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Background: Bladder cancer is a common urological cancer associated high
significant morbidity and mortality rates. Immunotherapy has emerged as a
promising treatment option, although response rates vary among patients.
Glycosylation has been implicated in tumorigenesis and immune regulation.
However, our current comprehensive understanding of the role of
glycosylation in bladder cancer and its clinical implications is limited.

Methods: We constructed a training cohort based on the downloaded TCGA-
BLCA dataset, while additional datasets (Xiangya cohort, GSE32894, GSE48075,
GSE31684, GSE69795 and E-MTAB-1803) from Xiangya hospital, GEO and
ArrayExpress database were obtained and used as validation cohorts. To
identify glycosylation-related genes associated with prognosis, univariate Cox
regression and LASSO regression were performed. A Cox proportional hazards
regression model was then constructed to develop a risk score model. The
performance of the risk score was assessed in the training cohort using
Kaplan-Meier survival curves and ROC curves, and further validated in multiple
validation cohorts.

Results: We classified patients in the training cohort into two groups based on
glycosylation-related gene expression patterns: Cluster 1 and Cluster 2.
Prognostic analysis revealed that Cluster 2 had poorer survival outcomes.
Cluster 2 also showed higher levels of immune cell presence in the tumor
microenvironment and increased activation in key steps of the cancer immune
response cycle. We developed an independent prognostic risk score (p < 0.001)
and used it to construct an accurate prognostic prediction nomogram. The high
glycosylation risk score group exhibited higher tumor immune cell infiltration,
enrichment scores in immune therapy-related pathways, and a tendency towards
a basal subtype. Conversely, the low-risk score group had minimal immune cell
infiltration and tended to have a luminal subtype. These findings were consistent in
our real-world Xiangya cohort.

Conclusion: This multi-omics glycosylation score based on these genes reliably
confirmed the heterogeneity of bladder cancer tumors, predicted the efficacy of
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immunotherapy and molecular subtypes, optimizing individual treatment
decisions.
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Introduction

Bladder cancer (BLCA) is a prevalent malignancy worldwide,
characterized by high morbidity and mortality rates (Siegel et al.,
2020). Non-muscle invasive bladder cancer (NMIBC) accounts for
three-quarters of initial diagnoses, while the remaining cases are
categorized as either muscle-invasive bladder cancer (MIBC) or
BLCA with distant metastasis (Powles et al., 2022). Despite
advancements in treatment options, such as surgery and
chemotherapy, the prognosis for patients with advanced stage
BLCA remains suboptimal (Antoni et al., 2017; Lenis et al.,
2020). Recent studies have shown that monoclonal antibodies
targeting PD-1 and its ligands have emerged as a therapeutic
strategy with encouraging clinical benefits for metastatic BLCA
(Rosenberg et al., 2016; Plimack et al., 2017; Rijnders et al., 2017;
Hu et al., 2022). However, only a subset of patients can achieve
beneficial (Jenkins et al., 2018; Schoenfeld and Hellmann, 2020).
Although increased expression of PD-L1 on tumor cells and/or
immune cells is currently used as a diagnostic method for immune
therapies targeting PD-1, it only partially correlates with the clinical
benefits of these drugs (Ma et al., 2016). Therefore, there is an urgent
requirement to discover novel biomarkers that can assist in
treatment decision-making and improve patient outcomes.

The tumor immune microenvironment (TIME) is an intricate
milieu consisting of immune cells and immune-related molecules
(Binnewies et al., 2018), and its importance in immunotherapy has
gained widespread recognition. Chen DS et al. categorized TIME
into three subtypes: “immune inflamed,” “immune excluded,” and
“immune desert,” based on their distinct characteristics and
potential responsiveness to immunotherapy (Chen and Mellman,
2017). Similarly, Duan Q et al. classified tumors as either “hot” or
“cold” tumors depending on the level of immune infiltration (Duan
et al., 2020). Cold and immune desert tumors are characterized by
limited immune cell infiltration, resulting in a poor response to
immunotherapy (Galon and Bruni, 2019). Emerging therapeutic
strategies are focused on enhancing immune infiltration to
transform the tumor microenvironment (TME), from a poorly
infiltrated “cold” phenotype to an immune-rich “hot” phenotype
(Bonaventura et al., 2019; Vonderheide, 2020). Therefore, analyzing
the TIME is crucial for enhancing the efficacy of immunotherapy.

