal. The cells were detached
from the culture dishes, washed twice with phosphate buffer saline
(PBS), resuspended in Annexin Binding Buffer containing Annexin
V-FITC and ethidium homodimer (EtBr), and then incubated in the
dark for 15 min. The samples were diluted with four volumes of
Annexin Binding Buffer and analyzed using an Accuri C6 flow
cytometer (BD Accuri Cytometer, Ann Arbor, MI) at an excitation
wavelength of 488 and 533 ± 30 nm and emission of 565 ± 30 nm.

Western blot analysis

Cells were plated in 100 mm tissue culture dishes, incubated for
48 h, and agents were added to serum-free culture medium as indicated
in the text. The cells were washed twice with ice-cold PBS and 100 μL of
triton lysis buffer (containing protease and phosphatase inhibitors) was
added to each dish. Protein concentrations were measured using BCA
reagents (Thermo Fisher Scientific, Waltham, MA). Equal
concentrations of each sample were loaded onto SDS-PAGE gels
and protein bands were transferred to polyvinylidene difluoride
(PVDF) membranes (BioRad, Hercules, CA) using semi-dry transfer
cells (TRANS-BLOTSD; Bio-Rad Laboratories, Hercules, CA). The
membranes were incubated at room temperature in blocking buffer
(5% non-fat dry milk) for 1 h. Next, the membranes were incubated
overnight with blocking buffer containing anti-p-PERK (1:1000), total-
PERK (1:1000), anti-p-eIF2α (1:1000), total-eIF2α (1:1000), anti-

CHOP10 (1:200), anti-ERO1α (1:500), anti-TRB3 (1:500), anti-DR5
(1:500), anti-pAkt (1:1000), total-Akt (1:1000), or anti-GAPDH (1:
10000). The PVDF membranes were then incubated with the
appropriate secondary antibody for 1 h. Protein bands were
visualized using the enhanced chemiluminescence detection system
(Thermo Fisher Scientific, Waltham, MA) and protein signals were
detected by utilizing a ChemiDoc imaging system (Bio-Rad
Laboratories, Hercules, CA). The protein expression levels were
quantified by optical densitometry using ImageJ Software.

DNA transfection

CRISPR/Cas9 is a genetic modification system that has been
adapted from bacteria (Barrangou et al., 2007). In this system, the
Cas9 nuclease is directed by a single guide RNA (sgRNA) to its target
DNA sequence where a double-stranded structure is created that
becomes cleaved by Cas9 nuclease (Jinek et al., 2012).
CHOP10 knockout HCT116 cells were generated using the
CRISPR/CAS9 system as directed by the manufacturer (Santa
Cruz Biotechnology, Santa Cruz, CA). Briefly, in a 6-well tissue
culture dish, 2 × 105 cells were seeded in 3 mL of antibiotic-free
standard growth medium per well, 24 h prior to transfection. Cells
were grown to a 50% confluency. Plasmid DNA/UltraCruz®
Transfection Reagent Complex was added to each well in a
dropwise fashion and the cells were then incubated for 72 h.
After incubation, successful transfection of CRISPR/Cas9 Plasmid
was visually confirmed by detection of the green fluorescent protein
(GFP) via fluorescent microscopy. Transfected cells were selected by
incubation with puromycin (0.8 μg/mL), and different colonies were
isolated to measure CHOP10 protein expression. Cell colonies that
demonstrate complete knockout of CHOP10 expression
(HCT116 CHOP10-KO) were utilized in subsequent experiments.

For CHOP10 overexpression, HCT116 CHOP10-KO cells were
cultured in the appropriate plates and/or culture slides and
transfected with human CHOP10 cDNA in the pCMV3-C-
OFPSpark vector or pCMV3-C-OFPSpark with no cDNA insert
(empty vector) (Sino Biological, Beijing, China) using UltraCruz
transfection reagent (Santa Cruz Biotechnology, Santa Cruz, CA).

