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1 Introduction

Preeclampsia (PE) is a multisystem disorder that affects 2%–8% of pregnancies
worldwide and is a leading cause of maternal and fetal morbidity and mortality (Duley,
2009). PE is defined as new-onset maternal blood pressure greater than 140/90 mmHg after
the 20th week of pregnancy that occurs along with proteinuria or other indications of renal
insufficiency, thrombocytopenia, liver dysfunction, pulmonary edema, and cerebral
disturbances (American College of Obstetricians and Gynecologists, 2013). The
pathogenesis of PE is multifactorial with recognized placental, vascular, renal, and
immunological contributions (Turbeville and Sasser, 2020).

PE is characterized by defective placentation, abnormal spiral artery remodeling,
placental ischemia, oxidative stress at the maternal-fetal interface, and angiogenic
imbalance in the maternal circulation, thereby resulting in endothelial dysfunction and
end-organ damage (Phipps et al., 2019). Noteworthy, several studies ratify the relationship of
PE with future risk for cardiovascular disease, and accumulating evidence suggests an
association of PE with long-term renal disease, although further studies on the mechanisms
underlying this increased risk are needed (Turbeville and Sasser, 2020). However, significant
knowledge gaps still exist in identifying the mechanisms that link placental ischemia to
maternal systemic vascular and renal dysfunction (Wang et al., 2023).

Current treatment strategies for PE focus on stabilizing the maternal symptoms in order
to prolong pregnancy and allow additional fetal development, and managing maternal
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hypertension is a priority (Townsend et al., 2016; Wang et al., 2023).
Antihypertensive drugs used to control high blood pressure, such as
methyldopa, nifedipine, hydralazine, and labetalol have the potential
to prolong gestation, decreasing obstetric and perinatal
complications in PE (Berzan et al., 2014; Peracoli et al., 2019;
American College of Obstetricians and Gynecologists, 2020).
However, a large subgroup of patients with PE is nonresponsive
to antihypertensive therapy, being more susceptible to develop
adverse maternal and fetal outcomes (Luizon et al., 2017a).

In this opinion article, we contribute with viewpoints on the
definition of phenotypes for the subgroup of patients with PE
classified as nonresponsive to antihypertensive therapy, and how
studies focused on this nonresponsive subgroup of patients with PE
can yield insights into molecular mechanisms underlying the
endothelial dysfunction as well as the associated cardiovascular
and renal complications in PE.

2 Defining the phenotype: the
subgroup nonresponsive to
antihypertensive therapy in PE

Our group has previously used a criteria to define
antihypertensive therapy responsiveness based on the evaluation
of clinical and laboratory parameters following the administration of
methyldopa, nifedipine and hydralazine (Sandrim et al., 2010a; Palei
et al., 2012b; Luizon et al., 2014; Sandrim et al., 2015; Luizon et al.,
2017a; Luizon et al., 2017b; Pereira et al., 2021). Notably, patients
with PE classified as nonresponsive to antihypertensive therapy were

markedly associated with the worst clinical parameters. However,
many of the clinical findings we used on the definition of
antihypertensive therapy responsiveness are shared with the
definition of severe features in PE, including thrombocytopenia,
abnormally elevated levels of liver enzymes and/or creatinine in the
blood, persistent right upper quadrant or epigastric pain, and new-
onset cerebral and visual disturbances (American College of
Obstetricians and Gynecologists, 2013). Thus, it is possible that
our criteria of responsiveness denote disease severity instead (Luizon
et al., 2017a).