Glycosylation, a common post-translational protein
modification process, occurs in all domains of life (Pinho and
Reis, 2015). It involves the attachment of monosaccharides or
polysaccharides (i.e., oligosaccharides or complex glycans) to
specific residues of target proteins (Eichler, 2019). This
modification has been reported to impact various biological
processes, including protein secretion, degradation, transport to
receptor interactions, and modulation of immune responses
(Moremen et al., 2012; Varki, 2017). Glycosylation is associated
with the pathogenesis of numerous prevalent diseases, including

cancer (Eichler, 2019). Glycosylation modification affects
tumorigenesis through its influence on growth, differentiation,
metastasis, and immune surveillance. Altered glycosylation
profiles have been detected in various types of cancer, including
BLCA (Przybylo et al., 2002; RodrÍguez et al., 2018). For instance,
the invasive capacity of BLCA cells has been linked to the
N-glycosylation of cadherin (Przybylo et al., 2002). Furthermore,
glycosylation has been implicated in the regulation of immune
responses within the TIME (Badmann et al., 2020; Sun et al.,
2021). However, our understanding of the glycosylation
landscape in BLCA and its clinical implications is still limited.
Given the critical role of glycosylation in both tumorigenesis and
immune regulation, it is plausible that glycosylation patterns could
serve as potential biomarkers for predicting the response to
immunotherapy in BLCA patients.

In this study, our research objective is to develop a new
glycosylation risk score based on a multi-omics study to evaluate
the prognosis comprehensively and individually,
immunophenotype, and tumor heterogeneity of BLCA patients.
In addition, we aim to study the glycosylation risk score to
provide valuable insights into the potential of BLCA patients to
make treatment decisions such as personalized immunotherapy and
improve their prognosis.

Materials and methods

Data collection

Training set
We established a dataset consisting of 408 patients with BLCA

by selecting individuals from the Cancer Genome Atlas (TCGA)
database. The mRNA expression matrix and clinical information
corresponding to these patients were downloaded from the Genomic
Data Commons (GDC, https://portal.gdc.cancer.gov/) (Colaprico
et al., 2016). We converted the fragments per kilobase of exon model
per million mapped fragments (FPKM) and count value in the
original expression matrix to transcripts per kilobase of exon model
per millionmapped reads (TPM). Subsequently, we merged this data
with clinical information to create a new dataset. After excluding
5 patients due to duplicated or missing follow-up data, a total of
403 patients formed the training cohort.

Validation cohorts
In our early-stage study (Li et al., 2021), we constructed a dataset

called the Xiangya cohort and have uploaded it to the Gene
Expression Omnibus (GEO) database. This dataset includes
56 patients with BLCA and encompasses complete survival
information along with RNA-sequencing (RNA-seq) data
(GSE188715). We also downloaded relevant data from the GEO
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database (https://www.ncbi.nlm.nih.gov/geo/) to construct four
additional external validation cohorts (GSE32894, GSE48075,
GSE31684 and GSE69795). Duplicate patients or those with
incomplete survival information were excluded during data
preprocessing, resulting in a final inclusion of 224 (GSE32894),
73 (GSE48075), 93 (GSE31684) and 38 (GSE69795) individuals in
the four cohorts, respectively. Download the dataset with accession
number E-MTAB-1803 from the ArrayExpress database (https://
www.ebi.ac.uk/arrayexpress/) as an additional external validation
cohort.

Supplementary Table S1 displays the clinical information of
patients in the training and six validation cohorts.

Consensus clustering

We obtained a list of 628 glycosylation-related genes from the
gene set enrichment analysis (GSEA) (Supplementary Table S2).
To analyze the expression pattern of these genes in training
cohort, we utilized the consensus clustering function in the
“ConsuClusterPlus” R package (Wilkerson and Hayes, 2010).
The parameters were set as follows: distance = “manhattan”,
clusterAlg = “pam”, maxK = 5, Reps = 1,500, pItem = 0.8,
pFeature = 1. By applying this approach, we identified distinct
glycosylation expression patterns.

Describing the TIME of BLCA

To characterize the TIME of BLCA, we utilized the tracking
tumor immunophenotype (TIP) database (http://biocc.hrbmu.edu.
cn/TIP/) (Xu et al., 2018) to obtained the activation levels of the 7-
step Cancer Immunity Cycle (CIC) (Chen and Mellman, 2013).
Furthermore, we compiled a summary of 22 immune checkpoint
inhibitor (ICI) genes, 18 T cell-associated inflammatory signature
(TIS) genes, and effector genes of various immune cells, including
CD8 T cells, dendritic cells (DCs), macrophages, natural killer (NK)
cells, and type 1 T helper (Th1) cells, based on our previous study
(Hu et al., 2021a) (Supplementary Table S3).