Immunocytochemistry

DNA transfected cells were treated as indicated and fixed with 2%
paraformaldehyde in PBS. The cells were then incubated with
permeabilization buffer (0.1% Triton X-100 in PBS) for 10 min and
incubated with blocking buffer (1X PBS +3% FBS +0.5% Tween20) for
1 h. The blocked cells were then incubated with the indicated primary
antibodies and the appropriate immunofluorescence-tagged secondary
antibodies. Images were acquired and analyzed by confocal laser
microscopy (ZEISS LSM 700 confocal microscope system).
Fluorescence intensity was quantified by utilizing ImageJ software.

Reactive oxygen species detection

Reactive oxidative species (ROS) in cultured cells were
measured using the chloromethyl-2′,7′dichlorodihydrofluorescein
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diacetate (CM-H2DCFDA) probe (Life technologies, Grand Island,
NY). Cells were loaded with 5 μM CM-H2DCFDA in phenol red-
free, serum-free medium for 30 min and then treated for 8 h. The
cells were trypsinized, reconstituted in serum containing, phenol

red-free medium and DCF fluorescence was measured using an
Accuri C6 flow cytometer (BD Accuri Cytometers, Ann Arbor, MI)
at an excitation wavelength of 488 nm and an emission of 533 ±
30 nm.

FIGURE 1
15d-PMJ2 causes ER stress-mediated apoptosis in HCT116 cells. (A) HCT116 cells were treated with 1 μM, 2.5 µM, and 5 µM 15d-PMJ2 or vehicle
(culture medium containing ≤0.1% DMSO) for 16 h. Apoptosis was detected by conducting caspase 3/7 activity assays. (B)HCT116 cells were untreated or
treated with 1 µM 15d-PMJ2, 2.5 µM 15d-PMJ2, 5 µM 15d-PMJ2, 1 µM staurosporine (ST; positive control), or vehicle for 16 h. Flow cytometric analysis
was performed to detect Annexin V and ethidium bromide homodimer (EtBr) staining. (C)Quantification of flow cytometric analysis data. Histogram
shows early apoptosis (Annexin V+ EtBr-), late apoptosis (Annexin V+ EtBr+), and total (early and late) apoptosis in three independent experiments. (D)
HCT116 cells were treated with 5 µM 15d-PMJ2, 10 µM thapsigargin (TG), or vehicle for 4 h. The levels of phosphorylated and total PERK (MW: 125 kDa)
and eIF2α (MW: 36 kDa) were determined by conducting western blot analysis with GAPDH (MW: 36 kDa) detected as a loading control. (E)HCT116 cells
were pre-treated with 50 µM salubrinal (SAL) or 7.5 µM PBA for 30 min. The cells were then treated with 5 µM 15d-PMJ2 or 10 µM thapsigargin (TG), and
caspase 3/7 activity wasmeasured. The data were analyzed using one-way ANOVA followed by Tukey’smultiple comparison test and are presented as the
mean± SEMof three independent experiments performed in triplicate. *p < 0.05 and ***p < 0.001when comparing samples to vehicle-treated cells. #p <
0.05, when comparing samples to 15d-PMJ2-treated cells.
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Statistical analyses

All data are representative of at least three independent
experiments. Data are presented as the mean ± standard error of
the mean (SEM). One- or two-way Analysis of Variance (ANOVA)
followed by Tukey’s or Bonferroni’s post hoc analysis was carried out
using GraphPad Prism.

