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With an increasing worldwide prevalence, hepatocellular carcinoma (HCC) is the
most common primary malignant tumor of the liver in the world. It is also the
primary reason for cancer-related death in the world. The pathogenesis of HCC is
complex, such as DNA methylation changes, immune regulatory disorders, cell
cycle disorders, chromosomal instability, and so on. Although many studies have
been conducted on HCC, the molecular mechanisms of HCC are not completely
understood. At present, there is no effective treatment for HCC. Hydrogen sulfide
(H2S) has long been regarded as a toxic gas with the smell of rotten eggs, but
recent studies have shown that it is an important gasotransmitter along with
carbon monoxide (CO) and nitric oxide (NO). Increasing evidence indicates that
H2S has multiple biological functions, such as anti-inflammation, anti-apoptosis,
anti-oxidative stress, and so on. Recently, a lot of evidence has shown that H2S has
a “double-edged sword” effect in HCC, but themechanism is not fully understood.
Here, we reviewed the progress on the role and mechanism of H2S in HCC in
recent years, hoping to provide a theoretical reference for future related research.
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1 Introduction

Hepatocellular carcinoma (HCC) is an important primary liver cancer and a serious
medical problem in the world. At present, HCC has been regarded as the leading cause of
death of patients with liver cirrhosis, and its incidence rate is expected to increase in the
future (Forner et al., 2018; Sim and Knox, 2018; Llovet et al., 2021). The evidence indicates
that by 2025, about 1 million people will be affected by HCC every year. More than 90% of
HCC cases occur in the environment of chronic liver diseases (Renne et al., 2021). The main
risk factors of HCC include diabetes, alcoholism, chronic hepatitis, nonalcoholic fatty liver
disease (NAFLD) and exposure to dietary toxins, such as aflatoxin and aristolochic acid
(Kulik and El-Serag, 2019; Yang et al., 2019; Gilles et al., 2022). The pathogenesis of HCC is
complex, and involves a variety of molecular faults, including DNA methylation change,
immune regulation disorder, cell cycle disorder, chromosome instability, epithelial cell to
mesenchymal cell transition (EMT), microRNA (miRNA) disorder, and the increased HCC
stem cells (Chidambaranathan-Reghupaty et al., 2021). If diagnosed early, HCC may be
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cured and have a good long-term prognosis. However, the vast
majority of HCC patients are found in the late stage. At this time, the
surgical treatment is no longer a choice (Dimitrou et al., 2017).
Instead, it requires chemotherapy, using chemicals to destroy cancer
cells and inhibit the proliferation of new cancer cells (Chang et al.,
2020). Therefore, it is particularly important to find suitable
chemotherapy drugs for HCC.

Hydrogen sulfide (H2S) has long been considered as a toxic gas
with the rotten egg odor. However, it was regarded as the third
gaseous signal molecule after carbon oxide (CO) and nitric oxide
(NO) recently (Powell et al., 2018; Zaorska et al., 2020). Currently,
there are mainly three enzymes that catalyze endogenous H2S
production, namely, cystathionine gamma-lyase (CSE), 3-
mercaptopyruvate sulfurtransferase (3-MST), and cystathionine-
beta-synthase (CBS) (Coavoy-Sánc et al., 2020; Dilek et al., 2020;
Shackelford et al., 2021a). During endogenous H2S production, CBS
catalyzes the β-substitution reaction of homocysteine with serine to
generate cystathionine. Cysteine is produced through α, γ-cysteine
elimination of cystathionine catalyzed by CSE. Cysteine can be
transformed into H2S via the β-elimination reaction under the
catalysis of CBS and CSE. 3-mercaptopyruvate (3-MP) is formed
via transferring amines from cystine into α-ketoglutarate catalyzed
by cysteine aminotransferase (CAT). 3-MST catalyzes 3-MP sulfur
to produce H2S (Figure 1) (Wang et al., 2020a; Casin and Calvert,
2021; Zhao et al., 2021). The mechanisms of the effects of H2S on cell
functions mainly include regulation of the activity of transcription
factors, histone modification, DNA damage repair, DNA
methylation, and post-translational modification of proteins
through the sulfur hydration of H2S (Dongó et al., 2018). The
evidence indicates that H2S plays a vital role in multiple
pathological and physiological processes, such as anti-
inflammation (Mohammed et al., 2021), anti-apoptosis (Fouad
et al., 2020), anti-oxidative stress (Tocmo and Parkin, 2019),
blood pressure reduction (Greaney et al., 2017; Zaorska et al.,

2019), and the regulation of cell survival/death, cell proliferation/
hypertrophy and cell differentiation (Zhang et al., 2017). Hence, H2S
participates in many diseases, such as lung diseases (Pacitti et al.,
2021), ischemia/reperfusion injury (Krylatov et al., 2021), and
cancers (Shackelford et al., 2021b; Khattak et al., 2022; Faris
et al., 2023). In recent years, many studies have revealed that H2S
has the dual effects of anticancer and cancer promotion in HCC, but
the relevant mechanisms are not completely understood. Hence, we
summarized the recent studies on the role andmechanisms of H2S in
HCC through PubMed, hoping to provide a theoretical reference for
future related research.

