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Small molecule compounds targeting multiple kinases involved in
neoangiogenesis have shown survival benefits in patients with unresectable
hepatocellular carcinoma (HCC). Nonetheless, despite the beneficial effects of
multikinase inhibitors (MKIs), a lack of boosting adjuvant limits their objective
response rate. Lipid conjugates have been used to improve delivery efficacy or
pharmaceutical benefits for decades. However, the feasibility of utilizing lipid-
drug conjugates (LDCs) in HCC regimens remains untested. In this study, oral
feeding of linoleate-fluorescein isothiocyanate conjugates showed that the
compound was well distributed in a spontaneous HCC mouse model.
Therefore, a rationale design was developed for chemically synthesizing a
linoleate-pazopanib conjugate (LAPC). The LAPC showed a significantly
improved cytotoxicity compared to the parental drug pazopanib. Pazopanib’s
angiogenic suppressing signals were not observed in LAPC-treated HCC cells,
potentially suggesting an altered mechanism of action (MOA). In an efficacy trial
comparing placebo, oral pazopanib, and LAPC treatments in the hepatitis B virus
transgene-related spontaneous HCC mouse model (HBVtg-HCC), the LAPC
treatment demonstrated superior tumor ablating capacity in comparison to
both placebo and pazopanib treatments, without any discernible systemic
toxicity. The LAPC exposure is associated with an apoptosis marker (Terminal
deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) and an enhanced
ferroptosis (glutathione peroxidase 4 [GPX4]) potential in HBVtg-HCC tumors.
Therefore, the LAPC showed excellent HCC ablative efficacy with altered MOA.
The molecular mechanisms of the LAPC and LDCs for HCC therapeutics are of
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great academic interest. Further comprehensive preclinical trials (e.g., chemical-
manufacture-control, toxicity, distribution, and pharmacokinetics/
pharmacodynamics) are expected.
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1 Introduction

Liver cancer is the fifth most common malignancy in men and
the ninth in women worldwide. It is also the second most common
cause of cancer mortality (Chidambaranathan-Reghupaty et al.,
2021). Hepatocellular carcinoma (HCC) is the most common
liver cancer type (Xie, 2017). It is a highly aggressive cancer,
which usually develops from long-term chronic liver
inflammation and injury. Its major risk factors are chronic
infections with hepatitis B virus (HBV) or hepatitis C virus,
alcohol use, carcinogens, and inherited diseases (Suresh et al.,
2020; Mahmud et al., 2021). The prognosis of individuals
diagnosed with HCC remains suboptimal, with a 5-year survival
rate of 18% (Villanueva, 2019). Targeting cancer-associated driver
mutations is an ideal strategy for controlling HCC, in addition to
surgical resection, radiotherapy, and chemotherapy (Ding et al.,
2017). Due to the rich neo-vasculature pattern of HCC (Anisha et al.,
2021), many angiogenesis-targeting Multikinase Inhibitor (MKIs)
have been developed (Rahbari et al., 2016). Clinically, only a few
inhibitors with limited efficacy, such as sorafenib (Stra et al., 2021),
lenvatinib (Lee et al., 2022), regorafenib (Iavarone et al., 2021) and
cabozantinib (Kelley et al., 2022), were employed. However, the
overall survival rate of patients with advanced HCC is low and has
not improved (Toyoda et al., 2022). The first approved systemic
therapy drug for advanced HCC (sorafenib) displayed a low
objective response rate (ORR) of 2%–3% in patients (Llovet et al.,
2008; Cheng et al., 2009). The second drug approved for the initial
treatment of advanced HCC (Lenvatinib) demonstrated a
significantly higher ORR (18.2% vs. 4.5%, p = 0.020) and disease
control rate (77.3% vs. 47.7%, p = 0.001) compared to sorafenib
(Choi et al., 2022). The second-line treatment with regorafenib
improved the overall survival of patients with HCC who showed
disease progression during first-line treatment with sorafenib (Bruix
et al., 2017). Cabozantinib has been granted approval for patients
with advanced HCC treated with sorafenib and is currently being
developed in combination with immune checkpoint inhibitors in
patients (Trojan 2020). Despite numerous advances, therapeutic
responses to MKIs vary widely in individual patients and across
patient populations (Huang et al., 2020). These results may be
attributable to the potency and selectivity of MKI, the variability
in drug metabolism and pharmacokinetics, tumor biology, and the
tumor microenvironment (Wedam et al., 2006). Therefore,
preventing, decreasing, or reversing resistance remains a major
bottleneck in HCC therapy, impeding improvements in
morbidity and mortality (Chaffer and Weinberg, 2011).