Results

15d-PMJ2 causes ER stress-dependent
apoptosis

Previous data from our group demonstrated AEA and its
metabolic product, 15d-PMJ2, caused apoptosis in melanoma and
non-melanoma skin cancer cells through ER stress-stimulated
CHOP10 expression (Soliman et al., 2016; Ladin et al., 2017).
The current study sought to identify signaling pathways
downstream of CHOP10 that initiate this cytotoxic response. To
begin this investigation, we determined whether 15d-PMJ2 caused
apoptosis in HCT116 colon cancer cells. The human HCT116 cell
line was selected for this study because it contains mutations in
common driver genes (e.g., KRAS and PIK3CA) that serve as targets
of contemporary drug development programs (Cancer Genome
Atlas Network, 2012; Ahmed et al., 2013). The cells were treated
with different concentrations of 15d-PMJ2 and then two well-
established indicators of apoptosis, caspase 3/7 activity and
phosphatidyl serine exposure, were detected. 15d-PMJ2 increased
caspase 3/7 activity by approximately 200% and 300% in cells treated
with 2.5 µM and 5.0 µM of 15d-PMJ2, respectively (Figure 1A). 15d-
PMJ2 also caused a concentration-dependent increase in percentage
of early (Annexin V+/PI−) and late (Annexin V+/PI+) stage apoptotic
cells with 5 µM 15d-PMJ2 increasing the total annexin-V positive
cell population by more than 60% (Figures 1B, C).

According to our previous melanoma and non-melanoma skin
cancer cell studies, PERK-mediated ER stress was the primary
molecular pathway of 15d-PMJ2-induced apoptosis (Ladin et al.,
2022; 2017). During ER stress, PERK undergoes homodimerization
and autophosphorylation to assume an activated state. Activated PERK
phosphorylates eIF2a, an enzyme that resolves ER stress by inhibiting
global translation. In HCT116 cells, ER stress was activated by 15d-
PMJ2 as demonstrated by increased phosphorylation of both eIF2α and
PERK (Figure 1D). To evaluate whether ER stress was necessary for
apoptosis, ER stress activation was inhibited by pre-treating the cells
with the pharmacological ER stress inhibitors, salubrinal and 4-
phenylbutrate (PBA). Salubrinal is a selective inhibitor of the
phosphatase, PP1/GADD34 (Boyce et al., 2005). The inhibition of
PP1/GADD34 activity prevents the dephosphorylation of phospho-
eIF2α, thereby sustaining the translational block and averting ER stress.
In contrast, PBA suppresses ER stress by behaving as a chemical
chaperone that facilitates protein folding (de Almeida et al., 2007).
Blockade of ER stress signaling with salubrinal or PBA suppressed 15d-
PMJ2-induced caspase 3/7 activity (Figure 1E). Both inhibitors also
blocked ER stress-dependent apoptosis induced by the prototype ER
stress inducing agent, thapsigargin (Figure 1E). This indicates, ER stress
also plays a prominent role in 15d-PMJ2-induced apoptosis in
HCT116 cells.

CHOP10 triggers apoptosis induced by 15d-
PMJ2

When ER stress cannot be resolved, the expression of
the transcription factor, CHOP10, is upregulated. CHOP10
transactivates proteins that propagate apoptotic signals,
including ERO1α, DR5, and TRB3 (Li et al., 2014; Yang
et al., 2017; Hu et al., 2019). Similar to our findings in
B16F10 melanoma cells, CHOP10 expression in HCT116 cells
was at its peak 8 h after exposure to 15d-PMJ2. To identify
pathways by which CHOP10 regulates cell death induced by
15d-PMJ2, CHOP10 expression was disabled by employing
the CRISPR/Cas9 system. We validated that the expression of
CHOP10 was inhibited by exposing HCT116 CHOP10 knock-
out (CHOP10-KO) and wild-type (WT) cells to 15d-PMJ2
and detecting CHOP10 expression by western blot analysis
(Figure 2A). Consistent with this result, 15d-PMJ2-induced
caspase 3/7 activity was inhibited by more than 50% in
CHOP10-KO compared to WT cells (Figure 2B). Moreover,
fewer annexin V positive cells were observed in 15d-PMJ2-treated
cells that were devoid of CHOP10 than in cells containing CHOP10
(Supplementary Figure S1). These data indicate CHOP10 is needed to
elicit a robust apoptotic response to 15d-PMJ2.

