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In Uruguay, the pediatric acute lymphoblastic leukemia (ALL) cure rate is 82.2%,
similar to those reported in developed countries. However, many patients suffer
adverse effects that could be attributed, in part, to genetic variability. This study aims
to identify genetic variants related to drugs administered during the induction phase
and analyze their contribution to adverse effects, considering individual genetic
ancestry. Ten polymorphisms in five genes (ABCB1, CYP3A5, CEP72, ASNS, and
GRIA1) related to prednisone, vincristine, and L-asparaginase were genotyped in
200patients. Ancestrywas determined using 45 ancestry informativemarkers (AIMs).
The sample ancestrywas 69.2%European, 20.1%Native American, and 10.7%African,
but with high heterogeneity. Mucositis, Cushing syndrome, and neurotoxicity were
the only adverse effects linked with genetic variants and ancestry. Mucositis was
significantly associated with ASNS (rs3832526; 3R/3R vs. 2R carriers; OR: =
6.88 [1.88–25.14], p = 0.004) and CYP3A5 (non-expressors vs. expressors; OR:
4.55 [1.01–20.15], p = 0.049) genes. Regarding Cushing syndrome, patients with the
TA genotype (rs1049674, ASNS) had a higher risk of developing Cushing syndrome
than thosewith the TT genotype (OR: 2.60 [1.23–5.51], p= 0.012). Neurotoxicity was
significantly associatedwith ABCB1 (rs9282564; TC vs. TT; OR: 4.25 [1.47–12.29], p=
0.007). Moreover, patients with <20% Native American ancestry had a lower risk of
developing neurotoxicity than thosewith ≥20% (OR: 0.312 [0.120–0.812], p= 0.017).
This study shows the importance of knowing individual genetics to improve the
efficacy and safety of acute lymphoblastic leukemia.
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Introduction

In Uruguay, as in the rest of the world, leukemias are the most common pediatric cancer,
constituting 30.2% (Kato, 2020; Dufort and Álvarez, 2021). Acute lymphoblastic leukemia
(ALL) is the most common childhood leukemia (Maamari et al., 2020). Its incidence rate
varies among populations. For instance, it is higher in the Hispanic and European-derived
populations of the United States of America (USA) than in the African American and Asian
American populations of this country (Fujita et al., 2021). Furthermore, compared with
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other populations, the incidence rate in Latin American population
has increased more rapidly over time (Quiroz et al., 2019; Mejia-
Arangure et al., 2021). Overall survival of ALL has remarkably
improved, being 10% in the 1960s and reaching up to 90% nowadays
(Al-Mahayri et al., 2017). In Uruguay, the ALL survival between
2008 and 2012 was 82.2%, similar to those reported for developed
countries such as the United States, some East European countries,
Japan, South Korea, and Australia (Castillo et al., 2012; Dufort and
Álvarez, 2021).

In Uruguay, the Berlin–Frankfurt–Münster (IC-BFM) protocol
is used to treat ALL pediatric patients, who are classified into three
risk groups (standard, intermediate, and high), according to the age
of diagnosis, white blood cell (WBC) count, presence of
translocations, peripheral blood blast number on day +8
(PBB+8), and minimal residual disease (MRD) on days +15 and
+33. The overall treatment consists in a 2-year chemotherapy
divided into five phases. The first phase, induction to remission,
consists of the administration of prednisone (PRED), vincristine
(VCR), L-asparaginase (L-ASP), daunorubicin, and methotrexate
(MTX). Although these drugs have shown high efficiency, their non-
specific action and high administered doses make them potentially
toxic (Gervasini and Vagace, 2012). The inter-individual variability
in the treatment response can be explained by non-genetic (age, sex,
concomitant diseases, and diet) and genetic factors (Arribas and
Pérez, 2010). One of the most common adverse events is oral
mucositis, occurring in 52%–80% of children treated with
chemotherapeutic regimens (Cheng et al., 2008). Although some
studies have reported an association between oral mucositis and
genetic polymorphisms in different genes such as ABCB1, ABCC2,
ABCG2, and MTHFR (Tantawy et al., 2010; Bektaş-Kayhan et al.,
2012; Liu et al., 2014; Viana Filfo et al., 2021), these studies have not
been able to be replicated.