As stated above, the main limitation of MKIs in HCC treatment
is insufficient ORR. Recent studies have attempted to improve drug
delivery in order to overcome the ORR problem. Lipid-drug
conjugates (LDCs) were developed to increase drug delivery
(Markovic et al., 2019). As an illustration, a phospholipid-drug

conjugate (CLR 131) demonstrated an ORR of 34.5% in patients
with multiple myeloma and 42% in patients with non-Hodgkins
lymphoma (de Lartigue, 2020). In general, the basic design concept
of LDCs was to conjugate a drug with a fatty acid (FA), glyceride, or
phospholipid in order to modify its lipophilicity (Bui et al., 2019;
Vishwakarma et al., 2019). The lipophilic modification of drugs can
significantly alter their physical and chemical properties, improve
their lipophilicities and abilities to be entrapped by lipid carriers, and
increase their transmembrane abilities, improving their delivery
pharmacokinetics and pharmacodynamics (Du et al., 2018;
Ghasemiyeh and Mohammadi-Samani, 2018). Secondly, lipophilic
modification introduces lipid ligands into their structures, which is
more conducive to recognizing various lipid-related receptors on cell
membranes (Ma et al., 2017; Managuli et al., 2018; Signorell et al.,
2018). Thirdly, lipophilic modification has the potential to enhance
drug stability, circumvent the first-pass effect, and improve
bioavailability (Kaithwas et al., 2017). In addition, LDCs have
advantages in targeting tumor cells, enhancing efficacy, and
reducing side effects and toxicity (He et al., 2017; Irby et al.,
2017). LDCs have become one of the hotspots in current
pharmaceutical research and have impressive application
prospects (Luo et al., 2016; Andonova and Peneva, 2017).

In this study, we employ the LDC design concept to modify
MKIs and synthesize a novel FA-conjugating drug to inhibit HCC in
mouse models therapeutically. MKIs conjugation with FAs may
change drugs’ molecular pharmacodynamics or pharmacokinetics
in vivo, as well as their toxicity profile. Other advantages of a drug
designed to fuse with FA include increased oral bioavailability,
enhanced tumor targeting effectiveness, controlled drug release,
and increased cellular penetration, all of which contribute to
enhanced therapeutic efficacy (Fattahi et al., 2020). Linoleic acid
(LA), the most common polyunsaturated FAs (PUFAs) in nature,
has been reported to engage in both pro- and anti-cancer activities
(Xu and Qian, 2014). In the field of antitumor drug design, LA has
been frequently combined with drugs to increase their lipid
solubility (Cheng et al., 2019; Uwaezuoke et al., 2022). Herein, a
linoleate-pazopanib conjugate (LAPC) was synthesized and its
antitumor effects were tested both in vivo and in vitro.

2 Materials and methods

2.1 Reagents

All chemicals in reaction were analytical grade, purchased from
Sigma-Aldrich (St. Louis, MO, United States), Alfa Aesar (Ward
Hill, MA, United States), and Merck (Darmstadt, Germany). The
purity of compounds was determined by TLC plates coated with
Merck Silica gel 60 F254 (0.2 mm). Spots were observed under UV
lamp or stained by dyeing agent. Linoleic acid (LA) was purchased
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from Merck; Pazopanib was purchased from GSK. 1H-NMR and
13C-NMR spectra were recorded on Bruker Avance 400 MHz
spectrophotometer (Billerica, MA, United States). In 1H-NMR,
CDCl3 was used as d-solvent, TMS as internalstandard to mark
0 ppm. The definition of splitting term: singlet (s), doublet (d),
triplet (t), qutratet (q), multiplet (m), coupling constant (J). In
13C-NMR, chloroform was used as internal standard to mark
77.0 ppm. Mass Spectroscopy (MS) and High-Resolution Mass
Spectroscopy (HRMS) were recorded on JMS-700 (JEOL),
(Tokyo, Japan), double focusing mass spectrometer (FAB and
EI), Applied Biosystems 4,800 Proteomics Analyze (MALDI)
(Foster City, CA, United States) or Waters (Milford, MA,
United States) LCT Premier XE (ESI). Dulbecco’s Modified Eagle
Medium (DMEM) and Penicillin-Streptomycin were purchased
from Gibco (Waltham, MA, United States). Fetal Bovine Serum
(FBS) was purchased from HyClone (Marlborough, MA,
United States). Methythiazolyltetrazolium (MTT) was purchased
from Sigma-Aldrich. Culture insert for migration assay was
purchased from ibidi (Planegg, Germany). Anesthesia for animal
test (Zoletil) was purchased from Virbac (Carros, France).
Fluorescence interpretation and image analysis were collected
using Cytation™ 5 Cell Imaging Multi-Mode Reader, BioTek
(Winooski, VT, United States). Rabbit anti-VEGFR antibody
(Cell signaling, #2479), rabbit anti-Phospho-VEGFR antibody
(Cell signaling, #2478), rabbit anti-PI3K antibody (Cell signaling,
#4249), rabbit anti-PLCg1 antibody (Cell signaling, #2822), rabbit
anti-Phospho-PLCg1 antibody (Cell signaling, #2821), rabbit anti-
AKT antibody (Cell signaling, #4685), rabbit anti-Phospho-AKT
antibody (Cell signaling, #4060), rabbit anti-ERK antibody (Cell
signaling, #4695), rabbit anti-Phospho-ERK antibody (Cell
signaling, #4370), mouse anti-b-actin antibody (Santa Cruz, sc-
47778), secondary antibody: Goat anti-mouse IgG-HRP antibody
(Santa Cruz, sc-2005), Goat anti-rabbit IgG-HRP antibody (Santa
cruz, sc-2004).