To identify transcriptional targets of CHOP10 that are pivotal
for 15d-PMJ2-induced apoptosis, we measured the expression
and activity of ERO1α, DR5, and TRB3 in WT and CHOP10-KO
cells (Figures 2C–F). ERO1α is an enzyme that promotes protein
folding by facilitating disulfide bond formation, but it can also
produce cytotoxic oxidative stress levels as a reaction by-product
(Marciniak et al., 2004; Chen et al., 2015; Ramming et al., 2015).
DR5 is a member of the death receptor family that initiates
extrinsic apoptotic signaling by stimulating the cleavage of
caspase 8 (MacFarlane et al., 1997; He et al., 2002; Yamaguchi
and Wang, 2004). The pseudokinase TRB3, triggers cell death
by suppressing the activity of the pro-survival kinase, Akt
(Ohoka et al., 2005; Li et al., 2017). In 15d-PMJ2 treated cells,
the loss of CHOP10 caused a reduction in the expression of
ERO1α, DR5, and TRB3 although only the reduction in
TRB3 expression was statistically significantly (Figures 2C, D).
Next, we examined the effect of CHOP10 on the activity of
ERO1α, DR5, and TRB3 in 15d-PMJ2-treated cells. Oxidative
stress, a by-product of ERO1α activity, was suppressed in cells
with disrupted CHOP10 expression compared with intact
CHOP10 expression (Figure 2E). Cleaved caspase 8, a
mediator of the apoptotic effect of DR5, was upregulated in
15d-PMJ2-treated cells with, but not cells without,
CHOP10 expression (Figure 2F). In 15d-PMJ2-treated cells,
CHOP10 containing, but not CHOP10 deficient, cells showed
an increase in TRB3 activity, detected as reduced Akt
phosphorylation (Figure 2F). These collective data suggest
CHOP10, and its down-stream effectors propagate apoptotic
signaling induced by 15d-PMJ2.

CRISPR/Cas9 is a highly effective method for knocking down
gene expression with minimal off-target effects. However, to verify
that the CRISPR/Cas9 constructs targeted CHOP10 but not off-
target genes, we restored CHOP10 expression by transfecting
CHOP10-KO cells with a mammalian expression vector
containing CHOP10 cDNA (or the corresponding empty vector).
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In 15d-PMJ2-treated cells that contained CHOP10, the expression of
ERO1α, DR5, and TRB3 was significantly increased compared to
cells containing the empty vector (Figure 3A). Additionally, the
expression of CHOP10 in CHOP10-KO cells increased caspase 3/
7 activity after cell exposure to 15d-PMJ2 (Figure 3B). This suggests
CRISPR/Cas9 specifically targeted CHOP10 and that stimulation of
ERO1α, DR5, and TRB3 expression and apoptosis in 15d-PMJ2-
treated cells was mediated by CHOP10.

TRB3 stimulates 15d-PMJ2 -induced
apoptosis downstream of CHOP10

Our data in Figure 2C show both endogenous and 15d-PMJ2-
induced expression of TRB3 was significantly decreased in
CHOP10 deficient compared to CHOP10 containing cells. This
suggests TRB3 may have a critical role in executing CHOP10-
mediated apoptosis in response to 15d-PMJ2. To examine this