Noteworthy, we have recently better characterized the clinical
phenotype of patients with PE classified as nonresponsive to
antihypertensive therapy (Pereira et al., 2021). The nonresponsive
subgroup showed higher blood pressure, fasting glucose, creatinine,
proteinuria, alanine aminotransferase, and soluble fms-like tyrosine
kinase-1 (sFlt-1) levels, in opposition to lower gestational age at
delivery and newborn weight (Figure 1). Other symptoms related to
impairment of the central nervous system, blood cells (hemolysis
and thrombocytopenia), and fetal development were also recorded
(Pereira et al., 2021). Furthermore, PE can be classified according to
gestational age of onset of symptoms into early-onset PE
(<34 weeks) and late-onset PE (≥34 weeks). Remarkably, the
subgroup nonresponsive to antihypertensive therapy showed
higher percentage of early-onset PE (47.3% versus 6.3%), preterm
birth (61.5% versus 11.6%), and intrauterine growth restriction
(50.5% versus 14.3%) than the responsive subgroup (Pereira
et al., 2021).

Although a large subgroup (~46%) of patients with PE are
nonresponsive to currently approved antihypertensive therapy

FIGURE 1
Clinical characteristics of patients with preeclampsia classified as nonresponsive to current antihypertensive therapy. Compared to the responsive
group, the nonresponsive group showed higher systolic and diastolic blood pressure, creatinine, proteinuria, alanine aminotransferase, and sFlt-1 levels
(Pereira et al., 2021). Adverse outcomes in the mother and fetal development may be implicated to the endothelial dysfunction observed in PE.
Conversely, the nonresponsive group showed lower gestational age at delivery and newborn weight than the responsive group (Pereira et al., 2021).
sFlt-1, soluble fms-like tyrosine kinase-1; VEGF, vascular endothelial growth factor.
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during pregnancy (Luizon et al., 2017a), the underlying molecular
mechanisms are unclear. In the next sessions, we contribute with
viewpoints on the interpretation of findings from previous studies
focused on this nonresponsive subgroup of patients with PE and
how they can yield insights into the underlying mechanisms of
increased cardiovascular and renal risk in PE.

3 Visfatin/extracellular nicotinamide
phosphoribosyltransferase (eNAMPT):
nitric oxide (NO) bioavailability and
endothelial dysfunction

Antiangiogenic factors released into the maternal circulation,
including sFlt-1 as result of placental ischemia/hypoxia contribute to
the widespread endothelial dysfunction and proteinuria found in PE
(Maynard et al., 2003; Powe et al., 2011). Circulating nitrite
concentrations (a marker of endogenous NO formation) is a
suitable approach to understand the underlying molecular
mechanisms of endothelial dysfunction in healthy subjects
(Metzger et al., 2013), healthy pregnancy and in PE (Sandrim
et al., 2010b), as reviewed elsewhere (Luizon et al., 2018).
Notably, PE is characterized by reduced bioavailability of NO,
which is inversely related to sFlt-1 (Sandrim et al., 2008).

Endothelial dysfunction in PE has also been associated with
dysregulation of adipocytokines (Mori et al., 2010). Specifically,
visfatin/eNAMPT is an adipocytokine that has been proposed as a
marker of endothelial dysfunction and vascular damage (Romacho
et al., 2013), and visfatin/eNAMPT was shown to produce in vivo
endothelial dysfunction in mice via toll-like receptor-4 (TLR4)-
mediated pathway (Romacho et al., 2020). Potential interactions
among visfatin/eNAMPT, TLR4, and inflammatory cytokines in PE
should be further considered (Nunes et al., 2022). Briefly, possible
visfatin/eNAMPT mechanisms of action by binding to
TLR4 activates NF-kB phosphorylation and its translocation to
the nucleus, where it acts by activating the
NLRP3 inflammasome, responsible for the release of
inflammatory cytokines. Activation of NLRP3 also releases
reactive oxygen species, increasing oxidative stress, and therefore
inhibiting NO formation, as reviewed elsewhere (Nunes et al., 2022).