2.2 FITC labeling of linoleic acid

The fluorescent compound FITC has a thio-cyanate group,
which contributes to its sensitizing properties and is capable of
reacting with amines and thiol residues. With gentle stirring, FITC
solution in DMSO (5 mg/mL) was added dropwise to LA solution
(15 mg/mL) in DMSO with the molar ratio of FITC:LA varying to 1:
1. Continuous slow stirring was performed for 0.5–4 h at room
temperature, protecting the mixture from light. The FITC-LA
conjugates were lyophilized overnight. Then the lyophilized
FITC-LA powder was stored at −20°C for further use.

2.3 Chemistry

The synthesis of linoleoyl pazopanib (LAPC): To a solution of
pazopanib hydrochloride (0.24 g, 0.50 mmol) in DMF (20.00 mL),
EDC (0.31 g, 1.50 mmol), DMAP (0.37 g, 3.00 mmol) and linoleic
acid (0.18 mL, 0.55 mmol) were added and themixture was stirred at
room temperature for 7 days. The residue was evaporated under
reduced pressure, treated with water (20 mL) and extracted with
DCM (3 × 20 mL). The organic phase was dried (Na2SO4),

evaporated under reduced pressure and purified by column
chromatography using DCM:MeOH = 30:1 as eluent. White solid
(250.0 mg, 0.36 mmol); yield: 71.29 percent.

1H-NMR (500 MHz, CDCl3) δ: 0.87 (t, 3H), 1.20–1.33 (m, 16H),
1.97–2.04 (m, 4H), 2.33 (t, 2H), 2.60 (s, 3H), 2.64 (s, 3H), 2.74 (t,
3H), 3.62 (s, 3H), 4.12 (s, 3H), 5.29–5.35 (m, 4H), 5.83 (d, 1H), 6.82
(t, 1H), 7.16 (d, 1H), 7.46 (s, 1H), 7.47 (d, 1H), 7.62 (d, 1H), 7.79 (d,
1H), 8.77 (s, 1H), 8.89 (s, 1H).

13C-NMR (125 MHz, CDCl3) δ: 162.8, 156.4, 150.1, 147.6, 141.7,
138.2, 137.7, 132.6, 132.3, 130,6, 130.2, 130.0, 127.9, 127.8, 123.8,
121.9, 120.9, 120.2, 119.8, 114.7, 97.1, 39.3, 37.5, 36.6, 31.9, 31.6,
31.5, 31.3, 29.7, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 28.7, 28.6, 27.4, 27.2,
25.6, 25.2, 24.9, 24.7, 24.6, 22.7, 22.5, 22.4, 19.7.

HRMS (ESI): m/z [M + H]+ calcd for C39H54N7O3S: 700.4009,
found: 700.4012; m/z [M - H]- calcd for C39H52N7O3S: 698.3852,
found: 698.3857.

2.4 Cell lines and cell culture

HCC cell lines (HepG2, Huh7, HCC36 and Tong) were seeded
in 96 well plates (1×104 cells/well) and incubate at 37°C for
overnight. The cells were treated with the indicated drug dose (0,
100, 200, 400 μM and 800 μM) for 48 h. After treatment, the culture
medium was added with 10 μL Cell Proliferation Reagent WST-1 (1:
10 final dilution) at 37°C for 1 h 1 h later, the colorimetric
absorbance of cells at 490 nm were recorded.