PRED and dexamethasone are two glucocorticoids (GCs)
administered in ALL therapy that increase therapeutic efficacy
(Kawedia et al., 2011). However, GC administration has been
associated with a variety of unwanted adverse effects, such as
skin fragility, weight gain, increased infection risk, metabolic and
cardiovascular impact, hypertension, hyperglycemia, Cushing
syndrome, dyslipidemia, and bone toxicity (Schijvens et al.,
2019). ABCB1 protein is a drug efflux pump with broad
substrate specificity that can expulse PRED, VCR, MTX, and
anthracyclines to the extracellular space (Gregers et al., 2015;
Song et al., 2017). Therefore, any variation in the expression or
activity levels of this protein could affect the response to the ALL
treatment (Fletcher et al., 2010; Song et al., 2017; Mohammad et al.,
2018). The relationship between rs2032582 (A>C/T) in the ABCB1
gene and the response to ALL treatment has been reported. In a
study conducted in a Malay, Chinese, and Indian children cohort,
the AA genotype was associated with lower event-free survival and a
higher risk of relapse (Lu et al., 2014). On the other hand, a study in a
Chinese population reported that individuals with CC, CT, and TT
genotypes had a higher risk of relapse or death compared with CA,
AA, or AT genotypes. However, no relationship was found between
this variant andWBC at debut, PBB+8 (Zhai et al., 2012; Gasic et al.,
2018), and MRD on days +15 and +33 (Zhai et al., 2012).

VCR is a plant alkaloid that exerts cytotoxic effects by interfering
with the microtubule assembly and mitotic spindle formation. This
inhibition leads to apoptosis (Jordan and Wilson, 2004; Echebarria

Barona, 2016; Al-Mahayri et al., 2017). In the nervous system, VCR
disrupts axonal microtubules, causing axonal inflammation in both
myelinated and unmyelinated fibers. Consequently, sensory and
motor functions are affected, thus influencing the patient’s life
quality during or even after treatment (Carozzi et al., 2015;
Martin-Guerrero et al., 2019). Several variables could shape the
incidence of VCR-induced neurotoxicity: dose, cumulative dose,
administration frequency, interaction with other drugs, genetic
ancestry, gene variants, and even the methods used to determine
this incidence (Sims, 2016; Stock et al., 2017; McClain et al., 2018;
Laushke et al., 2019). In the liver, the CYP3A5 enzyme is the main
VCR metabolizing enzyme, generating three inactive metabolites
(Dennison et al., 2006; Lamba et al., 2012). CYP3A5 genetic
variability has been associated with VCR-induced neurotoxicity
both in vitro and in vivo (Aplenc et al., 2003; Egbelakin et al.,
2011; Lamba et al., 2012). Homozygous or compound heterozygous
individuals for CYP3A5 *3, *6, and *7 alleles present a higher risk of
developing VCR-induced peripheral neuropathy events (Egbelakin
et al., 2011). However, some studies did not find an association
between the CYP3A5 genotype and neurotoxicity (Ceppi et al.,
2014). Additionally, the CEP72 gene (which encodes for an
essential centrosomal protein in the microtubule construction)
contains a polymorphism (rs924607) whose role in VCR-induced
neurotoxicity has been discussed (Diouf et al., 2015; Gutiérrez-
Camino et al., 2016; Stock et al., 2017). Concerning genetic ancestry,
a higher frequency of VCR-induced neuropathies has been reported
in European-derived children than in African American and
Hispanic children (Renberger et al., 2008; Sims, 2016; McClain
et al., 2018).

L-ASP is an ASNase that catalyzes the L-asparagine hydrolysis
into L-aspartic acid and ammonia, depriving tumor cells of an
essential growth factor (asparagine), resulting in their death
(Verma et al., 2007; Shrivastava et al., 2016; Burke and Zalewska-
Szewczyk, 2022). Although L-ASP administration has been one of
the main contributions to pediatric ALL treatment in the last
50 years, it has also been associated with different adverse effects,
among which hypersensitivity to the drug is prominent. Some
studies have linked the occurrence of L-ASP allergy with the
patient risk group (Chen et al., 2010; Kutszegi et al., 2015; Rajic
et al., 2015). Furthermore, there are several investigations about
variants in ASNS and GRIA1 genes and their influence on this
adverse effect (Akagi et al., 2009; Chen et al., 2010; Pastorczak et al.,
2014; Ben Tanfous et al., 2015; Kutszegi et al., 2015; Rajic et al.,
2015). Moreover, Wacker et al. (2007) reported a higher frequency
of L-ASP allergic reactions in pediatric ALL European-derived
populations than in Hispanic or Afro-descendant populations. In
agreement, Chen et al. (2010) reported that American–Indian
ancestry is associated with a lower risk of developing L-ASP
hypersensitivity. However, Kahn et al. (2018) did not find a
significant difference in the incidence of L-ASP-associated
toxicities between Hispanic and non-Hispanic children.