FIGURE 2
CHOP10 increases the synthesis and activity of TRB3 as well as the activation of apoptosis in 15d-PMJ2-treated cells. (A–F) Wild-type (WT) and
CHOP10 knockout (CHOP10-KO) HCT116 cells were treated with 5 µM 15d-PMJ2 or vehicle. (A) The cells were treated with 15d-PMJ2 or vehicle for 8 h
and the expression of CHOP10 (MW: 30 kDa) was detected by conducting western blot analysis. (B) Apoptosis was measured by conducting caspase 3/
7 activity assays after 16 h of exposure to 15d-PMJ2 or vehicle. (C) The expression of ERO1α (MW: 54 kDa), DR5 (MW: 50 kDa), and TRB3 (MW:
40 kDa) was measured at 8 h by performing western blot analysis. (D) Quantification of ERO1α, DR5, and TRB3 protein expression in vehicle (top)- and
15d-PMJ2 (bottom)-treated cells was conducted via densitometric analysis with ImageJ software. (E) HCT116-WT and HCT116-CHOP10-KO cells were
treated with 5 µM 15d-PMJ2, 100 µM tert-butyl hydroperoxide (t-BHP; positive control), or vehicle for 8 h. Oxidative stress was measured by performing
flow cytometric analysis using the CM-H2DCFDA probe. (F) Phosphorylated Akt, total Akt (MW: 60 kDa), cleaved caspase 8 (p18; MW: 18 kDa), andGAPDH
were detected by performing western blot analysis. The data were analyzed using two-way ANOVA followed by Bonferroni’s multiple comparison post-
test and are presented as the mean ± SEM of three independent experiments performed in triplicate. *p < 0.05, ***p < 0.001 when comparing samples to
vehicle-treated cells. ##p < 0.01, ###p < 0.001 when comparing samples to 15d-PMJ2-treated cells.
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signaling pathway in greater detail, TRB3 expression was restored in
CHOP10-KO cells by transfecting the cells with a DNA vector
containing TRB3 cDNA. In CHOP10-KO cells that were treated
with 15d-PMJ2, expression of TRB3 suppressed the phosphorylation
of Akt (Figure 4A). In line with the reduction in Akt activation,
transfection of the TRB3-containing plasmid, but not the empty

vector, increased caspase 3/7 activity in 15d-PMJ2-treated CHOP10-
KO cells with levels comparable to 15d-PMJ2-treated WT cells
(Figure 4B). This implies that a mechanism of 15d-PMJ2-induced
apoptosis in HCT116 cells includes the ER stress dependent
activation of CHOP10 which causes the upregulation of TRB3,
an inhibitor of the anti-apoptotic protein, Akt (Figure 4C).

FIGURE 3
Restoration of CHOP10 expression in CHOP10-KO cells increases the synthesis of ERO1α, DR5, and TRB3 and the activation of apoptosis after
exposure to 15d-PMJ2. (A,B) pCMV3-OFP- or CHOP10-pCMV3-OFP-transfected CHOP10-KO cells were treated with 5 µM 15d-PMJ2 or vehicle. (A) The
expression of ERO1α, DR5, and TRB3 was detected by performing immunofluorescence staining and visualizing the images using confocal microscopy.
Green fluorescence represents ERO1α, DR5, or TRB3, red fluorescence represents CHOP10 or empty OFP vector, and blue fluorescence represents
the nucleus (DAPI staining). Histograms show quantification of the intensity of ERO1α, DR5, and TRB3. (B) Apoptosis measurement was performed using
caspase 3/7 activity assays. The data were analyzed using two-way ANOVA followed by Bonferroni’s multiple comparison post-test and are presented as
the mean ± SEM of three independent experiments. ***p < 0.001 when comparing samples to vehicle-treated cells. ###p < 0.001 when comparing
samples to 15d-PMJ2-treated cells.
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Discussion

The current study was undertaken to gain an understanding of
molecular pathways by which CHOP10 causes apoptosis in 15d-
PMJ2-treated tumor cells. We determined 15d-PMJ2 activated
CHOP10 and its transcriptional product, TRB3, which led to the
inhibition of the anti-apoptotic protein, Akt. These findings reveal
an important pathway of 15d-PMJ2-induced cell death.

It is well documented that the transcription factor, CHOP10, plays a
pivotal role in the switch between the ER stress survival and death
pathways (Ma et al., 2002; Li et al., 2014; Yang et al., 2017). Our data
indicates CHOP10 also regulates the apoptotic properties of 15d-PMJ2.
In HCT116 colon cancer cells, 15d-PMJ2 increased the expression of
CHOP10 and the activation of apoptosis in a concentration-dependent