2.5 Western blot

Cells were lysed by ice-cold RIPA lysis buffer including
protease inhibitor cocktail (25x, Roche) for 1 h. Samples were
centrifuged for 30 min at 11,000 rpm at 4°C and the
supernatants were harvested. About 50 ug of each protein
sample were loaded and separated on 8% and 10% SDS gel and
transferring to 0.45 mm PVDF membrane. The membranes were
then blocked with 2.5% BSA for 1 h, probed with primary
antibodies at a dilution of 1:1,000, followed incubation by HRP-
conjugated secondary antibodies at a dilution of 1: 5,000.

2.6 Mouse model and treatment procedures

All of the animal experiments followed the Guidance of the Care
and Use of Laboratory Animals of the National Institutes and Health
and approved by China Medical University (CMUIACUC-2022-
002). For LA-FITC treatment, HBVtg-HCCmouse model (Wu et al.,
2010) was induced by intraperitoneal injection of low dose of DEN
(20 mg/kg body weight) in 10 to 14-day-old pups (Zheng et al.,
2007). Oral administration of LA-FITC three times a week at
32 weeks to 35 weeks and then the liver tumor foci was evaluated
at 36 weeks of sacrifice. For placebo, pazopanib, and LAPC
treatment, HBVtg-HCC mouse also induced by DEN injection.
The drug was dissolved in sunflower oil and PBS mixture buffer
(1:1:8) and fed 10 mg/kg of drug to mice at 42 weeks to 45 weeks and
the body weight, liver weight, and tumor foci were evaluated at
46 weeks of sacrifice.
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2.7 Immunohistochemistry (IHC)

Mouse liver tissue were fixed by 10% formalin and embedded
into paraffin following standard protocol. The tissue sections were
stained with primary antibodies against CD34 (1:500; ab81289,
abcam) and GPX4 (1:100; sc-166570, Santa Cruze) by using an
ABC kit (Vector Laboratories) to enhance the staining signals.
TUNEL assay: the sections were cut from paraffin-embedded
mouse liver tissues to detect cell death by using In Situ Cell
Death Detection Kit (Roche, United States) followed the
manufacturer’s instructions.

2.8 Statistical analysis

Analyses were performed in triplicate, and the results were
expressed as mean ± SD. Analysis of variance (ANOVA) was
conducted, followed by Dunnett’s post hoc test, to determine
significant (p < 0.05) differences. Statistical analyses were
performed using GraphPad Prism v8.0 (GraphPad Software, San
Diego, CA, United States).

3 Results

3.1 LA conjugation localizes a fluorescence
moiety in tumor lesions of a spontaneous
HCC mouse model

To provide a proof-of-concept for using LDCs, we conjugated
LA, a long-chain FA that cannot be synthesized by human cells, with
fluorescein isothiocyanate (FITC) and fed it to a hepatitis B virus
transgene-related spontaneous HCC (HBVtg-HCC) mouse model
via oral gavage. We then observed the distribution of FITC in tissues
(Figure 1). FITC was predominantly detected in liver tumors, with a
rare incidence observed in normal adjacent or parental lesions.
These data showed that FITC delivery to the tumor was effective
via lipid conjugation, indicating that LA, as a type of PUFA, is more
readily taken up by tumor tissues than other tissues, potentially
reflecting differences in FA metabolism between cancer and normal
cells. Consequently, LA could be an excellent carrying entity for
HCC treatment.

3.2 Rationale for LA-conjugated MKIs

Figure 2A shows several common MKIs. In our study, we first
tried to add lipids to N-containing groups in the lenvatinib structure.
However, the amide’s (blue part) amino group was greatly
influenced by the oxygen atom, decreasing its nucleophilicity so
that a mild 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide
(EDC) reaction could not occur. Then, we used sodium hydride
(NaH) to enhance the alkalinity of the reaction and make the amino
group more nucleophilic. The reaction failed since a fragmented
structure was observed by nuclear magnetic resonance (NMR;
Supplementary Figures S1–S4). However, fragmented structures
were also found in reactions of regorafenib conjugated with FA,
indicating that the harsh conditions caused the reactions to fail
(Supplementary Figures S5–S8). Therefore, we had to choose MKIs
with a structure with a free amine group. Sorafenib and cabozantinib
have similar structures to lenvatinib and regorafenib (amide group,
blue part), potentially indicating difficulty in the reaction with FA.
Another clinically used MKI, pazopanib (Figure 2B), was chosen
because its sulfonamide group (green part) has a free amino
group. This structure provided an excellent basis for chemically
synthesizing pazopanib conjugated to an FA (e.g., LA).