From a historical and genetic perspective, the Uruguayan
population is considered an admixed population with at least
three ancestries (Sans et al., 1997; Bonilla et al., 2004; Hidalgo
et al., 2005; Bonilla et al., 2015). According to history, the
Uruguayan territory prior to the European conquest was
occupied by the Charrúas, Minuanes, Arachanes, Chanás, and
Guaraníes Native American groups (Cabrera, 1992). The
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colonization of Uruguay occurred mainly by the Spanish (from
Asturias, the Canary Islands, and Galicia) and Portuguese (from
Portugal and Brazil) (Pi and Vidart, 1969; Sans et al., 1997; Sans
et al., 2021). Due to the slave trade, Uruguay also received African
populations of diverse origins, especially of Bantu ethnicity (Isola,
1975). Although recently Uruguay does not have Afro-Uruguayan
or Native American isolated communities, the contribution of these
populations is observed in the Uruguayans’ genetic background. The
European genetic contribution varies between 70% and 80%,
whereas the Native American and African contributions vary
between 10%–14% and 6%–9.5%, respectively (Sans et al., 2021).
This genetic structure is very enthralling for carrying out
pharmacogenetics studies.

This investigation aims to identify genetic variants related to the
drugs administered during the induction phase of pediatric ALL
therapy (PDR, VCR, and L-ASP) and analyze their contribution to
response and adverse effects, considering individual genetic
ancestry.

Methodology

The protocol and procedure employed were in accordance with
the principles of the Declaration of Helsinki and approved by the
CENUR Litoral Norte, Universidad de la República, institutional
ethics committee. Informed consent was obtained from parents,
guardians, and patients, as required (Exp. 311170-001142-19, www.
expe.edu.uy).

Patient samples

This investigation is a retrospective molecular epidemiology
study. A total of 200 pediatric patients diagnosed with ALL
(between 1 and 19 years old) were analyzed. Patients were treated
according to the IC-BFM protocol at the Servicio Hemato Oncológico
Pediátrico—Centro Hospitalario Pereira Rossell (SHOP-CHPR),
Montevideo, Uruguay, and recruited between 2010 and 2020.
SHOP-CHPR is the national reference center for pediatric ALL
and treats children from the entire county. Patients’ clinical and
demographic data are detailed in Supplementary Table S1. DNAwas
extracted from peripheral blood white cells using the salting-out
method (Miller et al., 1988).

Genotyping

Ten polymorphisms in ABCB1, CYP3A5, CEP72, ASNS, and
GRIA1 genes were genotyped by different molecular approaches
such as PCR, PCR-RFLP, PCR-HRM, and TaqMan probes
(Supplementary Table S2). For validation purposes, all patients
carrying a rare variant allele, as well as a similar number of non-
carriers, were subjected to Sanger sequencing. For frequent variants,
10% of the samples were selected to be sequenced, considering the
genotype proportions. Individual and global ancestry were
determined by genotyping 45 ancestry informative markers
(AIMs), selected from the SNP panel published by Yaeger et al.
(2008). The eligibility criteria were that they were adequately

distributed across the genome and that at least one was in each
of the autosomes. Moreover, the selection tried to contemplate a
similar proportion of AIMs that can distinguish between the three
possible pairs of ancestral populations. Nineteen AIMs were
analyzed using SNaPshot multiplex (Thermo Fisher Scientific,
Waltham, Massachusetts, United States), and 26 AIMs were
analyzed by MassARRAY SNP genotyping (Agena Bioscience
Inc., San Diego, United States).