2 H2S inhibits hepatocellular carcinoma

2.1 Exogenous H2S inhibits hepatocellular
carcinoma

2.1.1 Exogenous H2S inhibits hepatocellular
carcinoma by blocking the STAT3 pathway

The signal transducer and activator of transcription (STAT)
protein is a potential cytoplasmic transcription factor, which
includes seven members: STAT1, STAT2, STAT3, STAT4,
STAT5a, STAT5b, and STAT6 (Loh et al., 2019). STAT3, a main
sensor that mediates the signal transmission of interleukin-6 (IL-6)
to the nucleus, participates in cell growth, regeneration, survival,
differentiation, immune responses, and cell respiration. The
STAT3 activation is strictly regulated in normal tissues. However,
the abnormal activation of STAT3 is related to the formation,
progression, and metastasis of cancers (El-Tanani et al., 2022;
Sadrkhanloo et al., 2022). The relevant mechanism remains to be
clarified. The results of SEN LU et al. showed that GYY4137(a donor
of H2S) suppressed IL-6-induced STAT3 activation through
effectively decreasing p-STAT3 levels by reducing
JAK2 phosphorylation (an activator of STAT3) in HCC cells.
GYY4137 also reduced the expression levels of
STAT3 downstream proteins, including cyclin D1, Bcl-2, myeloid
cell leukemia sequence 1 (Mcl-1) and survivin. The number of HCC
cells in the G0/G1 phase of the cell cycle was increased by GYY4137,
which was consistent with GYY4137 inhibition of cyclin D1,
suggesting that cell cycle arrest of HCC cells was induced by
exogenous H2S. GYY4137 promoted the cleavage of poly (ADP-
ribose) polymerase (PARP) and upregulated the levels of cleaved
caspase-9 and caspase-3 in HCC cells, suggesting that exogenous
H2S induced apoptosis of HCC cells, which was consistent with the
inhibition of GYY4137 on Bcl-2, survivin, and Mcl-1. In addition,
GYY4137 suppressed HCC cell’s viability time- and dose-
dependently and suppressed the angiogenesis by downregulating
the levels of vascular endothelial growth factor (VEGF) and
hypoxia-inducible factor-1α (HIF-1α) that were
STAT3 downstream proteins. Similar to the results in vitro,
GYY4137 notably suppressed tumor growth in the model of
subcutaneous HCC cells xenotransplantation through suppressing
the activation of STAT3 and its downstream target gene expression
in vivo. Hence, it could be inferred that exogenous H2S inhibited the
proliferation, metastasis and invasion of HCC through inducing cell
cycle arrest and apoptosis of HCC cells, and the suppression of the
angiogenesis by suppressing the STAT3 pathway (Lu et al., 2014),

FIGURE 1
Diagram of the endogenous H2S generation process. CSE,
cystathionine-gamma-lyase; 3-MST, 3-mercaptopyruvate
thiotransferase; CAT, cysteine aminotransferase; CBS, cystathionine-
beta-synthase; 3-MP, 3-mercaptopyruvate.
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which is consistent with the fact that the abnormal activation of
STAT3 promotes tumor cell proliferation via increasing cyclin
D1 level, and inhibits apoptosis via increasing the levels of Bcl-2,
survivin, and Mcl-1 (Garcia et al., 2001). In the above study, how
H2S inhibits JAK phosphorylation through its sulfur hydration to
reduce STAT3 phosphorylation level needs to be further clarified.
STAT3 pathway will become a vital target for H2S-related drugs to
treat HCC.