To practice the concept of an LDC with pazopanib, we
conjugated LA onto pazopanib to create a new chemical entity
(LAPC) for treating HCC. The chemical synthesis procedure is
shown in Figure 2B. The synthetic design concept was that nitrogen
atoms are present in most MKI structures and form polar and
nucleophilic functional groups. We have used PUFAs since their
nucleophilic N-containing groups can couple with an aliphatic acid
to install a hydrophobic residue on various anticancer drugs. In our
study, pazopanib and LA were conjugated using a reaction
containing EDC and 4-dimethylaminopyridine dissolved in
dimethylformamide. This reaction created the LAPC product
with a high yield and no regioisomer. Altogether, these results
showed that our synthetic protocol was efficient for achieving
high regio-selectivity, and it is unnecessary to perform multi-step
chemical modifications or use an orthogonal protection strategy.
The experimental procedure was simple and only required
extraction and recrystallization. The new compound was
confirmed by 1H-NMR (Supplementary Figure S9), 13C-NMR
(Supplementary Figure S10), and mass spectrometry
(Supplementary Figures S11, S12).

FIGURE 1
The fluorescence intensity of LA-FITC in a spontaneous HCCmousemodel. FITC fluorescence ismore intense in tumor tissues than non-tumor and
transition tissues when viewed under a 40× microscope. This observation indicates that the LA is more likely to enter tumor tissues than other tissues.
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FIGURE 2
The structures of MKIs and synthesis of LA + pazopanib to produce LAPCs. (A) The amide group (blue part) could react with EDC under mild
conditions. The structures of inhibitors were broken under the strenuous NaH condition. (B) The method to synthesize LAPC. The sulfonamide group
(green part) provided a free amino group for the mild reaction without breaking the pazopanib structure.

FIGURE 3
Effects of LAPCs on the viability of Huh7, Tong, HCC36, HepG2, and HepRG cells. The cells were treated with different LA, LAPC, pazopanib, and LA
with pazopanib (LA + pazopanib) concentrations for 48 h. Cell viability was measured using the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) assay.
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3.3 LAPC improves parental drug anti-cancer
efficacy with an altered MOA

The mechanism of action (MOA) of MKIs is to suppress
cellular growth signals. This inhibition prevents the activation of
cellular signals related to angiogenesis (e.g., Ras/Rac, mitogen-
activated protein kinase [MEK]/extracellular signal-regulated
kinase [ERK], phosphoinositide 3-kinase [PI3K]/protein
kinase B [AKT], and phospholipase C gamma 1 [PLCG1])
that are responsible for cancer cell growth and proliferation.
Preclinical evaluations of pazopanib’s MOA showed it
suppresses Ras/Rac, MEK/ERK, and PI3K/AKT activity by
inhibiting VEGFR in the nanomolar range (Sonpavde and
Hutson, 2007; Bukowski et al., 2010). However, its in vitro
cytotoxic efficacy is astonishingly high in HCC cells (Zhu

et al., 2011). Therefore, this study assessed whether the LAPC
retained the same pharmacological characteristics when treating
HCC cells by measuring its cytotoxicity (Figure 3 and Table 1)
and related signaling (Figure 4).

To investigate the effects of LAPC and pazopanib on HCC
cell growth, we exposed Huh7, Tong, HCC36, and HepG2 cells
to five concentrations (0, 100, 200, 400, and 800 μM) of LA,
LAPC, pazopanib, and LA + pazopanib for 48 h (Figure 3). The
MTT assay results showed that LAPC provided better inhibition
than the parental drug pazopanib, LA, and LA + pazopanib. LA
had no inhibitory effect at 0–200 μM but did have an inhibitory
effect at 400–800 μM. Pazopanib had little effect on HCC
cellular toxicity and did not show synergy when
combined with LA. The LA + pazopanib cotreatment showed
cellular toxicity at high concentrations (400–800 μM). Table 1
shows the four treatments’ half-maximal inhibitor
concentrations (IC50) in the various cell lines. The LAPC
had an IC50 of 19.6–54.3 μM, while LA and pazopanib had
IC50s of >500 μM in all cell lines. The LAPC had a greater anti-
proliferative effect on the HCC36 cell line than the other
treatments.