manner. However, the apoptotic activity of 15d-PMJ2 was suppressed in
cells that lacked CHOP10 while restoration of CHOP10 expression
reinstated apoptosis. These findings agree with our previous data
showing 15d-PMJ2 increased CHOP10 expression and cell death
in melanoma and NMSC cells (Ladin et al., 2022; 2017). Moreover,
AEA and PMD2, two pro-apoptotic molecules that are catabolized
to 15d-PMJ2 in tumor cells that overexpress COX-2, also
upregulated CHOP10 expression and apoptosis (Soliman et al.,
2016; Elhassanny et al., 2019). Other groups have demonstrated
CHOP10 dictates cell fate during ER stress. For example, Lin et al.
(2013) showed that capsaicin-induced expression of CHOP10 caused
apoptosis in pancreatic cancer cells and that this effect was suppressed
by siRNA-mediated downregulation of CHOP10. Also, apoptosis
induced by tunicamycin was prevented by blocking the expression

FIGURE 4
TRB3 inhibits Akt activation and restores apoptosis in 15d-PMJ2-treated CHOP10-KO cells. (A) CHOP10-KO cells were transfected with
pcDNA3.1 or TRB3-pcDNA3.1 and then the cells were treated with 15d-PMJ2 or vehicle (0.1% DMSO) for 6 h. Western blot analysis was conducted to
analyze TRB3, p-Akt, and Akt protein expression levels. (B) CHOP10-KO cells were transfected with pcDNA3.1 or TRB3-pcDNA3.1. The transfected cells
and HCT116 WT cells were then treated with 5 µM 15d-PMJ2 or vehicle (0.1% DMSO) for 6 h. Apoptosis was detected by conducting caspase 3/
7 activity assays. The data were analyzed using two-way ANOVA followed by Bonferroni’s multiple comparison post-test and are shown as means ± SEM
of three independent experiments performed in triplicate. ***, p < 0.001, when comparing samples to vehicle-treated cells. #, p < 0.05, when comparing
samples to 15d-PMJ2 -treated cells. (C) Schematic model illustrating a molecular mechanism of 15d-PMJ2-induced apoptosis. 15d-PMJ2 activates ER
stress by up-regulating CHOP10 expression. CHOP10 significantly increases the expression of pro-apoptotic TRB3. TRB3 regulates apoptosis through
the inhibition of Akt.
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of CHOP10 in hepatocellular carcinoma (Lei et al., 2017). Hence,
CHOP10 is an important stimulus for initiating apoptosis and
agents that trigger its synthesis may be useful components of
cancer chemotherapeutic regimens.

Although it is clear that CHOP10 causes apoptosis in response to
15d-PMJ2 exposure, the molecular mechanism behind this effect had
not been elucidated. Having knowledge about mechanisms of 15d-
PMJ2-induced cell death can improve the outcome of future clinical
studies by allowing the prediction of agent activities including the
modes of toxicity and resistance (Editorial, 2010; Lin et al., 2019; Jang
et al., 2021). It can also facilitate the discovery of predictive biomarkers,
the identification of new drug targets, and the selection of co-
administered agents (Editorial, 2010; Davis, 2020). Therefore, as part
of our effort to develop 15d-PMJ2 as a cancer therapeutic, the current
study examined methods of 15d-PMJ2 apoptosis. Operating under the
knowledge that CHOP10 can transcriptionally activate the pro-
apoptotic proteins, ERO1α, DR5, and TRB3, we examined the
expression of these molecules. In 15d-PMJ2 treated cells, the loss of
CHOP10 caused a significant reduction in the expression of TRB3 but
not ERO1α or DR5. This indicated the potential relevance of TRB3 in
the activity of 15d-PMJ2. To examine the effect of TRB3 in greater detail,
HCT116 CHOP10-KO cells were transfected with an expression vector
containing TRB3 and then treated with 15d-PMJ2. Under these
conditions, TRB3 suppressed Akt activation and restored apoptosis
implying CHOP10/TRB3/Akt inhibition triggered apoptosis. Apoptotic
cell death was also mediated by CHOP10/TRB3/Akt inhibition in
prostate cancer cells treated with the agent, corosolic acid (Ma et al.,
2018). These outcomes are in alignment with data showing
TRB3 inhibits Akt through an interaction that hinders Akt
phosphorylation and activation (Du et al., 2003). It is also well-
known that the blockade of Akt activity stimulates apoptosis by
inhibiting anti-apoptotic proteins (Datta et al., 1997). Therefore, it
was not surprising that TRB3 expression and the subsequent
inactivation of Akt in CHOP10-KO cells restored the apoptotic
activity of 15d-PMJ2. Since 15d-PMJ2 inhibits Akt and activates ER
stress, this suggests 15d-PMJ2 may enhance the anti-tumor activity of
FDAapproved cancer therapeutics. For instance, the ER stress inhibitor,
salubrinal, promoted differentiation of colon cancer stem cells thereby
sensitizing them to the cytotoxic effect of the colon cancer drug,
oxaliplatin (Wielenga et al., 2015). The agent, GSK690693, which
blocks Akt activity, caused a significant increase in the cytotoxicity
of irinotecan compared to cells treated with GSK690693 or irinotecan
alone (Pradeepa et al., 2022). As such, our future studies will investigate
the cytotoxic effects of combination therapy with 15d-PMJ2.