2.1.2 Exogenous H2S suppresses hepatocellular
carcinoma by promoting autophagy

Besides apoptosis, cell cycle arrest and angiogenesis, autophagy
is also involved in anti-tumor effects (Ahmed et al., 2022). Moreover,
H2S plays an important role in cancers by regulating autophagy
(Iqbal et al., 2021). Therefore, it is natural to speculate that H2S may
inhibit HCC by regulating autophagy. Autophagy is a homeostatic
process, in which cell components and structures are transferred to
lysosomes for degradation and recycling. It can also remove the
waste materials from cells, including the damaged organelles and
protein aggregation, and help to clear the invading pathogens. From
yeast to mammals, the mechanism of autophagy is conservative
(Ganzleben et al., 2021; Kumar et al., 2021; Zahedi-Amiri et al.,
2021). The disorder of autophagy is often related to the pathogenesis
of various cancers, which not only inhibits the cancer but also
promotes the cancer (Devis-Jauregui et al., 2021; Rakesh et al., 2022).
To study the role and mechanism of exogenous H2S in HCC by
regulating autophagy, Shanshan S Wang and colleagues committed
a lot of experiments, and the results revealed that NaHS treatment
increased the expressions of Atg5 and LC3-II, and decreased
p62 expression in HCC cells. The transmission electron
microscopy showed that the number of intracellular double-
membrane vesicles increased in NaHS-treated HCC cells. This
indicated that exogenous H2S upregulated autophagy in HCC
cells (Wang et al., 2017). It has been reported that rapamycin, an
inhibitor of the mechanistic target of rapamycin (mTOR) and an
activator of autophagy, induces autophagy via suppressing protein
kinase B (AKT)/phosphatidylinositol-3-kinase (PI3K)/mTOR
pathway (Sundarraj et al., 2021; Kamel et al., 2022). Like
rapamycin, NaHS also notably downregulated the levels of
p-PI3K, p-Akt and mTOR proteins in HCC cells. Moreover, the
treatment of NaHS combined with rapamycin further upregulated
autophagy, indicating that exogenous H2S promoted autophagy by
suppressing the PI3K/AKT/mTOR pathway. In addition, exogenous
H2S suppressed the proliferation, cell cycle progression and
migration of HCC cells, but induced apoptosis of HCC cells,
which was enhanced by rapamycin. Summarily, exogenous H2S
suppressed the migration and proliferation of HCC cells via
inducing apoptosis and cell cycle arrest through inducing
autophagy by suppressing the PI3K/AKT/mTOR pathway (Wang
et al., 2017). In addition to the PI3K/AKT/mTOR pathway, our
previous study demonstrated that exogenous H2S upregulated
autophagy via the AMPK/mTOR pathway. In HCC (Wang et al.,
2019), whether exogenous H2S regulates autophagy through other
signal pathways, such as the AMPK/mTOR pathway, needs further
study. Contrary to some of the above conclusions that exogenous
H2S ameliorates HCC by activating autophagy, exogenous H2S
improves liver diseases and nervous system diseases by inhibiting
autophagy-mediated cell death (Nguyen et al., 2021a; Nguyen et al.,

2021b). The reason may be related to the differences in the type and
course of diseases, the type of tissue cells and the base level of
autophagy of cells, which needs to be further studied.

2.1.3 Exogenous H2S enhances doxorubicin
sensitivity to hepatocellular carcinoma cells by
inhibiting the outflow of doxorubicin