Development of glycosylation risk score

To identify candidate genes associated with glycosylation
patterns and clinical prognosis, we employed two methods:
Univariate Cox analysis and the least absolute shrinkage and
selection operator (LASSO) algorithm. The “glmnet” R package
was utilized for the LASSO algorithm. Initially, Initially, we
conducted univariate Cox analysis on a set of 628 genes and
identified 30 genes that were strongly correlated with prognosis
(p < 0.005). Subsequently, the LASSO algorithm was applied to
further refine the prognostic genes. The “glmnet” R package
facilitated this process. From the LASSO analysis, we identified
20 candidate genes. Finally, the glycosylation risk score was
constructed using the Cox proportional hazard regression model
with the “glmnet” R package, incorporating 20 genes.

Glycosylation Score � ∑ βi*RNAi

Evaluation and verification of glycosylation
risk score

In the training set, patients were divided into high-risk and low-risk
groups based on their risk scores, using themedian of the risk score as the
threshold. Kaplan-Meier (K-M) survival curves were plotted and the log-
rank test was performed using the “survminer” R package to assess the
differences in survival between the two groups. The predictive accuracy of
the risk score was evaluated using the time-dependent receiver operating
characteristic (tROC) analysis, implemented with the “tROC” R package.
Additionally, a nomogram was constructed incorporating clinical
information related to prognosis and the glycosylation risk score. The
predictive efficacy of the nomogramwas verified using calibration curves.

For external validation, the samemethod used in the training set was
applied to an independent cohort of BLCA patients. In brief, the risk
scores were calculated using the glycosylation risk scoring formula, and
patients were classified into high-risk and low-risk groups using the
median risk score as the threshold. The survival outcomes between the
two groups were compared using theK-Mmethod and log-rank test. The
predictive accuracy of the risk scores was evaluated using tROC analysis.

Identification ofmolecular subtypes of BLCA
by glycosylation risk score

In our previous studies, our team conducted an extensive review
and summary of the existing seven molecular typing criteria for
BLCA, including the TCGA, UNC, and Consensus systems, et al. To
achieve a unified classification approach, we utilized two R packages,
namely, “BLCAsubtyping” and “ConsensusMIBC”. Additionally, we
incorporated BLCA-related pathways identified by Kamoun, A. et al.
(Kamoun et al., 2020) (Supplementary Table S4). To enhance
clinical applicability, we further reclassified the different
molecular subtypes into “luminal” and “basal” subtypes, aiming
to provide a more concise and efficient clinical guidance.

Statistical analysis

Correlations between variables were assessed using either Pearson
or Spearman coefficients, depending on the nature of the data.
Differences between binary groups in continuous variables were
evaluated using the t-test or Mann-Whitney U test. To examine the
survival prognosis, the K-Mmethod was employed to generate survival
curves, and statistical significance was determined using the log-rank
test. The relationship between candidate genes and survival prognosis
was determined through univariate Cox analysis, and the LASSO
algorithm was used to select and refine the candidate genes for
constructing the glycosylation risk score. The hazard ratio (HR) and
independent prognostic values of the glycosylation risk score were
calculated using univariate andmultivariate Cox regressionmodels. The
glycosylation risk score was constructed using the Cox proportional
hazard regression model, and its accuracy was assessed by drawing
time-dependent receiver operating characteristic (ROC) curves and
calculating the area under the curve (AUC). All statistical analyses were
conducted using R software (version 4.22) with a significance level set at
p < 0.05. The adjusted p-value was obtained using the false discovery
rate (FDR) method, and all tests were two-sided.
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Results

Construction of glycosylation genes
expression patterns related to prognosis and
tumor immune microenvironment

We constructed expression patterns based on glycosylation
genes features using unsupervised clustering analysis in the
TCGA-BLCA cohort, by “ConsenseClusterPlus” R package. And
we found that dividing into two patterns was the most appropriate,
named glycosylation cluster 1 and glycosylation cluster 2.