The discrepant cytotoxicity between LAPC and pazopanib
motivated us to investigate the expression levels of total and
phosphorylated (p) VEGFR, PLCG1, AKT, and ERK forms in
HCC36 cells. As an MKI, pazopanib showed a good inhibitory
effect on the levels of phosphorylated signaling proteins.
However, interestingly, the LAPC had little effect on the
phosphorylation of the examined signaling proteins.
PLCG1 plays an important role in anti-apoptotic signaling in

TABLE 1 In vitro inhibitory effect of LA, LAPC, Pazopanib and LA/Pazopanib
cotreatment in HCC cells.

Compound 48 h cytotoxicity (IC50 µM)a

HCC36b Huh7b Tongb HepG2b

LA >500 >500 >500 >500

LAPC 19.6 50.2 40.1 54.3

Pazopanib >500 >1,000 >1,000 >1,000

LA/Pazopanib 454.4 >1,000 >500 337.7

aInhibition of cell growth by listed compounds was determined using MTT, assay.
bHCC36, Huh, Tong and HepG2 are human HCC, cell lines.

FIGURE 4
(A)Western blot analysis of LAPC and pazopanib effects on angiogenesis-related signaling in HCC36 cells. Equal protein loading was confirmed by
reprobing themembrane with β-actin after stripping. (B)Quantification of angiogenesis signals. The relative levels of all proteins are reported as means ±
standard deviations (SD) across triplicate samples for each treatment.
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cells (Jang et al., 2018; Lu et al., 2020). PI3K/AKT is an
intracellular signaling pathway that regulates the cell cycle and
is associated with cellular quiescence, proliferation, cancer, and
longevity (King et al., 2015). The pazopanib treatment resulted in
a downregulation of p-PLCG1, p-AKT, and the expression of
PI3K, indicating a potential inhibition of tumor cell growth and
possible mechanisms via apoptosis. However, p-PLCG1, pAKT,
and p-ERK levels were comparable when cells were treated with
the LAPC. Altogether, these results suggest that the LAPC may
have a different MOA than pazopanib.

3.4 The LAPC shows excellent tumor
suppression efficacy without general
toxicity in the HCC mouse model

Since we had successfully synthesized the LAPC, we wanted to
compare its therapeutic efficacy to various compounds using the
spontaneous HCC mouse model. We applied them in the HBVtg-
HCC mouse model (Figure 5A) and monitored various tumor
parameters, including liver weight (LW) and its ratio to body
weight (LW/BW), tumor size (the diameter of the largest liver

FIGURE 5
The LAPC had better therapeutic efficacy than pazopanib in the HBVtg-HCC mouse model. HBVtg-HCC mice were induced with a subminimal
diethylnitrosamine injection. The drug was dissolved in a sunflower oil and phosphate-buffered saline mixture (1:1:8) and fed to 42–45-week-old mice
thrice weekly at 10 mg/kg. (A) The LAPC preclinical trial using HBVtg-HCC mouse model. (B) Tumor images with a ruler as the reference. (C) Treatment
statistics (e.g., LW, LW/BW, and tumor size and number). The data are expressed as the mean ± standard error of the mean (SEM; n = 6). Key: *, p <
0.05 compared to the LAPC group.
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tumor), and tumor number (number of tumor nodules in the liver).
The tumor’s appearance is shown in Figure 5B. While measuring
body weight during therapy, the LAPC was well tolerated, and no
body-weight loss was observed compared to other treatments at a
dosage of 20 mg/kg. The LAPC induced greater tumor inhibition
than the placebo and parental pazopanib treatments (tumor growth
inhibition rate = 51.7% at 20 mg/kg). The LAPC also decreased liver
weight and the liver/body ratio. Moreover, tumor sizes and numbers
were also lower with LAPC treatments than with the other
treatments. These results suggest that LA conjugation enhanced
pazopanib’s therapeutic efficacy, possibly by redistributing it to
liver tumors.

3.5 The LAPC increased cell ferroptosis in
the HBVtg-HCC mouse model

We hypothesized that several cellular events might underlie the
MOA of LAPC-mediated HCC suppression (e.g., angiogenesis, cell
apoptosis or lipid-related death, and ferroptosis). We explored these
hypotheses using immunohistochemical staining for markers of the
cell vascular endothelium (cluster of differentiation 34 [CD34]),
apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end
labeling [TUNEL]), and ferroptosis (glutathione peroxidase
4 [GPX4], a phospholipid hydroperoxidase against membrane
lipid peroxidation; Figure 6). CD34 staining was abundant after
the placebo treatment but reduced after pazopanib and LAPC
treatments. TUNEL staining was comparable after the placebo
and LAPC treatments but reduced after the pazopanib treatment.
GPX4 staining was lower after pazopanib treatment, particularly
LAPC treatment, than the placebo treatment.