One of the most vital limitations of cancer chemotherapy is
that the anti-cancer response of cancer patients decreases over
the extended treatment period. This phenomenon is called
multidrug resistance (MDR), which is the primary reason for
cancer treatment failure (Nikolaou et al., 2018; Wang et al.,
2021a). MDR is associated with drug efflux, particularly
through many membrane-binding proteins named ATP
binding cassette (ABC) transporters. The overexpression of
these proteins decreases the accumulation of chemotherapy
drugs in cells, which may contribute to the MDR of some
cancers (Gupta et al., 2018; Kopecka et al., 2020). Therefore, it
is very important to reduce the drug resistance of cancer cells to
improve the anti-cancer efficacy. Eric Stokes and colleagues
found that doxorubicin reduced the expression of endogenous
H2S-producing enzyme (CSE) in HCC cells. Exogenous H2S
promoted doxorubicin inhibition of colony formation and cell
survival, while exogenous H2S alone didn’t have this effect.
Additionally, exogenous H2S promoted the cellular
accumulation of doxorubicin through inhibiting the levels of
ABCA1 and ABCG8, which is the underlying mechanism of the
synergistic effect of doxorubicin and H2S. Moreover, exogenous
H2S notably inhibited the heterodimer formation between
retinoid X receptor beta (RXRβ) and liver X receptor alpha
(LXRα) induced by doxorubicin and weakened the binding of
LXRα/RXRβ with the promoter of ABCG8 and ABCA1 genes.
Exogenous H2S S-sulfhydrated RXRβ but not LXRα, and the
inhibition of RXRβ S-sulfhydration alleviated H2S inhibition of
LXRα/RXRβ heterodimer formation. Collectively, it could be
deduced that exogenous H2S reversed doxorubicin resistance
of HCC through inhibiting the levels of ABCA1 and
ABCG8 by inhibiting the binding of LXRα/RXRβ with
ABCG8 and ABCA1 genes promoter via suppression of the
heterodimer formation between RXRβ and LXRα, which
needed to be further confirmed (Stokes et al., 2018). The
above study indicates that doxorubicin downregulates CSE
expression in HCC cells, which may be due to its
characteristics of DNA embedding (AbuHammad and Zihlif,
2013). The exact mechanism of doxorubicin regulating CSE
needs to be further clarified. In addition, the above study
shows that H2S S-sulfhydration of RXRβ is the mechanism of
reversing MDR of doxorubicin in HCC. It has been reported that
the EMT pathway is related to the occurrence of MDR (Erin et al.,
2020; Shome and Ghosh, 2021). Therefore, whether H2S can
regulate tumor MDR through the EMT pathway is required to be
further studied in the future. It has been reported that H2S
inhibits cisplatin resistance of cancer through inducing
apoptosis, blocking cell cycle, and suppressing cell migration
and invasion (Ma et al., 2018). Hence, whether exogenous H2S
reversed doxorubicin resistance of HCC through inducing
apoptosis, blocking cell cycle, or suppressing cell migration
and invasion needs to be studied.
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2.1.4 HA-ADT, a novel donor of hydrogen sulfide,
suppresses hepatocellular carcinoma

Given the effective inhibitory properties of exogenous H2S on
HCC mentioned above, H2S-related drugs are expected to become
new drugs for HCC treatment. At present, the existing H2S release
agents cannot completely satisfy the requirements of scientific
research and clinical trials. Therefore, developing efficient and
safe H2S release agents is crucial for the clinical application of
H2S-related drugs. Hyaluronic acid (HA) is a biopolymer that is
widely used in many biomedical applications because of its good
safety profile, such as drug delivery and tissue engineering (Jung
et al., 2014). Methyl derivatives of 5 - (4-hydroxyphenyl) - 3H-1,2-
dithio-3-thione (ADT-OH) can be used as H2S-releasing agents to
produce H2S through mitochondrial enzyme metabolism (da Costa
et al., 2022; Montoya and Pluth, 2016). HA-ADT, a new type of H2S
slow-release agent, is a new conjugate formed by connecting HA and
ADT-OH through a chemical reaction (Dong et al., 2019). Shao
Feng Duan and colleagues studied the effect of HA-ADT on HCC
and found that compared to NaHS (a rapidly releasing H2S donor)
and GYY4137 (a slowly releasing H2S donor), HA-ADT exhibited
stronger suppression of the proliferation, invasion, and cell cycle
progress and migration of human HCC cells. In addition, HA-ADT-
induced apoptosis was evidenced by the downregulation of the
expressions of p-glycogen synthase kinase-3β (GSK-3β), phospho
(p)-protein kinase B (PKB/AKT) and p-β-catenin, and suppressed
autophagy through decreasing the expressions of transforming
growth factor-β (TGF-β) and p-Smad2/p-Smad3 in human HCC
cells. In addition, HA-ADT was more effective in inhibiting the
proliferation of liver cancer xenograft tumors than GYY4137 and
NaHS. Collectively, HA-ADT inhibited HCC via promoting
apoptosis through suppressing GSK-3β/AKT/β-catenin and
inhibiting autophagy through suppressing TGF-β/Smad2/
3 pathways (Duan et al., 2023). The evidence indicates that
exogenous H2S suppresses urothelial carcinoma cell proliferation
through inducing cell autophagy and apoptosis (Panza et al., 2022),
which is inconsistent with the above study that exogenous H2S
downregulates autophagy to inhibit HCC. This indicates that
autophagy may have different activities in different tumors, and
plays a dual role in promoting and inhibiting tumor development,
according to the cellular environment.