(Figure 1A). Subsequently, we conducted a detailed analysis to
investigate the disparities between the two mentioned
glycosylation clusters. In terms of prognosis, compared to cluster
1, cluster 2 has a significantly poorer prognosis (p = 0.024,
Figure 1B). As for the TIME, as depicted in Figure 1C
(Supplementary Table S5), the infiltration level of most of
immune cells including activated and immature B cell, activated
and central memory CD4 T cell, activated and central memory
CD8 T cell, natural killer cell and macrophage in TME was
apparently higher in cluster 2 compared to cluster 1. In addition,
in the 7-step CIC, cluster 2 exhibited a higher activation level in the

FIGURE 1
Construction of Glycosylation genes expression patterns related to prognosis and tumor immune microenvironment. (A) The unsupervised cluster
analysis based on all the 628 Glycosylation-related genes; Light blue and dark blue lines represented Glycosylation cluster 1 and 2, separately. (B) Kaplan-
Meier plot of OS between two Glycosylation-related patterns; Light green and red lines represented Glycosylation cluster 1 and 2, separately. (C) The
different infiltration levels of 28 immune cells in the TME using ssGSEA algorithm between two Glycosylation-based patterns; Light green and red
lines represent Glycosylation clusters 1 and 2, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not statistically significant. (D) The
different levels of anticancer immunity between two Glycosylation-based patterns; Light green and red lines represent Glycosylation cluster 1 and 2,
respectively; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not statistically significant.
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main anti-tumor immune steps, including step 1 (release of cancer
cell antigens), step 4 (recruitment of immune cells such as T cell,
CD8 T, macrophage, NK cell, dendritic cell), step 6 (recognition of
cancer cells by T cells) and step 7 (killing of cancer cells) (Figure 1D;
Supplementary Table S6).

Developing glycosylation-related risk scores
and predicting clinical outcomes in multiple
cohorts

The completely different manifestations of these two
glycosylation clusters mentioned above in the prognosis and
TIME of BLCA aroused our interest. Therefore, we planned to
develop a quantitative risk score utilizing the expression patterns of
glycosylation genes. This risk score will be used to predict the clinical

prognosis of each patient, aiming to achieve the accuracy treatment
of BLCA.

Firstly, we selected 30 independent prognostic genes strongly
associated with prognosis from glycosylation-related genes through
univariate analysis (p < 0.005, Supplementary Table S7).
Subsequently, LASSO regression helped us identify the 20 most
suitable candidate genes in those 30 independent prognostic genes
above for constructing glycosylation-related risk models (Figures
2A, B; Supplementary Table S8). And we choose the minimum
lambda for the optimal cutoff value, and selected ten-fold cross
validation method as correction. Finally, based on those
20 candidate glycosylation genes above, we employed the
“glmnet” R software package to construct a Cox proportional risk
regression model. This model allowed us to generate a risk score,
known as the glycosylation-based risk score, in the TCGA-BLCA
training cohort. The median glycosylation risk score would be used

FIGURE 2
Developing Glycosylation-related risk scores and predicting clinical outcomes in multiple cohorts (A) Coefficients of Glycosylation-related
prognosis genes value are shown by lambda parameter. (B) Partial likelihood deviance versus log (lambda) drawn by LASSO algorithm and 10-fold cross-
validation. (C,D) Forest plots of univariate and multivariate Cox analysis of Glycosylation-based risk score combined with age, gender, tumor grade and
stage of BLCA. (E) Nomogram developed by using age, tumor stage, and Glycosylation-based risk score. (F) Calibration curves of the nomogram.
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as a standard to classify the patients in cohorts into high and low
score groups.

To investigate the potential clinical utility of glycosylation risk
score, we first included it as an independent clinical indicator
through univariate COX analysis. Our findings revealed that the
glycosylation risk score, along with other clinical pathological factors
such as tumor grade, stage of BLCA, age, and gender, significantly

influenced prognosis (p < 0.001, Figure 2C). As shown in Figure 2D,
subsequent multivariate Cox analysis demonstrated that the
glycosylation risk score remains an independent prognostic
indicator (p < 0.001). A glycosylation specific nomogram was
developed using those independent prognostic factors identified
by multivariate COX analysis (glycosylation risk score, age, and
tumor stage) suggested that glycosylation risk score, like other