Clinical and paraclinical data

Frommedical records, several clinical and paraclinical data were
obtained: the number of blasts on days +1, +8, +15, and +33 and
MRD on days +15 and +33, and relapses or deaths. Moreover, for
each of the 33 days of the induction phase, a complete blood count
and clinical symptoms such as infection, mucositis, erythema,
gastrointestinal disorders, allergies, Cushing syndrome, and
hyperglycemia were collected. Furthermore, neurological events
and L-ASP allergy were checked throughout the treatment. These
data were collected blinded to genotypes. The current investigation
focused only on PRED response on day +8, mucositis, Cushing
syndrome, L-ASP hypersensitivity, and neurotoxicity. Mucositis and
Cushing syndrome were classified into severity grades, according to
NIH-NCI Common Terminology Criteria for Adverse Events
(CTCAE). Neurological toxicity was defined following the
Spanish Society of Medical Oncology criteria (Blasco and
Caballero, 2019), according to the presence of any of the
following symptoms: progressive confusion, hallucinations,
aphasia, speech disturbance, lethargy, drowsiness, seizures, ataxia,
dysmetria, dysarthria, nystagmus, facial droop, rapid eye movement,
loss of sensation in extremities, and paresthesia.

Statistical analysis

Genotypic and allelic frequencies were calculated by gene
counting. The Hardy–Weinberg equilibrium (HWE) was
estimated using Fisher’s exact test, and genotypic frequencies
were compared to 1000 Genomes Project Consortium
populations using the population differentiation test in Arlequin
software v3.5.2 (Excoffier and Lischer, 2010). Moreover, the
F-statistic FIS was calculated, according to Hedrick (2011).
Individual and global genetic ancestry were calculated using
STRUCTURE 2.3.4 software (Pritchard et al., 2000) using the
following parameters: K = 3 (European, Amerindian, and
African), 100,000 iterations for the burn-in period, and
1,000,000 additional iterations. The parental populations included
42 Europeans (Coriell’s North American panel), 37 West Africans
(non-admixed Africans living in London, United Kingdom, and
South Carolina, United States), and 30 Native Americans
(15 Mayans and 15 Nahuas), who were genotyped on an
Affymetrix 100 K SNP chip (data were kindly provided by Dr.
Fejerman, University of California, San Francisco).

The relationships between ancestry and PRED response, and
ancestry and toxicities were analyzed using the Mann–Whitney
(MW) test, considering each ancestry separately. In some analyses,
these components were dichotomized using a cut-off value based on
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their mean. The PRED response was measured as PBB+8 and
dichotomized into two groups: <1000 and ≥1000 blasts.
Toxicities were analyzed as presence/absence. Regarding CYP3A5,
patients were classified as expressors or non-expressors. The formers
carry at least one functional allele (*1), and the latter are either
homozygous for one variant or compound heterozygous. The
analysis between categorical variables was performed using the
chi-squared test. When the chi-squared test showed significant
differences, odd ratio (OR) risk analyses were performed.
Additionally, the relationship between the number of events of
each toxicity and genetic variants was analyzed using the MW
test. Finally, classification and regression trees were performed

using the Chi-squared Automatic Interaction Detector (CHAID)
algorithm to analyze the toxicities, including genetic variants and
ancestry. Statistical analyses were carried out using SPSS
22.0 software (IBM Corp Resealsed, 2013) with a significance
p-value of 0.05.

Results

Of the 200 patients, only 184 had medical records available.
Furthermore, ancestry was successfully determined in 197 samples.
Since not all patients were genotyped for all variants (due to the lack

TABLE 1 Genotype and allele frequencies.

Gene Variant Genotype N Frequency Allele Frequency HWE p-value* FIS

ABCB1 rs2032582 CC 56 0.354 C 0.611 0.684 −0.070

(N = 158) CA 77 0.487 A 0.370

CT 4 0.025 T 0.019

AA 19 0.120

AT 2 0.013

TT 0 0.000

rs9282564 TT 155 0.886 T 0.943 1.000 −0.058

(N = 175) TC 20 0.114 C 0.057

CC 0 0.000

CYP3A5 rs776746 (*3) *1/*1 3 0.019 *1 0.108 0.521 0.069

rs10264272 (*6) *1/*3 28 0.177 *3 0.886

rs41303343 (*7) *3/*3 125 0.791 *6 0.003

(N = 158) *3/*6 1 0.006 *7 0.003

*3/*7 1 0.006

CEP72 rs924607 CC 61 0.377 C 0.593 0.192 0.108

(N = 162) CT 70 0.432 T 0.407

TT 31 0.191

ASNS rs3832526 2R2R 101 0.605 2R 0.766 0.200 0.099

(N = 167) 2R3R 54 0.323 3R 0.234

3R3R 12 0.072

rs1049674 TT 99 0.623 T 0.811 0.001 −0.229

(N = 159) TA 60 0.377 A 0.189

AA 0 0.000

GRIA1 rs4958351 GG 80 0.516 G 0.710 0.440 0.064

(N = 155) GA 60 0.387 A 0.290

AA 15 0.097

rs11951398 CC 142 0.899 C 0.949 1.000 −0.050

(N = 158) CT 16 0.101 T 0.051

TT 0 0.000

N, number of patients; HWE, Hardy–Weinberg equilibrium; *, Fisher’s exact test; FIS, inbreeding coefficient; CYP3A5*1, reference or native allele.