2.2 Endogenous H2S inhibits hepatocellular
carcinoma

Besides exogenous H2S, endogenous H2S also participates in
inhibiting HCC. 3-MST is an important enzyme that catalyzes the
production of endogenous H2S (Rao et al., 2022). It is located in the
vascular endothelium and releases H2S rapidly under different
stimuli (Zhang et al., 2020). The evidence indicates that 3-MST
may be a tumor suppressor and participates in HCC (Li et al.,
2022a). However, the mechanism is not completely understood.
Meng Li and colleagues found that compared with matched non-
tumor tissues, 3-MST expression was notably downregulated in
human HCC tissues. The low 3-MST expression was closely
associated with the larger tumor size and the lower survival rate.
In HCC patients, the higher expression of 3-MST is associated with
better clinical outcomes. 3-MST overexpression in HCC cells

suppressed cell proliferation and promoted apoptosis, and also
notably restrained the proliferation of tumor xenografts in nude
mice. Conversely, the silencing of 3-MST by intratumoral siRNA
significantly promoted the growth of HCC. Furthermore, 3-MST
gene knockout aggravated HCC in mice. These outcomes indicated
that 3-MST inhibited HCC. 3-MST overexpression significantly
decreased H2S level, while siRNA-mediated 3-MST
downregulation increased H2S level in HCC cells, indicating that
endogenous H2S production was involved in 3-MST inhibition of
HCC. The in-depth research revealed that 3-MST inhibited the HCC
cell cycle through suppressing AKT/forkhead box transcription
factor 3a (FOXO3a)/retinoblastoma (Rb, an important
transcription inhibitor for G1-S progress) signaling pathway (Li
et al., 2022b). As we all know, Rb affects tumor progression by
regulating apoptosis (Li et al., 2019;Wang et al., 2020b). In the above
study, 3-MST negatively regulates Rb, which may result in the
induction of apoptosis of HCC cells. The specific mechanism of
3-MST regulating Rb needs further study. Summarily, 3-MST/H2S
inhibits HCC through promoting the apoptosis and cell cycle arrest
of HCC cells by inhibiting the AKT/FOXO3a/Rb pathway (Li et al.,
2022b). In addition, in the above study, 3-MST negatively regulates
the production of H2S in HCC cells. The reason may be the negative
feedback between the 3-MST and the CBS/CSE system of H2S, which
may also be why CSE/H2S promotes HCC, while 3-MST/H2S has the
opposite effect.

3 H2S promotes hepatocellular
carcinoma

3.1 Exogenous H2S promotes hepatocellular
carcinoma

Contrary to the above study, exogenous H2S can also promote
HCC. STAT3 has been found to be activated to promote the
occurrence of HCC (Lee and Cheung, 2019). The results of
Yulan Zhen et al. showed that the treatment of HCC cells with
NaHS significantly increased the expression levels of p-STAT3 and
STAT3mRNA, which led to the increased expression levels of COX-
2 and COX-2mRNA, the increased VEGF level, the reduced cleaved
caspase-3 level, the increased viability and migration of HCC cells
and the reduction of HCC cells apoptosis. This indicated that
exogenous H2S promoted HCC by increasing the migration and
proliferation and lessening HCC cell apoptosis. While the treatment
of HCC cells with AG490 (a STAT3 inhibitor) or NS-398 (a COX-2
inhibitor) notably abolished the above effects of NaHS. Moreover,
the treatment of HCC cells with AG490 significantly weakened the
increased COX-2 expression induced by NaHS. Meanwhile, the
treatment of HCC cells with NS-398 suppressed the increased
p-STAT3 expression induced by NaHS. Collectively, exogenous
H2S aggravated HCC by promoting the proliferation and
migration of HCC cells through inhibiting apoptosis and
increasing angiogenesis via inducing the STAT3-COX-2 pathway
(Zhen et al., 2018). These results provide a new insight into the
molecular mechanisms underlying H2S promotion of the cell
proliferation of HCC cells. Further, the conditions under which
exogenous H2S inhibits HCC, including inhibiting the migration
and proliferation of HCC cells and facilitating HCC cell apoptosis,
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and on the contrary, the conditions under which exogenous H2S
promotes HCC, need to be clarified. It can be inferred from a
previous study that the low concentration of exogenous H2S can
promote HCC, while the high concentration of exogenous H2S
inhibits HCC. The above speculation was confirmed by the
experiments of Dongdong Wu and colleagues. Their results
showed that H2S in human HCC cells was increased compared
to that in L02 cells (a kind of human normal hepatocyte), indicating
that H2S was related to the occurrence and development of HCC.
10–100 μMNaHS promoted themigration and growth of HCC cells,
while 600–1,000 μM NaHS had the opposite effect. 25–100 μM
NaHS inhibited HCC apoptosis, while 400–1,000 μM NaHS had
the opposite effect. These results indicated that the low
concentration of H2S promoted HCC, while the high
concentration of H2S inhibited HCC. Further research showed
that 25–50 μM NaHS upregulated the protein levels of
phosphorylated extracellular signal-regulated kinase (p-ERK),
phosphorylated epidermal growth factor receptor (p-EGFR),
matrix metalloproteinase-2 (MMP-2) and phosphorylated protein
kinase B (p-AKT), and downregulated the ratio of Bax/Bcl-2 and the
levels of phosphatase and tensin homolog (PTEN). While
800–1,000 μM NaHS had the opposite effect in HCC cells.
Similar to that in vitro, the low concentration of H2S promoted
the growth and angiogenesis of HCC xenografts in nude mice, while
the high concentration of H2S had the opposite effect. These results
indicated that the low concentration of H2S activated PTEN/AKT
and EGFR/ERK/MMP-2 pathways, while the high concentration of
H2S had the opposite effects (Wu et al., 2017). It has been reported
that EGFR/ERK/MMP-2 and PTEN/AKT pathways contribute to
the development of HCC (Qian et al., 2015; Yang et al., 2020; Wang
et al., 2021b). Therefore, it can be deduced that exogenous H2S plays
a double-edged sword role in HCC cells through regulating
angiogenesis and apoptosis via EGFR/ERK/MMP-2 and PTEN/
AKT pathways (Wu et al., 2017).