FIGURE 3
Verifying the accuracy of Glycosylation score in predicting prognosis in multiple cohorts (A) Kaplan-Meier (K–M) plot of OS between Glycosylation
risk score groups in TCGA-BLCA cohort; Light red and green lines represented high and low Glycosylation risk score groups, separately. (B) The area
under curves (AUCs) plot of Glycosylation risk score in TCGA-BLCA cohort. (C,D) K-M plot of OS between Glycosylation risk score groups and AUCs plot
of the risk score the in Xiangya validation cohort, separately. (E,F) K-M plot of OS between Glycosylation risk score groups and AUCs plot of the risk
score the in E-MTAB-1803 validation cohort, separately. (G,H) K-M plot of OS betweenGlycosylation risk score groups and AUCs plot of the risk score the
in GSE32894 validation cohort, separately. (I,J) K-M plot of OS between Glycosylation risk score groups and AUCs plot of the risk score the in
GSE48075 validation cohort, separately.
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clinical information, have important predictive value for prognosis
(Figure 2E). The results indicated that glycosylation score accounted
for a considerable proportion of the nomogram score, so its level
could largely accurately predict the survival probability of a single
patient at 1, 3, and 5 years. Furthermore, it was found that patients
with higher glycosylation score had poorer prognosis, and there was
an urgent need for new treatment methods to improve prognosis of
these patients. In addition, the calibration curve indicated that the
predicted OS of the glycosylation specific nomogram was very close
to the real OS (Figure 2F), and the Q-Q plot had verified the
normality of the above data (Supplementary Figure S1).

To further determine the prognostic significance of
glycosylation risk score in BLCA, we validated its predictive value
in multiple cohorts, including both public databases and our own
real-world study. In the training cohort TCGA-BLCA, we observed
that patients with a high glycosylation risk score had significantly
worse prognosis compared to those with a low glycosylation risk
score (p < 0.0001, Figure 3A). Additionally, the glycosylation risk
score exhibited high accuracy in predicting 1-year, 3-year, and 5-
year survival rates, with respective values of 0.75, 0.74, and 0.75
(Figure 3B). Meanwhile, in our real-world cohort (Xiangya BLCA
cohort), the prognosis of the high glycosylation score group
remained significantly poor (p = 0.014, Figure 3C) and its

predictive accuracy was relatively high (1, 3, and 5 years
accuracy: 0.75, 0.71 and 0.56 separately, Figure 3D). The above
results remain robust: the prognosis of the high glycosylation score
group presented obviously worse, in other public database cohorts,
including E-MTAB-1803 (p = 0.00019, 1-year, 3-year, and 5-year
accuracy: 0.73, 0.76 and 0.77 separately, Figures 3E, F), GSE32894
(p < 0.0001, 1-year, 3-year, and 5-year accuracy: 0.83, 0.89 and
0.88 separately, Figures 3G, H), GSE48075 (p = 0.00012, 1-year, 3-
year, and 5-year accuracy: 0.82, 0.78 and 0.76 separately, Figures 3I,
J), and two other GEO BLCA cohorts (Supplementary Figure S2).

The above results fully confirmed that glycosylation risk score
can reliably predict the clinical outcomes of BLCA, and its predictive
value had high accuracy and internal and external authenticity,
which can be widely promoted to other cohorts.

Exploring the relationship between
glycosylation score and TIME in the
TCGA-BLCA cohort

The accurate prediction of glycosylation score for prognosis had
sparked our interest in deeper research, therefore, we continued to
investigate its association with the TIME in the TCGA-BLCA

FIGURE 4
Exploring the relationship between Glycosylation score and TIME in the TCGA-BLCA cohort. (A) The association between Glycosylation risk score
and immune cells in the Glycosylation in the TCGA-BLCA cohort, high Glycosylation score vs. low Glycosylation score. (B) The relationship between
central memory CD8 T cells and Glycosylation score. (C) The association between Glycosylation risk score and cancer immunity cycles in the TCGA-
BLCA cohort. (D) The different activated levels of gene signatures associated with ICB response between different Glycosylation-based risk score
groups. Light red and green lines represent high and low Glycosylation-based risk score, respectively; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001;
ns, not statistically significant. (E) The association between Glycosylation-based risk score and T cell-associated inflammatory signature (TIS) score.
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cohort. As shown in the single-sample gene set enrichment analysis
(ssGSEA) analysis (Figure 4A; Supplementary Table S9), we found
that compared to the low glycosylation score patients, the infiltration
level of major tumor immune cells significantly increased in patients
with high glycosylation score, such as central memory CD8/
CD4 T cell, natural killer T cell, natural killer cell, regulatory
T cell and memory B cell. The correlation between representative
immune cells infiltration and glycosylation score were shown in
Figure 4B and Supplementary Figure S3, Meanwhile, the activation
of major steps of 7-step CIC, such as release of cancer cell antigens,
immune cells recruiting and killing of cancer cells, was significantly
higher in patients with high glycosylation score than those with low
glycosylation score (Figure 4C; Supplementary Table S10).