Bold-italic values represents the significative p- values
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of DNA), the number of patients included in each analysis may
differ. Genotypic, allelic frequencies, HWE, and FIS for the
10 variants are detailed in Table 1. With the exception of
rs1049674 (ASNS), the others were found in HWE. For most
polymorphisms, the patient sample differs from the African
populations, followed by the Asians, and, to a lesser extent, from
the Europeans and the Latin American populations (Supplementary
Table S3).

The study population showed a tri-hybrid structure, with the
European ancestral proportion being the main one (69.2% ± 14.0%),
followed by the Native American (20.1% ± 12.3%) and the African
(10.7% ± 7.4%). Regarding individual ancestry, the distribution of
the three ancestral components presented high heterogeneity
(Supplementary Figure S1).

Concerning ancestry and PRED response, patients
with <1000 PBB+8 had a higher proportion of Native American
ancestry (p = 0.034; Supplementary Figure S2). It was not possible to
perform an OR analysis with a Native American cut-off value of 20%
since all patients with more than 20% had <1000 PBB+8. None of
the two variants analyzed in ABCB1 (rs2032582 and rs9282564)

showed statistically significant differences concerning PRED
response.

The relationship between gene variants and toxicities is shown
in Supplementary Table S4. Twenty-four percent (N = 44) of the
patients developed mucositis during the induction phase (32% were
in grades two or three). Patients who do not express CYP3A5, as well
as those with the 3R/3R genotype (rs3832526, ASNS), had a higher
risk of developing mucositis (OR = 4.55 [1.01–20.15], p = 0.049 and
OR = 6.88 [1.88–25.14], p = 0.004) (Supplementary Table S5).
Moreover, the CYP3A5 non-expressors or the 3R/3R patients
present a higher number of mucositis events (p = 0.034 and
0.001, respectively). Likewise, the mucositis classification tree
shows both CYP3A5 and rs3832526 as the only variables that
explain the presence of this toxicity (Figure 1). Ancestry was not
associated with this toxicity either (Supplementary Table S6).

Twenty-eight percent (N = 51) of the patients presented at least
one Cushing event during the induction phase. Patients with the TA
genotype for rs1049674 (ASNS) had a higher risk of developing
Cushing syndrome compared to those with the TT genotype (OR =
2.60 [1.23–5.51], p = 0.012) (Supplementary Table S5). Moreover,

FIGURE 1
Mucositis classification tree. The presence/absence of mucositis was considered the dependent variable. ABCB1 and ASNS genotypes, the CYP3A5
phenotype (expressors and non-expressors), and Native American ancestry (greater or less than 20%) were considered independent variables. n, number
of patients; p, p-value; X2, chi-squared coefficient.
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patients with the TA genotype presented more Cushing events than
those with the TT genotype (p = 0.005). Even though Cushing
syndrome did not show statistically significant differences with any
of the ancestries (Supplementary Table S6), the classification tree
divided the TA genotype patients by the Native American ancestry.
The percentage of patients with Cushing syndrome was higher in
those with <20% Native American ancestry (Figure 2).

Forty percent of the patients (N = 74) developed L-ASP allergy
during treatment (6.7% during the induction phase). Neither ASNS
and GRIA1 variants nor ancestry was statistically significantly
associated with L-ASP hypersensitivity (Supplementary Tables
S4, S6).

Twenty-nine patients (15.7%) experienced at least one
neurological event during treatment, mostly in post-induction
phases (83%). Patients with the CT (rs9282564, ABCB1)
genotype had a higher risk of developing neurological toxicity
than those with the TT genotype (OR = 4.25 [1.47–12.29], p =
0.007) (Supplementary Table S5). Moreover, patients with
neurotoxicity had lower Native American ancestry (p = 0.002).
Those patients with ≥20% Native American ancestry had a lower

risk of developing this toxicity compared to those with <20% (OR =
0.31 [0.12–0.81], p = 0.017). When analyzing neurotoxicity with the
Native American ancestry and genotypic variants, the CT genotype
of rs9282564 was the only explanatory variable (Figure 3).