3.2 Endogenous H2S promotes
hepatocellular carcinoma

CSE is a vitamin B6-dependent enzyme that catalyzes the
production of endogenous H2S (Chiku et al., 2009). It is
generally expressed in the liver, heart, kidney, ileum, pancreatic
islet, placenta and vascular system, but not in the central nervous
system (Kimura, 2010). The change in CSE expression is related to
the change in the level of endogenous H2S, thus participating in the
progress of various diseases such as cancer and diabetes (Jia et al.,
2022; Omorou et al., 2022). The PI3K/Akt signal pathway is an
important signal pathway regulating cell growth, proliferation,
metabolism, survival, and movement (Akbarzadeh et al., 2021;
Korkmaz et al., 2022). Many studies have demonstrated that the
PI3K/AKT pathway regulates HCC (Li et al., 2021; Sun et al., 2021;
Zhou et al., 2021). However, the relevant mechanisms are not
completely understood. In addition, CSE is upregulated by the
PI3K/AKT pathway (Wang et al., 2022a). Therefore, it can be
speculated that CSE and PI3K/AKT pathways play a vital role in
HCC. Peng Yin and colleagues found that the PI3K/AKT pathway
positively regulated the expression of CSE in HCC cells. Akt deletion
or PI3K inhibitor could reduce the expression of CSE, while Akt

activation could upregulate CSE expression. The PI3K/AKT
pathway regulated the expression of CSE at the transcriptional
level. The double luciferase transporter analysis showed that
the −592/+139 gene fragment was the core promoter of CSE. The
specificity protein 1 (SP1) was an important transcription factor and
could directly bind to the core promoter of CSE to regulate CSE
expression. The mutation of the Sp1 binding core promoter of CSE
reversed the PI3K/AKT pathway-induced expression of CSE,
indicating that the PI3K/Akt pathway upregulated the expression
of CSE through Sp1 binding to the core promoter of CSE. Moreover,
the production of endogenous H2S was positively related to the
expression of CSE, and CSE/H2S promoted HCC cell proliferation
by inducing cell cycle progression. Collectively, the PI3K/Akt
pathway upregulated the expression of CSE through Sp1 binding
to the core promoter of CSE, thus promoting HCC, indicating that
endogenous H2S promoted HCC(86). The Sp1 promoted the
transcription of genes encoding cyclinD, p21Cip/WAK-1, and
cyclin E, which were involved in cell cycle progression (Sherr
and Roberts, 2004; Santiago et al., 2007). This is consistent with
the conclusion of the above study that CSE/H2S promotes the
growth of HCC cells by promoting cell cycle progression. Another
study by Yan Pan et al. further clarified the mechanism of
endogenous H2S promotion of HCC. The results revealed that
CSE was upregulated in HCC cells. The inhibition of endogenous
H2S/CSE pathway by propargylglycine (PPG)/CSE siRNA
significantly reduced the proliferation of HCC cells, indicating
that the H2S/CSE pathway induced the proliferation of HCC cells.
In addition, the inhibition of the H2S/CSE pathway promoted ROS
production, DNA damage and mitochondrial disruption, and
upregulated the apoptosis of HCC cells. The increased apoptosis
was related to the activation of p53 and p21, the decrease of the Bcl-2/
Bax ratio, and the increase of caspase-3 and phosphorylated c-Jun
N-terminal kinase (p-JNK) activity. Moreover, the suppression of the
proliferation of HCC cells by the suppression of the H2S/CSE
pathway was related to the inhibition of the epidermal growth
factor receptor (EGFR) through suppressing extracellular signal-
regulated kinase 1/2 (ERK1/2). Summarily, it could be deduced
from the above that CSE/H2S promotes the proliferation of HCC
cells by inhibiting mitochondrial ROS-mediated apoptosis through
activating the EGFR/ERK1/2 pathway (Pan et al., 2014). ROS has
been reported to induce apoptosis (Cui et al., 2021; Fontana et al.,
2021). In the above study, H2S/CSE promotes HCC cell proliferation
by inhibiting HCC cell apoptosis through suppressing ROS
production (Pan et al., 2014).