Previous work from our group demonstrated that 15d-PMJ2
activated the ER stress response primarily through PERK, but not
ATF6 or IRE1 signaling (Ladin et al., 2022). Moreover, ER stress-
dependent Ca2+ mobilization from the ER to the mitochondria
played a crucial role in mPTP-driven apoptosis. Although our
collective research has uncovered important mechanisms of 15d-
PMJ2 activity upstream of CHOP10, we have not identified the
specific molecule(s) that interact with 15d-PMJ2 to initiate ER stress
and apoptosis. Having a detailed knowledge of both the molecular
target(s) and activities of 15d-PMJ2 will permit us to apply this
information towards the development of optimized therapeutic
regimens and as such, our efforts are focused on these topics.

The current study investigated mechanisms of 15d-PMJ2-
induced apoptosis as part of our assessment of its activity and

chemotherapeutic potential. We determined 15d-PMJ2 caused
tumor cell apoptosis through the activation of ER stress and
CHOP10. The activity of CHOP10 stimulated TRB3 expression
which led to the inhibition of the pro-survival kinase, Akt. This
identifies CHOP10/TRB3/Akt inhibition as vital for the effects of
15d-PMJ2, and it reveals a molecular mechanism underpinning the
activity of 15d-PMJ2. By stimulating this signaling pathway, 15d-
PMJ2 may provide an effective strategy for killing cancer cells.

Limitations of the study

Although we have uncovered signaling pathways involved in
15dPMJ2-induced apoptosis, there are two notable shortcomings in
this study that are being addressed in our current and upcoming
work. First, 15d-PMJ2-induced apoptotic signaling was examined in
wild-typeHCT116 and CHOP10-KOHCT116 human cell lines, but not
in additional cancer cell types. To obtain a clear picture of the signaling
pathways that lead to death in other cell lines, a complete loss of
CHOP10 function is essential. Pharmacological inhibitors that selectively
target CHOP10 are not readily available, but the current study and other
reports (Guo et al., 2021) demonstrate CRISPR/Cas9 gene editing allows
the identification of signaling pathways that are downstream of
CHOP10. Using this strategy, we will knockout the CHOP10 gene in
different cell lines to investigate pathways utilized by 15d-PMJ2 to elicit
cell death. Second, the in vitro activity of 15d-PMJ2 was investigated
without examining its action an animal tumor model. Previous work
from our group demonstrated 15d-PMJ2 inhibited the growth of
B16F10 melanoma in C57BL/6 mice (Ladin et al., 2017). We will
examine the activity of 15d-PMJ2 by implanting cell lines with
genetically ablated CHOP10 into the subcutaneous flank of
immunocompromised mice. These studies will provide a
comprehensive understanding of CHOP10-mediated signaling and
the therapeutic potential of 15d-PMJ2.
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