Most studies provided evidence for increased visfatin levels in
pregnant women with PE, despite discordant findings (Amiri-
Dashatan et al., 2022). Although we have found no differences in
the circulating levels of visfatin/eNAMPT between health pregnancy
and PE (Luizon et al., 2015), visfatin/eNAMPT levels were inversely
related to circulating NO and positively related to sFlt-1 levels in PE
(Pereira et al., 2019). Notably, the same correlations were
significantly only in the subgroup of patients with PE classified
as nonresponsive to antihypertensive therapy, who showed higher
proteinuria and plasma sFlt-1 levels (Pereira et al., 2021).

Visfatin impairs endothelium-dependent relaxation through
nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) oxidase activity, which leads to release of superoxide
anions (Vallejo et al., 2011). These anions scavenge NO to generate
peroxynitrite, which stimulates the expression of inducible NO
synthase enzyme and intercellular cell adhesion molecule-1, a
well-known marker of endothelial dysfunction (Goulopoulou and
Davidge, 2015). Superoxide anions also induce the uncoupling of

endothelial NO synthase (Brennan et al., 2014), further decreasing
NO bioavailability. During pregnancy, an increase in oxidative stress
is observed as a result of the normal systemic inflammatory
response, reflected as higher levels of circulating reactive oxygen
species. This increased oxidative stress does not cause tissue damage
because it is counter-balanced by the synthesis of antioxidants
(Chiarello et al., 2020). However, in PE, placental ischemia/
hypoxia exacerbates increased oxidative stress to a level that is
harmful for the mother and fetal health by decreasing NO
bioavailability as well as via several other mechanisms (Chiarello
et al., 2020; Guerby et al., 2021).

Taken together, the evidence provided in the preceding
paragraphs suggests that visfatin/eNAMPT may inhibit NO
formation and upregulate sFlt-1, which may be due to the
increased oxidative stress observed in PE. In view of the complex
deleterious impact that adipocytokines have on the endothelium and
vascular homeostasis (McElwain et al., 2020), these potential
mechanisms may underly the role of visfatin/eNAMPT in
vascular dysfunction in PE, as reviewed elsewhere (Ceron et al.,
2022; Ceron et al., 2023), and perhaps serve as a link between PE and
the occurrence of cardiovascular and renal diseases later in life.

4 Matrix metalloproteinase (MMP)-
2 and tissue inhibitor of
metalloproteinase (TIMP)-3: insights
into epigenetic mechanisms of
endothelial dysfunction

MMP-2 is expressed by a variety of cells including trophoblasts,
endothelial cells, and fibroblasts, playing a major role in
embryogenesis, placental morphogenesis, and cardiovascular and
renal function (Palei et al., 2013). We have found higher circulating
MMP-2 levels in patients with PE classified as nonresponsive to
antihypertensive therapy (Palei et al., 2012a).

In addition, we examined the differential gene expression in
human umbilical vein endothelial cells (HUVECs) incubated with
plasma from patients with PE classified according to
antihypertensive therapy (nonresponsive relative to responsive
patients), and we identified interactions among genes and
antihypertensive drugs used in PE (Luizon et al., 2016).
Notably, genes that were downregulated or upregulated in
HUVECs incubated with plasma from nonresponsive PE
patients were reported as upregulated or downregulated by
nifedipine and hydralazine, respectively. Notably, while MMP-2
was found to be upregulated in these HUVECs (Luizon et al.,
2016), hydralazine treatment was shown to decrease MMP-2
expression in spontaneously hypertensive rats (Kodavanti et al.,
2013).

Hypoxia can stimulate MMP-2 expression, and MMP-2 is
capable of cleaving big endothelin (ET)-1 and induce
hypertension through the generation of ET-1, a potent
vasoconstrictor (Fernandez-Patron et al., 1999). Interestingly, we
found that plasma from patients with PE stimulated microRNA
expression in HUVECs that were negatively related to ET-1 levels
(Caldeira-Dias et al., 2018). Considering that agents that improve
endothelial function in PE hold promise to alleviate clinical
symptoms (Sasser et al., 2015), microRNAs may be useful
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candidates for therapeutic intervention in the management of
hypertension in PE (Caldeira-Dias et al., 2018).