H2S/CSE can not only promote HCC growth but also promote
themetastasis of HCC.With the progress of technology, the accuracy
of extracorporeal radiotherapy is getting higher and higher, which
allows radiotherapy to be applied to patients with HCC (Chen et al.,
2021). Although radiotherapy can significantly improve the survival
rate of HCC patients, the metastasis and recurrence of HCC after
radiotherapy are more common in clinical practice (Wang et al.,
2022b). Therefore, it is particularly important to determine the
factors that promote the metastasis of HCC cells after
radiotherapy to improve the therapeutic effect of HCC. The study
of Hang Zhang et al. showed that in xenograft tumors in vivo, both
single-dose and fractionated irradiation promoted the metastasis of
HCC cells 20–60 days after irradiation. Radiation upregulated the
expressions of epithelial-mesenchymal transition (EMT) marker
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proteins including N-cadherin and Snail, and downregulated the
E-cadherin expression in vivo and in vitro, suggesting that radiation-
induced long-term EMT inHCC. The in-depth research revealed that
in HCC cells treated with the single-dose irradiation, the expression
levels of CSE and CBS, and the phosphorylation of p38 mitogen-
activated protein kinases (MAPK) increased significantly, indicating
that radiation upregulated endogenous H2S and p38 MAPK
pathways. The inhibition of CSE or CBS, two endogenous
H2S-producing enzymes, notably abolished the upregulated
expressions of EMT marker proteins and p38 MAPK induced by
radiation, indicating that H2S/CSE promoted EMT and p38 MAPK
signaling pathways in HCC. Furthermore, the inhibition of
p38 MAPK also abolished the radiation-induced expressions of
EMT marker proteins, indicating that H2S/CSE promoted long-
term metastasis of HCC cells after irradiation through promoting
EMT by activating the p38 MAPK pathway, therefore inducing the
invasion and metastasis of HCC cells and the xenograft tumors
(Zhang et al., 2018). Contrary to the conclusion that H2S/CSE
promoted EMT, exogenous H2S inhibited transforming growth
factor beta (TGF β)-induced EMT of HCC cells (Fang et al., 2010;
Guo et al., 2016). The above contradictory imagination may be
related to the cell type and H2S concentration. Perhaps the low
concentration of endogenous H2S promotes EMT of cells, while the
high concentration of endogenous H2S has the opposite effect, which
needs to be further studied.

TABLE 1 The summary of the role of hydrogen sulfide in hepatocellular carcinoma.

The role of hydrogen sulfide (H2S) in hepatocellular
carcinoma (HCC)

Experimental model References

Exogenous H2S improves HCC via inducing cell cycle arrest and
apoptosis of HCC cells through inhibiting STAT3 pathway

HCC cell lines (HepG2 and Bel7402)/mice model of HCC Lu et al. (2014)

Exogenous H2S suppresses HCC cells proliferation and migration
through promoting autophagy by suppressing PI3K/AKT/mTOR

pathway

HCC cell (HepG2 and HLE cells) Wang et al. (2017)

Exogenous H2S reverses doxorubicin resistance to HCC by
suppressing the expressions of ABCA1 and ABCG8

HCC cell lines (HepG2 cells) Stokes et al. (2018)

HA-ADT inhibited HCC cells via promoting apoptosis via
suppressing the AKT/GSK-3β/β-catenin, and inhibiting autophagy

through suppressing TGF-β/Smad2/3 signaling pathways

HCC cell lines SMMC-7721 and Huh-7 and mice model of HCC Duan et al. (2023)

3-MST/H2S inhibits HCC through promoting the cell cycle arrest and
apoptosis of HCC cells by inhibiting AKT/FOXO3a/Rb pathway