Furthermore, we examined the relationship between the
glycosylation risk score and the enrichment score of gene
features related to 21 immunotherapy-related pathways that
summarized by Mariathasan et al. (2018). The findings revealed
that the glycosylation score group exhibited higher pathway
enrichment scores (Figure 4D). Finally, based on the TIS score of
predicting immune checkpoint blocker (ICB) efficacy summarized
by our team’s previous research, we observed that the patients with
higher glycosylation score also had higher TIS scores (Figure 4E).
The consistency of the above results indicated that the high
glycosylation score group was more inclined to express the “hot-
immune” TME, and was predicted to be more sensitive to
immunotherapy.

FIGURE 5
Verifying the relationship between Glycosylation score and TIME in a real-world BLCA cohort. (A) The association between Glycosylation-based risk
score and cancer immunity cycles (left) and immune cells in the TME (right). The different types of lines represent the positive or negative relations. The
different colors of the lines represent the p values of the relations, and the thickness of the lines represents the strength of the relations. (B) The
association between Glycosylation risk score and T cell-associated inflammatory signature (TIS) genes (up) and immune checkpoint inhibitor (ICI)
genes (down), separately. (C) The different expression patterns of effector genes of immune cells between different Glycosylation risk score groups, Light
red and green lines represented high and low Glycosylation risk score groups, separately.
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Verifying the relationship between
glycosylation score and TIME in a real-world
BLCA cohort

Based on glycosylation scores to predict the expression of TME
immunophenotype in TCGA-BLCA, we verified how glycosylation
affects the TIME in real BLCA patients in Xiangya Hospital. Like
previous research ideas, in 7-step CIC (Figure 5A, left;
Supplementary Table S11), we found that patients with high
glycosylation scores were more activated in the main anti-tumor
immune steps, including. Correspondingly, the level of immune cell
infiltration in the TIME was significantly increased in patients with
high scores (Figure 5A, right; Supplementary Table S12), including.
Furthermore, as shown in Figure 5B (Supplementary Table S13),
patients with high glycosylation scores also expressed more ICI (up)
and TIS (down) related genes, further confirming the activity of
immune cells in their TME. As for immune cell effector genes, the
results strongly suggested that patients with higher glycosylation
score express more effector genes for CD8+T cells, DC,
macrophages, NK cells, and Th1 cells (Figure 5C). Based on the
multiple verifications of glycosylation and immunity in TCGA-
BLCA and Xiangya-BLCA, we conclude that patients with higher
glycosylation scores often exhibited a “hot” TIME, which mad their
efficacy in immunotherapy more ideal.

Glycosylation score guided precision
medicine in BLCA by predicting molecular
subtypes

The gene expression profiling of MIBC has revealed that it was a
heterogeneous disease, that can be sub-grouped into a variety of
molecular subtypes, and shared significantly different prognoses and
responses to anti-tumor treatments (Sjödahl et al., 2012;
Comprehensive molecular characterization of urothelial, 2014; Fu
et al., 2018; McConkey and Choi, 2018). The most common and
recognized molecular typing standards were as follows, consensus
subtype (Kamoun et al., 2020), TCGA subtype (Robertson et al.,
2017), Cartes d’Identité des Tumeurs-Curie (CIT) subtype
(Rebouissou et al., 2014), Lund subtype (Marzouka et al., 2018),
Baylor subtype (Mo et al., 2018), University of North Carolina
(UNC) subtype (Damrauer et al., 2014), MDAnderson Cancer
Center (MDA) subtype (Choi et al., 2014). Our previous research
integrated and simplified the above 7 typing standards to promote
the clinical implementation of BLCA molecular subtypes (Li et al.,
2021).

We found high consistency in the results between the public
training cohort TCGA-BLCA (Figure 6A, up) and our real-world
research cohort Xiangya-BLCA (Figure 6A, down). Among all the
classification criteria, the basal subtype was more inclined to obtain
higher glycosylation score, while the luminal subtype was more
inclined to obtain lower glycosylation score. And, patients with high
glycosylation score tend to exhibit basal differentiation
characteristics, such as EMT differentiation, Immune
differentiation, basal differentiation, interferon response, and so
on. Simultaneously, patients in the with low glycosylation score
were more inclined to exhibit luminal differentiation, like luminal
differentiation and urothelial differentiation. As for the accuracy of

glycosylation score in predicting BLCA molecular subtype, in
TCGA-BLCA (Figure 6B), most AUCs exceed 0.73, and in
Xiangya BLCA (Figure 6C), most AUCs even exceed 0.87.