Therefore, the data in Figure 6 indicates that the LAPC might
maintain some of the MKI characteristics in increasing cell
apoptotic death but also enhance some rarely reported cellular
death mechanisms (e.g., ferroptosis).

4 Discussion

In this study, the LAPC showed better therapeutic efficacy
in vitro and in vivo. We discuss our findings from the following
perspectives.

4.1 Pharmaceutical perspectives of
pazopanib and LAPC dosing form

Pazopanib was designed to be administered orally, making it a
convenient option for patients with difficulty undergoing
intravenous chemotherapy or other invasive treatments.
Pazopanib is converted to hydrochloride form to increase its
stability in the digestive tract. While pazopanib had very little
in vitro toxicity in our data, it suppressed advanced renal cell
carcinoma in patients (Sternberg et al., 2013; Cella and
Beaumont, 2016; Rhee et al., 2017). The MOA reported by GSK
was via suppression of growth signals and anti-angiogenic activity
(Kumar et al., 2007; Deng et al., 2013), not through cytotoxicity. The
LAPC’s IC50 ranged from 20 to 100 μM, showing dramatic
improvement compared to its parental drug. We treated the
HBVtg-HCC mouse model orally with pazopanib and the LAPC
(10 mg/kg/time), finding that the LAPC had a much superior
therapeutic benefit. Compared to GSK’s preclinical trial, the

FIGURE 6
Immunohistochemical protein detection in tumor tissues. Mouse liver tissue was fixed in 10% formalin and embedded in paraffin following a
standard protocol. Immunohistochemical staining was performed, with proteins appearing brown. CD34 (angiogenesis marker) and GPX4 (ferroptosis
marker) inhibition were observed with pazopanib and LAPC treatments. However, TUNEL (apoptosis marker) staining did not differ significantly. Original
magnification = ×100. Scale bar = 200 μm.
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effective dosing in mice was within 50–100 mg/kg/daily via
intravenous injection (Kumar et al., 2007). It was very obvious
that the LAPC showed excellent improvement in the oral dosing
form. Due to LA’s esterification, pazopanib’s properties and
distribution changed. LAPC could reach its target more
efficiently, decreasing metabolism and bodily elimination.

In summary, LDC could improve biological utilization because
esterified drugs typically have longer blood retention and lower
toxicity. LDC could also alter the drug’s solubility and crystalline
structure, improving its biological activity and stability. Therefore,
esterifying pazopanib to LAPC is a potential drug design approach
that could be used in the research and development of VEGFR
inhibitors to potentially improve their biological properties, efficacy,
and safety.

4.2 The LAPC’s possible MOA

In theMTT assay, the LAPC showed an inhibitory effect in HCC
cells (Figure 3). At first, we hypothesized that conjugating pazopanib
with LA may increase its lipophilicity, leading to more moderate
apoptosis than pazopanib (Zhu et al., 2011). However, in the
Western blot analysis (Figure 4), while pazopanib inhibited HCC
cell growth through an anti-apoptotic related pathway (e.g., AKT
and PLCG1), the LAPC did not. Importantly, the LAPC showed
much better tumor inhibitory effects than pazopanib in the mouse
model (Figure 5), indicating a different MOA in vivo.
Immunohistochemical staining (Figure 6) showed that the LAPC
decreased GPX4 expression, indicating possible ferroptosis.
Altogether, this unexpected result may be due to the introduction
of a PUFA into pazopanib’s structure. In addition to the possible
distribution of lipid-enhanced drugs in the tumor area, the
unsaturated double bonds on long-chain FAs are possibly easily
oxidized in cells and undergo lipid peroxidation causing ferroptosis
(Yang et al., 2016). After being inactivated by the LAPC,
GPX4 cannot prevent the oxidation of a large fraction of PUFAs,
leading to the accumulation of lipid peroxides and promoting the
cell into ferroptosis.