Human HCC cell lines (HepG2, MHCC-LM3, Huh7 and Hep3B)and
samples from HCC patients

Li et al. (2022b)

Exogenous H2S aggravates HCC by activating the STAT3-COX-
2 pathway

HCC cell lines (PLC/PRF/5 cells) Zhen et al. (2018)

Exogenous H2S plays a double-edged sword role in HCC via EGFR/
ERK/MMP-2 and PTEN/AKT signaling pathways

HCC cell lines (SMMC-7721 and Huh-7) Wu et al. (2017)

PI3K/Akt pathway increases the level of CSE/H2S through
Sp1 binding to the core promoter of CSE to aggravate HCC through

promoting the cell cycle progression

HCC cell lines (QGY-7703 and SMMC-7721) Yin et al. (2012)

CSE/H2S promotes the proliferation of HCC cells by inhibiting
mitochondrial ROS-mediated apoptosis through activating EGFR/

ERK1/2 pathway

HCC cell lines (HepG2, PLC/PRF/5, Hep3B cells) Pan et al. (2014)

CSE/H2S promotes long-term metastasis of HCC cells after
irradiation through enhancing EMT by activating the p38MAPK

pathway

HCC cell lines (HepG2 cells) Zhang et al. (2018)

FIGURE 2
The summary of the role of hydrogen sulfide in hepatocellular
carcinoma.
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4 Conclusion

H2S plays a vital role in HCC, which has been the research
hotspot recently. Here, we summarizes the role and mechanism of
H2S in HCC as follows: 1) exogenous H2S improves HCC by
inhibiting STAT3 pathway; 2) exogenous H2S aggravates HCC
via inducing STAT3-COX-2 pathway; 3) exogenous H2S plays a
double-edged sword role in HCC through PTEN/AKT and EGFR/
ERK/MMP-2 pathways; 4) exogenous H2S suppresses HCC cells
proliferation and migration by inducing autophagy via suppressing
PI3K/AKT/mTOR pathway; 5) HA-ADT suppresses HCC cells
through inhibiting TGF-β/Smad2/3 and AKT/GSK-3β/β-catenin
pathways; 6) PI3K/Akt pathway increases CSE/H2S level through
Sp1 binding to CSE core promoter to aggravate HCC through
promoting the cell cycle progression; 7) CSE/H2S promotes the
proliferation of HCC cells by inhibiting mitochondrial ROS-
mediated apoptosis through activating EGFR/ERK1/2 pathway; 8)
CSE/H2S promotes long-term metastasis of HCC cells after
irradiation through enhancing EMT by activating the p38MAPK
pathway; 9) 3-MST/H2S inhibits HCC through promoting the
apoptosis and cell cycle arrest of HCC cells by inhibiting AKT/
FOXO3a/Rb pathway; 10) exogenous H2S reverses doxorubicin
resistance to HCC via inhibiting the expressions of ABCG8 and
ABCA1 (Table 1) (Figure 2). It can be seen from the above that
several signal pathways, including EGFR/ERK/MMP-2 pathway,
STAT3-COX-2 pathway, PI3K/AKT/mTOR pathway, PTEN/AKT
signaling pathway, p38 MAPK pathway and AKT/FOXO3a/Rb
pathway, participate in the role and mechanism of H2S in HCC.
In addition to the signal pathways mentioned in this review, it is
worth further studying whether H2S can play a role in HCC through
other signal pathways. Moreover, in this review, H2S regulates HCC
by regulating the cell cycle, apoptosis, angiogenesis, doxorubicin
resistance, metastasis, proliferation, and migration of HCC cells.
Can H2S also play a role in HCC through other mechanisms? For
example, H2S plays a role in HCC by regulating pyroptosis and
ferroptosis. In addition, the cost of the H2S-related drugs is generally
cheaper. If they can be used to treat HCC, the economic burden of
HCC patients will be greatly reduced. However, the current research
shows that H2S plays a dual role in cancers (such as HCC) and
inflammation. Therefore, more research is needed in the future to
clarify under what conditions H2S promotes HCC and under what
conditions H2S has the opposite effect. Furthermore, it is particularly
important to avoid the occurrence of side effects such as H2S

promoting cancer and inflammation when H2S-related drugs are
used to treat HCC patients in the future. At present, the exogenous
H2S releaser has many limitations, such as being unable to maintain
a high concentration of H2S for a long time. Therefore, it is urgent to
find new long-acting H2S-releasing agents so that it is possible to
apply H2S-related drugs to the clinical treatment of HCC.

We believe that the H2S-related drugs will become a new strategy
for HCC treatment.
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