Discussion

Only rs1049674 (ASNS) was not found in HWE, showing an
excess of heterozygotes (Table 1). This equilibrium deviation could
be due to a genotyping error, the existence of evolutionary factors,
population substructure, or admixture linkage disequilibrium
(ALD), as reported by Bonilla et al. (2015). Since this
polymorphism was also not found in HWE in a control sample
(data not shown) and was validated by Sanger sequencing, a
genotyping error was discarded as an explanation. As
rs1049674 was in linkage equilibrium with most of the
polymorphisms analyzed (data not shown), the rest of the
polymorphisms were in HWE, and the FIS values were near zero
(either positive or negative), a population substructure or ALD are

FIGURE 2
Cushing syndrome classification tree. The presence/absence of Cushing syndrome was considered the dependent variable. ABCB1 and ASNS
genotypes, and Native American ancestry (greater or less than 20%) were considered independent variables. n, number of patients; p, p-value; X2, chi-
square coefficient.
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not the most plausible explanations. This equilibrium deviation
needs to be further addressed.

The ancestry heterogeneity observed and the global ancestry
agree with genetic and sociodemographic data previously reported
for Uruguay (Instituto Nacional de Estadística, 2011; Sans et al.,
2021). However, the Native American and African ancestry are
slightly higher than those previously published for Uruguay (Sans
et al., 1997; Bonilla et al., 2004; Bonilla et al., 2015; Sans et al., 2021).
This difference could be attributable to the fact that most of the
patients belong to the public healthcare system. According to Bonilla
et al. (2015) and Sans et al. (2021), Native American and African
ancestries are slightly higher in the public healthcare system
population, showing heterogeneity according to the
socioeconomic level. Additionally, the association between the
Native American ancestry and ALL risk (Walsh et al., 2013)
could also explain the observed higher proportion of this ancestry.

Furthermore, patients with <1000 PBB+8 had a significantly
higher Native American ancestry than those with ≥1000
(Supplementary Figure S2), suggesting a better PRED response.
This result does not agree with other studies that associate a
worse treatment response with the Native American ancestry
(Bhatia et al., 2002; Kadan-Lottick et al., 2003; Bhatia, 2011;
Yang et al., 2012; Quiroz et al., 2019; Lee et al., 2022). Therefore,
there could be other genetic and non-genetic factors associated with
the Native American component that should be studied.

Despite oral mucositis being one of the most frequent side effects
of antineoplastic therapy, few studies analyze possible genetic risk
factors. In this study, CYP3A5 non-expressors and patients with the
3R3R genotype (rs3832526, ASNS) showed a higher risk of
developing mucositis and a higher number of mucositis events
than those who express CYP3A5 and carry the 2R allele,
respectively. The CYP3A5 enzyme converts VCR into inactive
metabolites. A deficiency of this enzyme activity could lead to

VCR accumulation, which could induce the development of
toxicities (López-López et al., 2016). On the other hand, some
studies associate mucositis with L-ASP administration, but none
of them investigate the role of genetic variants (Müller et al., 2000;
Ortiz et al., 2013). The 3R3R genotype has been associated with a
higher risk of developing L-ASP hypersensitivity (Ben Tanfous et al.,
2015). Although hypersensitivity generally manifests as anaphylaxis,
edema, urticaria, and erythema, among others (Fonseca et al., 2021),
we cannot rule out mucositis as a possible manifestation.

Moreover, Cushing syndrome was associated with rs1049674
(ASNS). Patients with the TA genotype for rs1049674 had a higher
risk of developing Cushing syndrome and more events than those
with the TT genotype. Although the impact of this variant is
unknown, changes in ASNS expression could cause greater
sensitivity to L-ASP and lead to the development of Cushing’s
syndrome. Moreover, the percentage of TA patients that
developed Cushing syndrome was higher among those
with <20% Native American ancestry than those with ≥20%
(Figure 2). Although we cannot rule out that the Native
American ancestry protective effect is due to parental population
frequencies of rs1049674, when amultidimensional scaling (MDS) is
constructed from genetic distances (FST), the subpopulation without
Cushing syndrome is clustered with Latin American populations
and split from the one with Cushing syndrome (Supplementary
Figure S3A).