As aforementioned, patients with PE classified as
nonresponsive to antihypertensive therapy showed higher
plasma creatinine and proteinuria (Figure 1) than responsive
patients (Pereira et al., 2021). Creatinine is considered a fairly
reliable indicator of kidney function. Proteinuria is also associated
with impaired renal function in PE, being the amount of protein
loss related to disease severity (Fishel Bartal et al., 2022). Patients
with PE have angiogenic imbalance represented by increased
circulating sFlt-1 and soluble endoglin, but reduced vascular
endothelial growth factor (VEGF) and placental growth factor
levels, which together damage the endotelium of the glomerular
filtration barrier (Fishel Bartal et al., 2022). In this regard, clinical
and experimental studies reviewed elsewhere (Cruz et al., 2021)
have shown a compelling role for the full-length MMP-2 in
ischemic renal injury, progressive renal fibrosis, and diabetic
nephropathy. Interestingly, evidence suggests that MMP-2 is
able to cleave the extracellular domain of the VEGF receptor-2,
thereby leading to endothelial apoptosis and vascular rarefaction
(Tran et al., 2010; Wang et al., 2014).

While the extracellular activity ofMMP-2 is mainly regulated via
inhibition by TIMPs, a novel intracellular N-terminal truncated
isoform of MMP-2 has been discovered, which is induced by
hypoxia and oxidative stress by activation of a latent promoter
located in the first intron of MMP-2 (Lovett et al., 2012). We have
previously proposed that the latent promoter of this MMP-2 isoform
undergoes epigenetic regulation via its overlap with histone
modifications, a putative active enhancer element, and binding
sites for transcription factors that are known to cooperate in
hypoxia-induced gene transcription (Cruz et al., 2021).

The balance between MMPs and TIMPs is key to the stability
of the extracellular matrix and normal function of these proteases
during pregnancy. Although TIMP-3 is able to bind and inhibit
MMP-2, it has also been reported that activation of the pro-form
of MMP-2 by Matrix type 3-MMP may be enhanced by TIMP-3
in a dose-dependent manner (Zhao et al., 2004). Furthermore,
TIMP-3 has MMP-independent functions, such as the inhibition
of angiogenesis by blocking the binding of VEGF to VEGF
receptor-2 and hindering downstream signaling (Qi et al.,
2003). Regarding the role of TIMP-3 in PE, the promoter
polymorphism rs9619311 was not associated with response to
antihypertensive therapy (Luizon et al., 2014). However, we
identified a higher number of significant differentially
methylated probes located on the TIMP-3 promoter, as well as
an increased TIMP-3 expression in corresponding placental
samples from early-onset PE compared to controls, which
denotes DNA methylation of TIMP-3 promoter as an
epigenetic mechanism in PE (Cruz et al., 2022). Recently, we
found that circulating TIMP-3 is increased in patients with PE
compared with healthy pregnancy, and these TIMP-3 levels were
positively correlated with MMP-2 and TIMP-1 concentrations in
PE (Palei et al., 2022). These findings may contribute to
understand the relevance of TIMP-3 in the pathophysiology
of PE.

5 Conclusion

Here, we discussed potential mechanisms underlying
endothelial dysfunction and associated long-term cardiovascular
and renal risk in PE based on findings from studies focused on
patients with PE classified as nonresponsive to antihypertensive
therapy. Effects on NO bioavailability highlight the potential role of
visfatin/NAMPT on mediating endothelial dysfunction, which
might contribute to increased cardiovascular events in PE.
Moreover, we provided insights into the epigenetic control of
MMP-2 and TIMP-3 expression that may contribute to
cardiovascular and renal complications in PE. Finally, epigenetic
regulation of the vascular endothelium should be further considered
as potential drug targets to improve antihypertensive responsiveness
in PE.
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