Previous studies (Seiler et al., 2017; Kamoun et al., 2020) have
shown that the differentiation of the Basal subtype BLCA is lower
than that of the Luminal subtype, resulting in poorer prognosis.
However, it has a higher response rate to immunotherapy such as
cisplatin and ICB. Our study showed that BLCA patients with high
glycosylation score had poor prognosis but more immune cell
infiltration due to a tendency towards lower differentiated Basal
subtype.

Discussion

Neoadjuvant chemotherapy based on cisplatin, followed by
radical cystectomy and urinary tract diversion, remains the
standardized treatment plan for locally advanced MIBC since the
early 21st century (Author Anonymous, 1999; Grossman et al.,
2003). Glycosylation is involved in many fundamental cellular
events, including cell migration, cell signaling, growth and
intercellular adhesion, cell signaling, and growth, and is one of
the most common post translational modifications of proteins
(Fuster and Esko, 2005). And, abnormal glycosylation is also
considered an indispensable part of the carcinogenesis process
(Ni et al., 2014), including BLCA. The research on protein
modification and tumor heterogeneity, as well as the prediction
of immunotherapy efficacy such as ICB, remains a hot topic in many
cancers (Liu et al., 2021; Liu et al., 2022). Therefore, our research was
dedicated to deeply exploring the association between glycosylation
and BLCA, with the goal of accurately predicting prognosis and
individualized guidance for treatment of BLCA.

Firstly, based on the expression feature of 628 glycosylation
genes in each TCGA-BLCA patient, we obtained the most
appropriate two clusters through consensus clustering, named
glycosylation cluster 1 and glycosylation cluster 2. The results
indicated that the patients in glycosylation cluster 2 had poor
prognosis but more immune cell infiltration into the TME. The
poor prognosis and unsatisfactory treatment response of cancer are
mostly related to complex TME (Siegel et al., 2021), with the role of
immune cells and related pathways being important factors.
Therefore, we hoped to further develop the quantitative value of
glycosylation genes in predicting prognosis and immunophenotype
of BLCA. In addition, in recent years, research on the mechanism of
glycosylation in BLCA had made progress (Wu et al., 2021; Tan
et al., 2022), but research on the development of risk score to
evaluate the prognosis of BLCA was still lacking. Therefore, we
constructed a model by screening candidate genes that were strongly
correlated with prognosis and most representative of glycosylation
gene expression characteristics, and for the first time developed a
glycosylation risk score that can comprehensively predict the
prognosis, immune phenotype, and molecular subtype of BLCA.

Tumor cells had a faster rate of protein glycosylation than
normal cells (Beatson et al., 2016), and a prospective multi-omics
study on ovarian cancer by Hu et al. (2020). Further demonstrated
that there was a significant differential expression of glycosylation
between cancer cells and normal cells, and the degree of
glycosylation difference could be reflected by the expression of
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glycoproteins in cancer cells. Some studies had shown that the
abnormal mutation of the glycosylation related gene
GALNT1 would lead to the occurrence and progression of a
variety of cancers, including BLCA (Dyrskjøt et al., 2009). The
activity of tumor infiltrating immune cells (TIICs), especially tumor
infiltrating lymphocytes (TIL), in TME directly determines the
survival outcome of tumor patients (Fridman et al., 2012),
including early pT1 BLCA (Hülsen et al., 2020). In addition, the
development of new targets, such as BCAT2, EMT-related signature
and S100A5 (Xiao et al., 2022; Cai et al., 2023; Li et al., 2023), was
playing an increasingly important role in immunotherapy for BLCA.
A multicenter cohort study involving 709 patients (Bajorin et al.,
2021) suggested that BLCA patients who still had a high risk of
recurrence after surgery should be assisted with nivolumab. In this
study, patients with high glycosylation scores had worse prognosis
but presented a “hot” TIME (Duan et al., 2020) with high immune
cell infiltration, and this result was highly consistent in the training
set TCGA-BLCA and our own real-world cohort Xiangya-BLCA.
Badmann S. et al.’s study (Badmann et al., 2020) provided a possible

explanation for this phenomenon: in ovarian cancer, glycosylation
could promote macrophage differentiation towards anti-
inflammatory M2 type, leading to immune escape of cancer cells
in immune activated TME.