4.3 Feasibility of chemical reaction for
pharmaceutics

MKIs have been developed in the last two decades. They have
significantly improved patient survival and quality of life, and
shifted the treatment paradigm for various solid tumors (Huang
et al., 2020). It is an insufficient ORR that limits HCC therapeutic
efficacy (Sennino et al., 2012). As newMKIs are continually invented
for drug development, our data provide a new strategy for their
structural modification. Besides combining with traditional
cytotoxic drugs, combining with other kinase inhibitors (e.g.,
immune checkpoint inhibitors) may be a possible approach for
cancer treatment (Kato et al., 2019). Compared to single-target
drugs or drug combinations, MKI drugs can overcome the
limitations of single-target drugs by attacking multiple cancer
hallmarks. They simultaneously achieve robust and durable
therapeutic effects and avoid the risks associated with
multicomponent drug cocktails, such as unpredictable

pharmacokinetic profiles, drug-drug interactions, and poor
patient compliance (Anighoro et al., 2014). A few examples of
direct structural modifications to VEGFR inhibitors to obtain
multitarget drugs exist. Zang et al. discovered a novel pazopanib-
based dual inhibitor targeting cancer epigenetics and angiogenesis
(Zang et al., 2018). Their study indicated that the pazopanib indazole
moiety fit well into VEGFR2’s inside pocket and that the 2-
aminopyrimidine moiety formed two important hydrogen bonds
with Cys917 in the hinge region. Therefore, the modification of these
two moieties could not be tolerated. In contrast, the
benzenesulfonamide was directed toward the solvent region,
where it could be modified with other chemical groups. In our
study, we synthesized LA to benzenesulfonamide based on this
concept, leading to a good result.

4.4 Potential of LDC for developing
nanoparticle drugs

A liposome nanoparticle is a drug vehicle for encapsulating
chemical entities or biosimilars. Due to the nature of LDC, the
LAPC could be in the form of a liposome. Triglyceride and
phospholipid could be chosen as the conjugated lipid, allowing the
LDCs to potentially self-assemble. Self-assembling prodrugs are an
emerging class of therapeutic agents that can spontaneously associate
into well-defined supramolecular nanostructures in aqueous solutions
(Wang et al., 2020). The key characteristic of self-assembling prodrugs
is that they are amphiphilic, possessing both hydrophilic and
hydrophobic domains that enable aqueous assembly (Palao-Suay
et al., 2016). LDC has recently gained the attention of
bionanotechnologists due to its amphiphilicity, an ideal
characteristic for forming stable self-assembled nanostructures in
water (Zhong et al., 2016). Diverse LDC-based nanomedicines
have been developed and shown to significantly improve biological
efficacy, such as an oligomer chain of ethylene glycol-camptothecin
(Shen et al., 2010) and squalenoyl-doxorubicin (Maksimenko et al.,
2014). LA-based drug conjugates have also been nanoformulated,
with LA-conjugated paclitaxel (PTX) self-assembled into
nanostructures via the precipitation method (Zhong et al., 2016).
These LA-PTX nanocomposites were stable for >9 months and
showed ~2-fold higher anti-cancer ability than free LA-paclitaxel
conjugates. By self-assembling into well-defined nanostructures, the
resultant assemblies have a distinct, often improved pharmacokinetic
profile and may have unique properties for tuning drug release rates
and addressing multidrug resistance (Cheetham et al., 2017).

Besides self-assembled nanoparticles, LDCs can also be
incorporated within lipid-based nanoparticles as one element of
the lipid phase. A recent study used conjugated LA with cocoa butter
(10:1 w/w) as the lipid phase for synthesizing a Ploxamer 407-
stabilized nanostructured lipid carrier (Hashemi et al., 2020).

Furthermore, LDCs can also be used as a drug compound in
nanocarriers. Since the molecular weight of FAs in the LDC is lower
than polymers, the drug occupancy rate and loading efficiency into
the nanocarrier are superior for LDCs (Zhong et al., 2016). One such
study by Cheng (Cheng G et al., 2019) loaded SN38 conjugated LA
into a polymeric nano-matrix. Additionally, LDCs improve the
physicochemical properties of drug molecules for
nanoformulation, such as aqueous solubility and surface
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functionality. In this study, LAPC showed higher hydrophobic than
free pazopanib, which can be beneficial for loading into organic
solvent-friendly nanocarriers. We hope that the successfully LDC
synthesis described in this article will improve the feasibility of drug
development for the treatment of liver cancer.

5 Conclusion

The LDC approach demonstrated in this article has four main
advantages: (1) Its chemical synthesis of LAPC is easy for
pharmaceutical development without regioisomers; (2) Its robust
yield via simple extraction and recrystallization at room
temperature keeps production cost down; (3) It significantly
improved therapeutic efficacy compared to the parental drug, first
demonstrated in HCC; (4) Its concept of conjugating therapeutic
lipids with small molecule drugs is feasible, allowing greater
possibilities for pharmaceutical development. Overall, this study
might pave the way for novel cancer therapies. Further detailed
pharmacological studies are needed.
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