Similar to previous reports, 40.2% of the patients developed
L-ASP allergy during treatment, especially in the post-induction
phases. Neither ASNS- or GRIA1- analyzed variants nor ancestry
were significantly associated with L-ASP allergy. Since there are
contradictory results on the role of ASNS and GRIA1 variants in this
toxicity (Zalewska-Szewczyk et al., 2007; Chen et al., 2010; Pieters
et al., 2011; Ben Tanfous et al., 2015; Kutszegi et al., 2015; Rajic et al.,
2015; Youssef et al., 2021), the lack of association was not a surprise.
Regarding ancestry, the difference between our result and that
reported by Chen et al. (2010) could be explained by different
admixture proportions or different Native American ancestral
populations.

Given that 83% of the neurotoxicity observed was in post-
induction phases, it cannot be affirmed that this toxicity is only
due to VCR administration. Other drugs, such as MTX, could
also influence this toxicity development (Vezmar et al., 2003;
Bhojwani et al., 2014). Those patients with the CT genotype for
rs9282564 (ABCB1) showed a higher risk of developing this
adverse effect than those with the TT genotype. Until now,
this variant has not been associated with adverse effects
derived from ALL therapy. Since VCR and MTX are
transported outside the cell by ABCB1 (Whirl-Carrillo et al.,
2012), variants that modify the activity of this transporter could
cause various toxicities, such as the neurological toxicity. On the
other hand, those patients with neurological toxicity had a
significantly lower Native American ancestry than those who
did not. As with PRED and Cushing syndrome, a relationship
between having a higher Native American ancestry and a lower
risk of developing toxicity is depicted. Although some
investigations report an association between neurotoxicity and
the ancestry (Renbarger et al., 2008; Sims, 2016; McClain et al.,
2018), they are mostly based on the high frequency of CYP3A5
expressors in Afro-descendent populations.

FIGURE 3
Neurotoxicity classification tree. The presence/absence of
neurotoxicity was considered the dependent variable. ABCB1, CEP72,
ASNS genotypes, CYP3A5 phenotype (expressors and non-
expressors), and Native American ancestry (greater or less than
20%) were considered independent variables. n, number of patients; P,
p-value; X2, chi-squared coefficient.
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Since the Native American ancestry and rs9282564 (ABCB1) were
not associated (data not shown), these two variables would
independently explain the presence of neurotoxicity. However, the
classification and regression tree for neurotoxicity showed that the
only explanatory variable was the rs9282564 genotype (Figure 3). It is
possible that the loss of Native American ancestry association is due to
the fact that not all the patients had the entire information for this
analysis (toxicity, ancestry, and genetic variants). Although the Native
American ancestry does not reach the desired significance, we cannot
discard a possible effect of it on neurological toxicity. Moreover, MDS
does not allow ruling out the implications of the Native American
ancestry. Since rs9282564 does not properly discriminate between the
1000 genome populations, it is not possible to assign either of the two
subpopulations (neuro and non-neuro) to a particular genetic
background (Supplementary Figure S3B). It would be desirable to
expand this analysis to determine the importance of Native American
ancestry in neurotoxicity.

The associations hitherto observed between the ancestry and
treatment response/toxicities show an apparent protection of the
Native American ancestry. This could be due to several factors: a)
the homogeneity in health access of these patients could reveal
genetic factors that might not be observed in other studies, b) the
Uruguayan Native American ancestry may not be the same reported
for other admixed populations, and c) micro-evolutionary factors
such as genetic drift or bottlenecks that have varied the frequency of
variants within the Native American ancestry.

To the best of our knowledge, this is the first report that investigates
side effects caused by drugs administered during the induction phase in
Latin America. Even though 200 may be considered a small number,
Uruguay has approximately 20 new pediatric patients with ALL per
year. Hence, analyzing a 200-individual sample represents more than
10 years of ALL patients in our country. Moreover, the treatment
response homogeneity among patients, regardless of patients’
socioeconomic levels, is another strength of this investigation. As for
the weaknesses, although estimating an ancestry with 45 AIMs is a valid
approach, some works recommend a minimum use of 50 markers
(Russo et al., 2016). Moreover, having genomic data from ancestral
populations more representative of the Uruguayan population would
allow the ancestry estimation to be more precise. To conclude, this
investigation highlights the importance of studying Latin American
populations due to their differences with ancestral populations and their
high heterogeneity.
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