Previous studies had shown that molecular typing can refine the
prognosis and immune microenvironment of tumors. For example,
in the study of breast cancer, it was found that the TILs infiltration
level of different molecular subtypes of HR + breast cancer was quite
different, in which TILs infiltration only prolongs OS, not disease-
free survival (DFS) (Denkert et al.,2018). That was to say, different
molecular subtypes exhibit different TIME (Goldberg et al., 2021).
Rethinking the criteria for tumor molecular typing had become a hot
topic, such as refining, updating, integrating, and simplifying. For
example, the 5 mC regulator subtype system developed by our team
in the previous study can accurately predict molecular typing in
BLCA (Hu et al., 2021b). Moreover, the establishment of a consensus
molecular subtype standard in gastric adenocarcinoma (GAC) to
reclassify it and predict the response rate to ICB treatment (Wu
et al., 2022), and a new standard developed by our team (Li et al.,

FIGURE 6
Glycosylation score guided precision medicine in BLCA by predicting molecular subtypes. (A) The heatmap of different Glycosylation risk score
groups, seven molecular subtype classifications and bladder cancer associated signatures in the TCGA-BLCA (up) and Xiangya cohort (down). Activated
or inhibited pathways are marked as red or green, separately. (B,C) ROC plot of the Glycosylation risk score for predicting seven molecular subtype
classifications in BLCA in the TCGA-BLCA and Xiangya cohort.
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2021) that integrate multiple mainstream molecular subtypes of
BLCA will bring molecular typing closer to tumor treatment
practice. In addition, Miao et al. (2022) reported that a
glycosylation related protein B3GNT5 was specifically
overexpressed in basal-like breast cancer (BLBR), revealing the
close relationship between glycosylation and cancer molecular
subtype. In this study, BLCA patients with high glycosylation
score tended to differentiate into basal subtype, and they had
“hot” TIME characteristics, but had poor prognosis. However,
patients with low glycosylation score exhibited opposite luminal
subtype, as well as corresponding prognosis and immune
phenotype. In summary, patients with high glycosylation score
would have better expected efficacy in receiving immunotherapy
such as ICB, so more efforts should be made to explore new
immunotherapies to improve the prognosis after treatment. On
the contrary, patients with low glycation score should focus more on
the development of targeted therapies and other therapies. This
result also confirmed the previous research on the impact of
molecular subtype on tumor prognosis and immunity phenotype
(Choi et al., 2014; Hodgson et al., 2018).

Finally, there are some limitations that need to be further
explored and supplemented in future research in this study. First,
the materials of this study were retrospective data, and the influence
between glycosylation and prognosis, immunophenotype and
molecular typing of BLCA mostly stops at the level of
correlation. Therefore, we plan to take this study as a pre-study
and carry out prospective research on glycosylation and
immunotherapy and targeted therapy of BLCA in the follow-up
series of studies. In addition, based on this study and more literature
review, combined with experimental conditions, we will conduct
research on the mechanism of glycosylation related genes affecting
BLCA treatment, committed to developing new therapeutic targets
to promote precise treatment of BLCA.

Conclusion

Our study constructed a glycosylation score related to BLCA
through multi-omics data, and predicted the tumor heterogeneity,
prognosis and immunophenotype of BLCA. Glycosylation score can
reliably predict the efficacy of immunotherapy and molecular
subtypes of BLCA, which is conducive to individualized
treatment decisions of BLCA patients.
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Glossary

BLCA bladder cancer

NMIBC non-muscle invasive bladder cancer

MIBC muscle-invasive bladder cancer

TIME tumor immune microenvironment

TME tumor microenvironment

TCGA the Cancer Genome Atlas

GDC Genomic Data Commons

FPKM fragments per kilobase of exon model per million mapped fragments

TPM transcripts per kilobase of exon model per million mapped reads

GEO Gene Expression Omnibus

RNA-seq RNA-sequencing

GSEA gene set enrichment analysis

TIP tracking tumor immunophenotype

CIC Cancer Immunity Cycle

ICI immune checkpoint inhibitor

TIS T cell-associated inflammatory signature

DCs dendritic cells

NK natural killer

Th1 type 1 T helper

LASSO least absolute shrinkage and selection operator

K-M Kaplan-Meier

tROC time-dependent receiver operating characteristic

HR hazard ratio

ROC receiver operating characteristic

AUC area under the curve

ssGSEA single sample gene set enrichment analysis

ICB immune checkpoint blocker

TIICs tumor infiltrating immune cells

TIL tumor infiltrating lymphocytes

DFS disease-free survival

GAC gastric adenocarcinoma

BLBR basal-like breast cancer
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